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Abstract

We show how the tree-automata techniques proposed by Lugiez and Schnoebelen

apply to the reachability analysis of RPPS systems. Using these techniques requires

that we express the states of RPPS systems in a tailor-made process rewrite system

where reachability is a relation recognizable by �nite tree-automata.
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1 Introduction

This paper is concerned with the veri�cation of RPPS systems (for Recur-

sive Parallel Program Schemes), an abstract model introduced in [13,15] that

models the control 
ow of programming languages with recursive coroutines.

As shown in, e.g., [9,10], the reachability analysis of such models has impor-

tant applications in the static analysis of programming languages with parallel

constructs.

While RPPS systems can be seen as some kind of Petri nets with nested

markings (the viewpoint adopted in [13,15]), we argue that it is worthwhile to

see them as an in�nite-state process algebra (or process rewrite system). This

approach is very active (see [4] for a recent survey of achievements), partly

because it tackles a wide range of veri�cation problems (bisimulation check-

ing, temporal logic model checking, etc.), and also partly because there exist

several interesting process algebras (with quite di�erent expressive power) ob-

tained by simple syntactic restrictions on the allowed rewrite rules [20,18].
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Tree automata

Recently [17] showed how reachability problems for the PA process algebra 3

could be solved simply and elegantly via tree-automata techniques. Beyond

the use of tree-automata, the approach heavily relies on an important idea:

one should not consider process terms modulo any of the usual structural

congruences. These congruences make process notations much lighter, and

bring them closer to the intended semantics, but they hide regularity and are

not really compatible with the tree-automata approach.

The tree-automata approach to PA is further developed in [16] where it

is shown that the reachability relation between PA processes is an e�ectively

recognizable relation, which gives decidability of the �rst-order transition logic

over PA.

Our contribution

In this paper, we investigate whether the Lugiez & Schnoebelen approach to

PA can be made to work for RPPS systems.

There are three main results in the paper. First we design RPA, a process

rewrite system that encodes RPPS systems in a carefully chosen way. Then

we prove that reachability between RPA terms is a recognizable relation: we

use alternating tree-automata for a more direct proof. Finally, we show how

reachability between RPPS markings can be reduced to reachability questions

between RPA terms, ending with a direct automata-theoretic algorithm. As

a corollary, we obtain a proof of NP-completeness for reachability between

RPPS markings.

The diÆculties in this work come from the fact that natural ways of encod-

ing RPPS markings in a process-algebraic notation make it hard to de�ne cor-

responding transitions via SOS (for Structural Operational Semantics, see [1])

rules without losing the recognizability theorem we aim at. In particular, we

see no way of using the PA process algebra for this task.

Related works

Previous decidability results on RPPS [13,15] relied on more ad-hoc tableaux

methods or the well-structure of RPPS [11]. These results were weaker than

what we o�er in section 7.

The use of recognizable sets of con�gurations for symbolic model checking

has recently been called \Regular model checking" in [3]. This approach is

weaker (but more practical) since it does not require that iterated successors

or predecessors of a set of states form an e�ectively computable recognizable

language: only immediate predecessors or successors are handled (sometimes,

the transitive closure of loops can be handled).

There exist several other systems for which the reachability relation is

3 A fragment allowing recursive de�nitions mixing sequential and parallel composition,

without synchronization [2].

2



Labroue and Schnoebelen

recognizable: it is semilinear for BPP [8], de�nable in the additive theory

of reals for timed automata [7], a recognizable relation between words for

some string rewrite systems [5] including pushdown processes (see [14] for

applications to �-calculus model checking). Our approach di�ers in two points:

recognizability is in a tree-automata framework, and it requires that we invent

a new process algebra in which to encode RPPS systems.

Plan of the paper

We �rst recall RPPS schemes (Section 2) before we introduce RPA (Section 3)

and show how to encode RPPS schemes faithfully (Section 4). Then we recall

the basic tree-automata notions (Section 5) we need to prove our main theorem

(Section 6) and explain the practical implications (Section 7). A �nal section

explains how reachability between RPPS markings can be solved in NP with

tree automata.

2 Recursive-parallel program schemes

RPPS systems were introduced as an abstract model for RP programs: we

refer the reader to [13,15] for motivations and examples. Here we present the

formal model without justi�cation.

2.1 The structure of RPPS systems

A = fa; b; : : :g is a set of action names that does not contain the special

actions call, wait, and end. We write ~A (ranged over by �; �; : : :) for A [
fcall; wait; endg.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

call

call

a

b

wait

a

end

c

wait

end

Fig. 1. A scheme

A scheme is a �nite rooted graph G = hQ; q0;�i where

� Q is a �nite set of nodes,

� q0 2 Q is the initial node,
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� � is the labeled 
ow function that maps any node q to a tuple in (A�Q)[
(fcallg �Q�Q) [ (fwaitg �Q) [ fendg.

� has a clumsy mathematical appearance but is graphically easy to un-

derstand: every node is followed by in general one node, sometimes a pair

of nodes or no node at all. For example, the system depicted in Fig. 1 has

�(q0) = ha; q1i;�(q1) = hcall; q2; q6i; : : : ;�(q9) = end.

2.2 Behavioral semantics

The behavioral semantics of G is given via an in�nite labeled transition

system MG. Informally, a state of MG is a multiset of nodes (denoting the

current control states of concurrent processes) organized with a father-son

relationship (relating a process with the father process that spawned it via a

call instruction). The corresponding formal de�nition is given below, and

we refer to [13,15] for more intuitions.

Formally, the set of hierarchical states (also, \markings", or \states")

of a system G is the least set M(G) s.t. for any n nodes (not necessarily

distinct) q1; : : : ; qn of G, and hierarchical states s1; : : : ; sn 2 M(G) the

multiset s = f(q1; s1); : : : ; (qn; sn)g is in M(G) 4 . In particular, ; 2 M(G).

We use the customary notations \s + s
0", \s � s

0", : : : to denote sum,

inclusion, : : : of multisets and hence of hierarchical states. Below we write

(q; s) for the singleton multiset f(q; s)g. The size jsj of a state is given by

jf(qi; si) j i = 1; : : :gj
def

=
P

i=1;:::(1 + jsij).

We now formally de�ne what are the transitions !� M(G)� ~A�M(G)

between hierarchical states: ! is the least set of triples (s; a; s0), written

s
a
�! s

0, satisfying the following rules:

action: if �(q) = (a; q0) then (q; s)
a
�! (q0; s) for all s, (Ga)

end: if �(q) = end then (q; s)
end

�! s for all s, (Ge)

call: if �(q) = (call; q0; q00) then (q; s)
call

�! (q0; s+ (q00; ;)) for all s, (Gc)

wait: if �(q) = (wait; q0) then (q; ;)
wait

�! (q0; ;), (Gw)

paral1: if s
�
�! s

0 then s+ s
00 �
�! s

0 + s
00 for all s00, (Gp1)

paral2: if s
�
�! s

0 then (q; s)
�
�! (q; s0) for all q 2 Q. (Gp2)

Rules paral1 and paral2 for parallelism express that any activity s
�
�! s

0

can still take place when brothers are present (i.e. in some s + s
00) or when

a parent is present (i.e. in some (q; s)). The wait rule states how we can

4 A hierarchical state of the form s = f(q1; s1); : : : ; (qn; sn)g has n completely indepen-

dent concurrent activities. One such activity, say (qi; si), is the invocation of a coroutine

(currently in state/node qi) together with its family of children invocations (the si part).
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only perform a wait statement in state q if the invoked children are all ter-

minated (and then not present anymore). The other rules state how children

invocations are created and kept around.

Finally, MG is hM(G); ~A;!; s0i where the initial state is s0
def

= (q0; ;).

Example 2.1 (q0; ;)
a
�! (q1; ;)

call

�! (q2; (q6; ;))
c
�! (q2; (q7; ;))

call

�!

(q2; (q8; (q6; ;)))
b
�! (q3; (q8; (q6; ;))) � � � is an execution sequence of the sys-

tem MG associated with the scheme of Fig. 1.

As the wait rule shows, nodes that can only be exited via a wait step

behave conditionally: we denote by Q
? the set of the states q of Q such that

�(q) = (wait; q0) for some q0, while Q! denotes Q nQ?.

3 The process algebra RPA

We now de�ne RPA, a process algebra designed to encode RPPS schemes.

3.1 RPA terms

We assume a scheme G = hQ; q0;�i is �xed and consider the set Const
def

=

Q [ f0g ranged over by c; : : : TG, the set of RPA terms, or just \terms",

ranged over by t; u; v; : : : is given by the following syntax:

t; u ::= c j t I u:

For t a term, we write State(t) the set of all nodes from Q that occur in t.

The size of t, denoted jtj, is the number of symbols in t, given by jcj
def

= 1 and

jt I uj
def

= 1 + jtj+ juj.

RPA terms are binary trees but the left- and right-hand sides do not play

the same rôle, so that it is more natural to see them as combs with some c

from Const at the deep left end, and a list of subterms on the right of the

spine (see example on Fig. 2). This motivates introducing the convenient

abbreviation \c In (u1; : : : ; un)", de�ned inductively by c I
0 () = 0 and

c I
n (u1; : : : ; un) =

�
c I

n�1 (u1; : : : ; un�1)
�
I un. We only use the \In"

abbreviation with a c 2 Const in the left-hand side.

u1

un�1

un

c

I

I

I

...

...

Fig. 2. c I
n (u1; : : : ; un)
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A (guarded) RPA declaration is a �nite set � � Q � ~A � Const � TG of

rules, written fqi
�
�!� ci; ti j i = 1; : : : ; ng. The qi's need not be distinct. For

technical convenience, we require that all q 2 Q appear in the left-hand side

of at least one rule.

3.2 Semantics

Let Act
def

= ~A � f!; ?g. For convenience, we write �! and �
? rather than (�; !)

and (�; ?). A declaration � de�nes a labeled transition �!� TG � Act � TG,

given by the following SOS rules:

R1
q

�!
�! q0 I t

if (q
�
�!� q

0
; t) 2 � and q 2 Q

! R3
t
�!

�! t
0

u I t
�!
�! u I t0

R2
q

�?
�! q0 I t

if (q
�
�!� q

0
; t) 2 � and q 2 Q

? R4
t
�?

�! t
0

u I t
�!
�! u I t0

R5
t
�!

�! t
0

t I u
�!
�! t0 I u

R6
t
�?

�! t
0

t I u
�?
�! t0 I u

if State(u) = ;

The intuition is that a step t
�x

�! u in TG encodes a step st
�
�! su in MG

(where st is the hierarchical state denoted by t). The extra label x =! (resp.

x =?) means that this step can (resp. cannot) occur on top of active children

processes. The label is chosen by rules R1, R2, tested by rules R5, R6, and

propagated according to the semantics.

We write u
!
�! v (resp. u

?
�! v) when u

�!

�! v (resp. u
�?

�! v) for some �,

and u �! v when u
!
�! v or u

?
�! v. For n 2 N , we let \

n
�!" and \

n;!
�!" denote

respectively the iterated relations (!)
n
and

�
!
�!
�n

. Also ! � denotes the

closure
S

n2N

n
�!. As usual, \u �!" and \u 6�!" mean respectively that u �! v

for some v (resp. for no v).

3.3 Basic properties of RPA steps

We now list some key lemmas about the transitions between terms. These

results aim at explaining how one can decompose a compound step into smaller

steps and will be the basis of the construction in section 6.

Lemma 3.1 If u I v ! w then w has the form u
0
I v

0 and either (u ! u
0

and v = v
0) or (v ! v

0 and u = u
0).

Proof. By case analysis of rules R3{R6. 2

Lemma 3.2 If u! v then jvj > juj.
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Proof. By induction on the derivation u �! v. The base cases are transitions

q �! q
0
I t. 2

Lemma 3.3 q ! �
q
0 i� q = q

0.

Proof. q
n
�! q

0 entails n = 0 (Lemma 3.2). 2

The next six lemmas are proved in the Appendix. Lemma 3.5 gives a

characterization of
!
�! � .

Lemma 3.4 u �! i� State(u) 6= ;.

Lemma 3.5 u
!
�! �

v i� for all t 2 TG, u I t! �
v I t.

Lemma 3.6 v I t
!
�! �

v
0
I t

0 i� v
!
�! �

v
0 and t! �

t
0.

Lemma 3.7 v I t! �
v
0
I t

0 i� t! �
t
0 and

(
t
0 6! and v ! �

v
0,

or v
!
�! �

v
0.

Lemma 3.8 q ! �
v I t i� there exist c and u s.t. (q !� c; u) is a rule in

�, u! �
t, and

(
t 6! and c! �

v,

or c
!
�! �

v.

Lemma 3.9 q
!
�! �

v I t i� q 2 Q
! and there exist c and u s.t. q !� c; u is a

rule in �, u! �
t and c

!
�! �

v.

4 Embedding RPPS schemes into RPA

The behavior of an RPPS scheme G can be faithfully encoded in RPA. We

consider a set of rules �G obtained from �. For any q 2 Q,

action: if �(q) = (a; q0) then �G contains q
a
�! q

0
; 0, (Da)

end: if �(q) = end then �G contains q
end

�! 0; 0, (De)

call: if �(q) = (call; q0; q00) then �G contains q
call

�! q
0
; q

00, (Dc)

wait: if �(q) = (wait; q0) then �G contains q
wait

�! q
0
; 0. (Dw)

Thus �G can be seen as an application from Q to ~A� Const� TG.

We now associate a hierarchical state S(t) with any term t 2 TG and,

reciprocally, a term T (s) with any s 2 M(G). The aim is to de�ne what

hierarchical state is encoded by term t, and what term can be used to encode

hierarchical state s.

7
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The mappings S and T are de�ned inductively by

T (f(q1; s1); : : : ; (qn; sn)g)
def

= 0 In (q1 I T (s1); : : : ; qn I T (sn)) (T)

S (0 In (u1; : : : ; un))
def

= S(u1) + � � � + S(un) (S1)

S (q In (u1; : : : ; un))
def

= (q;S(u1) + � � � + S(un)) (S2)

where equation (T) for T (s) requires that one picks some ordering of the

elements of the multiset s.

S and T behave like an abstraction-concretization pair:

Lemma 4.1 For all s 2M(G), S(T (s)) = s.

Proof. By structural induction on s, using equations (T,S1,S2). 2

S gives rise to an equivalence between RPA terms: t �S u
def

, S(t) = S(u).
We write [u] for the equivalence class of u w.r.t. �S , and T�S

for the set of

the equivalence classes of TG.

Observe that �S is not a congruence: (0 I u) �S u whereas

(0 I u) I v 6�S u I v

It is now possible to state how steps between RPA terms are related to

steps between RPPS hierarchical states. This is done by abstracting over the !

or ? extra label that RPA steps carry, and that is only used for a compositional

de�nition of steps. Write u
�
�! t when u

�"

�! t for some " 2 f!; ?g.

Proposition 4.2 1. For all u; v in TG and � in ~A, if u
�
�! t then S(u)

�
�! S(t).

2. For all s; s0 in M(G) and � in ~A, if s
�
�! s

0, then T (s)
�
�! u for some u 2 TG

such that S(u) = s
0.

Proof (Idea). 1. (resp. 2.) is proved by induction on u (resp. s) and a tedious

case analysis. 2

The meaning of Proposition 4.2 is that, modulo the abstraction mapping

from Act to ~A that sends �
" to �, S is a bisimulation between the RPA

transition system generated by �G and the transition systemMG we want to

analyze.

5 Tree languages and tree automata

Here we recall the classical tree-automata notions we need. We refer to [6]

and [22] for more details.

5.1 Tree languages

Given a �nite ranked alphabet F = F0 [F1 [ : : : [Fm, TF denotes the set of

�nite trees (or terms) built from F : for example, with F0 = fa; bg, F1 = fg; hg

8
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and F2 = ffg, TF contains trees like a, f(a; b) and f(g(f(h(b); a)); b). A tree

language is any subset L of TF .

5.2 Tree automata

A tree automaton is a tuple A = hF ;Q; F; Æi where F is a �nite ranked

alphabet, Q = fp; p0 : : :g is a �nite set of control states, F � Q is a set of

accepting states and Æ � [n2N (Q�Fn�Q
n) is a �nite set of transition rules.

We refer to [6] (or [17]) for the classical de�nition of when a tree t is

recognized by state p of A, written p
�

7! t. For p 2 Q; L(p) denotes ft j p
�

7! tg.

L(A)
def

=
S

p2F L(p) is the tree language recognized by A.

Example 5.1 Continuing with our previous example, and setting Q =

fp0; p1g, the set of rules describes a top-down tree automaton

p0 7! a p0 7! b p1 7! g(p0)

p0 7! g(p1) p0 7! h(p1) p1 7! h(p0)

p0 7! f(p1; p1) p0 7! f(p0; p0) p1 7! f(p0; p1)

p1 7! f(p1; p0)

A possible derivation of f(h(b); a) by A is p1 7! f(p1; p0) 7! f(h(p0); p0) 7!

f(h(p0); a) 7! f(h(b); a). So p1
�

7! f(h(b); a).

5.3 Alternating tree automata

An alternating tree automaton is a tuple A = hF ;Q; F; Æi where now Æ is

a n-indexed family of maps from Q � Fn to B+(f1; : : : ; ng � Q). Here, for

a given set X, B+(X) is the set of positive Boolean formulas over X (i.e.,

Boolean formulas built from elements in X using ^ and _), where we also

allow the formulas true and false. For example we could have Æ(p; f) = (1; p1)_
((1; p2) ^ (2; p3) ^ (2; p4)).

We refer to [22] for the classical de�nition of when a tree t is recognized by

state p of some alternating A. It is well-known that standard tree automata

can be seen as alternating automata where only disjunctions are used, and that

the class of trees languages recognized by alternating tree automata is exactly

the class of tree languages recognized by non-alternating tree automata.

5.4 Recognizable relations on trees

We follow [6, Chapter 3] and [16]. A tuple ht1; : : : ; tni of n trees from TF

can be seen as a single tree, denoted t1 � � � � � tn, on a product alphabet

F�n def

= (F [ f?g)n where the arity of f1 : : : fn is the maximum of the arities

of the fi, assuming ? has arity 0.

For instance the pair hf(a; g(b)); f(f(a; a); b)i can also be seen as

ff(af(?a;?a); gb(b?)).

9
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We say a n-ary relation R � T
n
F
is recognizable i� the set of all t1�� � �� tn

for (t1; : : : ; tn) 2 R is a regular tree language over F�n.

6 Recognizability of the reachability relation for RPA

The reachability relations! � and
!
�! � between RPA terms are recognizable:

Lemma 6.1 The set Lterm
def

= fu 2 TG j u 6!g of terminated terms is recog-

nizable.

Proof. u 6! i� State(u) = ; (Lemma 3.4). Thus the automaton with an

unique accepting state p# and the transition rules

Æ(p#; 0) = true; Æ(p#; q) = false; Æ(p#;I) = (1; p#) ^ (2; p#) (1)

recognizes Lterm. 2

We now consider the alternating automaton A �

�! whose states are p, �p, p#

and all pt and �pt for t a subterm of some term appearing in � (thus jQj is in
O(j�j)).

A �

�! recognizes pairs of terms. Here we de�ne the alternating transition

function Æ with the following assumptions: (1) we omit the rules for Æ(p#; : : :),

(2) when Æ(p0; fg) is not explicitly de�ned (for some p0 2 Q and some f; g 2
(F [ f?g)) this means Æ(p0; fg) is false, and (3) we quantify over all q 2 Q,

all c 2 Const , and all f 2 (F [ f?g).

Æ(p; 00) = Æ(�p; 00) = true (2)

Æ(p; qq0) = Æ(�p; qq0) =

(
true if q = q

0,

false otherwise
(3)

Æ(p;II) = (2; p) ^
�
(1; �p) _ ((2; p#) ^ (1; p))

�
(4)

Æ(�p;II) = (1; �p) ^ (2; p) (5)

Æ(p; q I) =
_

q�!�c;u

(2; pu) ^
�
(1; �pc) _ ((2; p#) ^ (1; pc))

�
(6)

Æ(�p; q I) =

8><
>:

_
q�!�c;u

(2; pu) ^ (1; �pc) if q 2 Q
!,

false otherwise

(7)

10
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Æ(pt; f0) = Æ(�pt; f0) =

(
true if t = 0,

false otherwise
(8)

Æ(pt; fq) = Æ(�pt; fq) =

(
true if t = q,

false otherwise
(9)

Æ(pt1It2; f I) = (2; pt2) ^
�
(1; �pt1) _ ((2; p#) ^ (1; pt1))

�
(10)

Æ(�pt1It2; f I) = (1; �pt1) ^ (2; pt2) (11)

Æ(pq; f I) = Æ(p; q I) (12)

Æ(�pq; f I) = Æ(�p; q I) (13)

This automaton satis�es the following correctness property:

Lemma 6.2

L(p) = fu� v j u! �
vg; L(�p)= fu� v j u

!
�! �

vg; (14)

L(pt) = fu� v j t! �
vg; L(�pt) = fu� v j t

!
�! �

vg; (15)

L(p#) = fu� v j v 6!g; (16)

where u; v are any terms of TG [ f?g.

Proof (Sketch). The rules for Æ(p#; : : :) are the obvious modi�cations of (1)

so that they apply to the second element of a pair u� v while we do not take

care of the �rst element.

The proof is by induction over the derivations u ! �
v, . . . , for the (�)

directions, and by induction over the product term for the (�) directions.

It turns out every transition rule between (2) and (13) is justi�ed by a

behavioral property we already proved. For example, Lemma 3.3 accounts for

(3) while Lemma 3.4 accounts for all rules Æ(p#; fg). Similarly, (5) is a direct

transposition of Lemma 3.6. 2

We obtain the important corollary:

Theorem 6.3 The relations ! � and
!
�! � are recognizable. Furthermore, a

tree automaton recognizing them only needs O(j�j) states.

Proof. Our construction used an alternating automaton for clarity (the

clauses de�ning Æ mimic lemmas from section 3.3) but it is easy to adapt the

construction and get a (non-deterministic bottom up) tree automaton with

O(j�j) states. 2

7 Applications

Theorem 6.3 immediately leads to decidability results for RPA terms (and

RPPS schemes). The nice thing with these results is that they all involve the

11
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same smooth and general automata-theoretic reasoning.

Reachability sets. For any recognizable language L, the sets Pre�(L)
def

=

fu j u
�

�! v for some v 2 Lg and Post�(L)
def

= fu j v
�

�! u for some v 2 Lg
are recognizable, and the corresponding automata can be obtained in

polynomial-time by standard intersection and projection constructs on au-

tomata (assuming an automaton for L is known).

Reachability under constraints. These result extend to reacha-

bility under constraints, i.e. to the sets Pre�C(L)
def

= fu j u
�
�!

v for some v 2 L and � 2 Cg and Post�C(L)
def

= fu j v
�
�!

u for some v 2 L and � 2 Cg where C � Act� is a constraint on ac-

ceptable labels for reachability. Not all regular C � Act� can be dealt with

in this approach (see [17,16]) but interesting regular constraints, called

decomposable constraints, are allowed [21].

Model checking the logic EF. Using Pre� and standard constructs for in-

tersection and complementation, one can compute for any formula ' of the

modal logic EF, the set Mod(') of all terms that satisfy ' (see [17,19]).

Here, EF can even be enriched with decomposable constraints.

Note that since bisimilar processes satisfy the same EF formulas, we have

s j= ' i� T (s) j= ', so that this approach allows model checking RPPS

schemes.

Model checking the transition logic. EF only needs e�ective recogniz-

ability of Pre�(L) for recognizable L. But with recognizability of
�

�!, we

get a simple model checking algorithm for the full transition logic 5 , i.e. the

�rst-order logic FO(�!;
�

�!). See [16] for details and applications.

8 Reachability between RPPS markings

Here we reduce the problem of reachability between RPPS markings to

reachability questions between RPA terms. As a result, we get a simple

automata-theoretic algorithm for RPPS reachability, from which NP-

completeness of reachability is easily derived.

Write u
�
) v when u �S u

0 �
�! v

0 �S v for some u0; v0. We adopt the usual

extensions u
�
) v (for � 2 Act�) and u

�

) v. Reachability between RPPS

markings reduces to
�

)-reachability between RPA terms, in the following for-

mal sense:

Proposition 8.1 Given two RPPS markings s and s
0, s

�

�! s
0 in MG i�

T (s)
�

) T (t) in TG.

5 It is diÆcult to extend this decidability result: by encoding a grid structure into RPA,

one can easily show that model checking MSO(�!), the monadic second-order logic with

�! as the only predicate, is undecidable over RPA terms.

12
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Proof. Combine Prop. 4.2 and the de�nition of ). 2

8.1 Another characterization of �S

Our next task is to obtain a characterization of �S that is more manageable

from a regular tree languages viewpoint. We do this with in several small

steps, with the help of some simpli�cation or permutation relations between

RPA terms. The basic concepts (con
uence, commutations, . . . ) used in this

subsection are standard in the study of reduction systems (see e.g. [12]).

8.1.1 Simpli�cation

The relationsy and& are de�ned inductively by the following erasing rules:

0 I uy u (E1)

c I
n (t1; : : : ; ti�1; 0 I

m (u1; : : : ; um); ti+1; : : : ; tn)&

c I
n+m�1 (t1; : : : ; ti�1; u1; : : : ; um; ti+1; : : : ; tn)

(E2)

if ti& u, then c I
n (t1; : : : ; tn)& c I

n (t1; : : : ; ti�1; u; ti+1; : : : ; tn) (E3)

We let&& denotey[& and will use juxtaposition to denote the composition

of relations. Observe that ty&u implies t&yu, and that tyyu implies

t&yu. Thus, writing&&� for the re
exive-transitive closure of&&, we deduce

that&&� coincide with&�
y

� and then with&y=, wherey= denotesy[ Id .

When t&&�
u, we say that u is a simpli�cation of t. We write.. and �.. to

denote the reverse relations (&&)
�1

and (&&�)
�1
. Since u&& t implies juj > jtj,

&& is noetherian and &&� is a well-founded partial ordering.

Lemma 8.2 (Con
uence) If u.. v&& w, then u = w or u&& v
0 .. w for

some v0.

Proof. By induction on v and case analysis. See Appendix A.7. 2

Hence, by Newman's Lemma, && is convergent: we let t# denote the sim-

pli�cation normal form of t, i.e. the unique u one obtains by simplifying t as

much as possible.

8.1.2 Permutation

The relation � is de�ned inductively by the following rules:

c I
n (t1; : : : ; tn)� c I

n (t1; : : : ; ti�1; ti+1; ti; ti+2; : : : ; tn) (P1)

if ti � u, then c I
n (t1; : : : ; tn) � c I

n (t1; : : : ; ti�1; u; ti+1; : : : ; tn) (P2)

� is symmetric. We write
�

� to denote the re
exive-transitive closure of �.

When t
�

� u, we say t and u are permutationally equivalent.

The next lemma allows commuting simpli�cation and permutation:

Lemma 8.3 (Commutation) If u� v&&w, then u.. v
0
�

�w for some v0.

13
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Proof. By induction on u and case analysis. See Appendix A.8. 2

By symmetry, u..�w entails u
�

�..w.

8.1.3 Convertibility

Finally, we combine simpli�cations and permutations in!, a relation de�ned

as
�
&& [ � [ ..

�
�

. When u! v, we say that u is can be converted in v.

Lemma 8.4 The following are equivalent:

(a) u! v,

(b) there exist two terms u0 and v
0 s.t. u&&�

u
0
�

� v
0 �.. v,

(c) u#
�

� v#.

Proof. Obviously (c) ) (b) ) (a). One proves (a) ) (b) by a standard

\peaks into valleys" normalization: Lemmas 8.2 and 8.3 allow erasing local

peaks. Termination is guaranteed because
�

� &&
�

� is noetherian, so that

the multiset of peaks strictly decreases (in the well-founded multiset ordering

obtained from
�

�&&
�

�) after every local transformation.

Then (b) ) (c) is easy: u! v entails u# �.. u! v&&�
v# or shortly

u#! v#. Thus u# &&�
�

�
�.. v# by (a) ) (b). But since u# and v# cannot

be simpli�ed further, we get u#
�

� v#. 2

Proposition 8.5 u �S v if and only if u! v.

Proof. The (() direction is obvious: a simple inspection of the rules show

that u&v or uyv or u�v implies S(u) = S(v). The ()) direction is proved

in Appendix A.9. 2

Having decomposed �S into \permutation" and \simpli�cation" allows a

partial answer to the question of \what is the set of terms that belong to some

regular set L modulo S-equivalence?".

For a tree language L de�ne

[L]
�

def

= fu j 9t 2 L; u
�

� tg; [L]..
def

= fu j 9t 2 L; u&&�
tg;

[L]!
def

= fu j 9t 2 L; u! tg: [L]&&
def

= fu j 9t 2 L; t&&�
ug;

If L is regular, then [L]
�

and [L]! are not regular in general, while [L]..
and [L]&& are. For our purposes, we shall need the following:

Lemma 8.6 If L is regular then [L].. is regular. Furthermore, from a tree

automaton A recognizing L, one can build in polynomial-time a tree automaton

A0 for [L].. with jA0j = O(jAj2).

Proof (Idea). First, for any pair p; q of states of A, we add a state rqp and

rules such that t
�

7! r
q
p i� t is some 0 In (t1; : : : ; tn) and p I

n (t1; : : : ; tn)
�

7! q

14
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in A. Then, whenever q I q
0 �

7! q
00, we add all rules of the form r

q
p I q

0 7! r
q00

p .

With further rules p I r
q
p 7! q and r

q
p I r

r
q 7! r

r
p, the resulting automaton has

t
�

7! p i� t&�
u for some u with u

�

7! p in A.

Then the construction is easily completed in view of &&� = &�
y

=. 2

8.2 Transitions modulo �S

We can now prove that �S (or equivalently!) respects behaviours in a sense

stronger than just being included in the largest bisimulation:

Proposition 8.7 �S is a bisimulation relation modulo the abstraction of

f!; ?g labels, i.e. u �S v and u
�
�! u

0 implies that v
�
�! v

0 for some v
0 with

v �S v
0.

Proof (Idea). Standard but tedious. One proves that �, & and y are

bisimulations up-to!. Prop. 8.5 concludes. 2

Proposition 8.8 For any � 2 Act
�, t

�
) u i� t

�
�! u

0 for some u0 �S u.

Proof. By induction on the length of � and using Prop. 8.7. 2

With Prop. 8.5 and Lemma 8.4, we get

Lemma 8.9 u
�

) v i� u
�

�! w for some w s.t. v#
�

� w#.

8.3 A NP-algorithm for
�

)-reachability

We can now prove the following

Theorem 8.10
�

)-reachability between RPA terms is NP-complete.

Proof. NP-hardness is well-known already for simpler process algebra like

BPP [8].

We now show membership in NP. Given u and v, we compute v# in

polynomial-time, guess a w s.t. v#
�

� w (note that jwj � jvj), build a tree

automaton for L = [w].. using Lemma 8.6, and then an automaton for

L
0 = Pre�(L) = ft j t

�

�! t
0 2 Lg using Theo. 6.3 (these automata can be

built in polynomial-time). We answer yes if u 2 L
0. Lemma 8.9 states that

this algorithm is correct. 2

9 Conclusion

We encoded RPPS systems into RPA, a process rewrite system that combines

several features:

� it has an e�ectively recognizable reachability relation,

� hence an uniform tree automata method can compute the models of any

formula written in the transition logic TL,
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� which can be used for the reachability analysis of RPPS systems.

The diÆculty in that work was to discover a process-algebraic presentation of

hierarchical states where transitions are local enough so that the reachability

relation is recognizable, which is the sensitive problem. The consequence

is that the link between hierarchical states and RPA terms is not direct:

�S is not a congruence, we need to use two notions \u
�!

�! v" and \u
�?

�! v", etc.

We see this work as more proof of the power of process rewrite systems

for the analysis of various kind of of in�nite state systems. At the same time,

it also shows that tree-automata are a powerful tool for the analysis of such

process rewrite systems.

A Appendix

A.1 Proof of Lemma 3.4

()): by induction on the derivation u �!.

(() by induction on u. If u = 0 then State(u) = ;. If u = q 2 Q then we

assumed � has at least one rule q
a
�! q

0
; v. If u is some u1 I u2, then either

State(u1) 6= ; or State(u2) 6= ;:

1. if State(u2) 6= ; then u2 �! by ind. hyp. and then u �! by R3-R4.

2. if State(u2) = ; then State(u1) 6= ;, u1 �! by ind. hyp., and then u �!
by R5-R6. Observe that the condition on the application of R6 causes no

problem.

A.2 Proof of Lemma 3.5

The ()) direction is obvious with rule R5.

For the (() direction we pick q 2 Q and show by induction on n 2 N that

u I q
n
�! v I q implies u

!
�! �

v:

1. n = 0: then u I q = v I q. It follows that u = v and u
!
�! �

v.

2. n > 0: then u I q
n�1
�! t! v I q. t must be some t1 I t2 (Lemma 3.1)

and t2
i
�! q for some 0 � i � 1. Necessarily i = 0 (Lemma 3.2) and then

t2 = q. t �! v I q is obtained by R5 since State(q) 6= ; rules out R6. Hence

t1
!
�! v. We conclude by noting that the ind. hyp. gives u

!
�! �

t1.

A.3 Proof of Lemma 3.6

((): Assuming v
!
�! �

v
0 and t! �

t
0, we have v I t

!
�! �

v I t
0 by R3-R4 and

v I t
0 !
�! �

v
0
I t

0 by R5.

()): Assume v I t
!
�! v

0
I t

0. This was obtained by R3, R4 or R5, so that

(v
!
�! v

0 and t = t
0), or (v = v

0 and t �! t
0). Hence v

!
�! �

v
0 and t �!�

t
0.
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If now v I t
n;!
�! v

0
I t

0 for some n 2 N , the previous reasoning and an easy

induction on n gives v
!
�! �

v
0 and t �!�

t
0.

A.4 Proof of Lemma 3.7

((): one gets v I t
!
�! �

v I t
0 by R3-R4, and follows with v I t

0 �!�
v
0
I t

0

by R5 if v
!
�! �

v
0, or by R5-R6 if v ! �

v
0 and t

0 6!.

()): we have either (a) v I t
!
�! �

v
0
I t

0 or (b) v I t ! �
v1 I t1

?
�! v2 I

t2 !
�
v
0
I t

0. In case (a), Lemma 3.6 concludes. In case (b), rule R6 requires

State(t1) = ; so that t1 6!. It follows that t0 = t1 and t
0 6!.

A.5 Proof of Lemma 3.8

()): the �rst step of q ! � must be some q �! c I u obtained by R1-R2 via

some q !� c; u in �. Then c I u! �
v I t and Lemma 3.7 concludes.

((): this direction is obvious by combining R1-R2 and Lemma 3.7.

A.6 Sketch Proof of Lemma 3.9

This extends Lemma 3.6 exactly like the previous lemma extended Lemma 3.7.

A.7 Proof of Lemma 8.2

We prove the lemma by induction on v. Assume u.. v && w with u 6= w,

write v under the form c I
n (v1; : : : ; vn), and consider the following cases:

� If v&&u using rule (E1), then v = 0 I u and, since u 6= w, w = 0 I u
0 with

u&& u
0. Then u&& u

0.. w.

� If v&&u using rule (E2) on vi, then if v&&w also uses rule (E2) (on vj with

j 6= i) it is easy to show u&&..w. If v&&w uses rule (E3), then u&&..w

is equally obvious.

� If v && u using rule (E3), then u = c I
n (v1; : : : ; vi�1; ui; vi+1; : : : ; vn)

with vi & ui. The only interesting case for v && w is when w = c I
n

(v1; : : : ; vi�1; wi; vi+1; : : : ; vn) with vi & wi (the other cases are mirror im-

ages of cases we already considered). Here, since ui 6= wi, the ind. hyp.

gives ui&& v
00.. wi for some v00 and we deduce u&&..w.

A.8 Proof of Lemma 8.3

We assume u� v && w and prove the Lemma by induction on w. Write w

under the form c I
n (w1; : : : ; wn). If n = 0 then v = 0 I c and no u exists

s.t. u� v. Thus n > 0 and we now consider all cases for v&& w:

� If v&& w by rule (E1), then v = 0 I w and u = 0 I w
0 with w

0

� w. We

are done since u&& w
0.

17
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� If v && w by rule (E2), then v is some c I
n�m+1 (w1; : : : ; wi�1; 0 I

m

(wi; : : : ; wi+m�1); wi+m; : : : ; wn) with m possibly 0. Now there are several

cases for u� v:

If u� v by rule (P2), or by rule (P1) in a way that does not touch the

0 Im (wi; : : : ; wi+m�1) subterm of v, then it is easy to see that u&&�w.

Otherwise the 0 I
m (wi; : : : ; wi+m�1) subterm of v is

swapped with wi�1 or wim . In the �rst case u is c I
n�m+1

(w1; : : : ; wi�2; 0 I
m (wi; : : : ; wi+m�1); wi�1; wm; : : : ; wn) and u && v

0 =

c I
n (w1; : : : ; wi�2; wi; : : : ; wi+m�1; wi�1; wm; : : : ; wn) works since v

0
�

� w

with m uses of rule (P1). The second case is similar.

� If v&& w by rule (E3), v is c In (w1; : : : ; wi�1; w
0

i; wi+1; : : : ; wn) for some i

and w
0

i s.t. w
0

i && wi. The cases where u� v by rule (E1), or by rule (E2)

on a subterm di�erent from w
0

i, are easy to deal with.

The interesting case is when u = c I
n (w1; : : : ; wi�1; w

00

i ; wi+1; : : : ; wn)

and w
00

i � w
0

i. Then the induction hypothesis applied on w
00

i � w
0

i && wi

yields w00

i && v
00

�

�wi for some v00, and we deduce u&& v
0
�

�w with v
0 = c I

n

(w1; : : : ; wi�1; v
00
; wi+1; : : : ; wn).

A.9 Proof of Proposition 8.5

There only remains to prove the ()) direction of Prop. 8.5. We start with

the following lemma:

Lemma A.1 u! u
0 implies c In (: : : ; u; : : :)! c I

n (: : : ; u0; : : :).

Proof. By induction on the length of the derivation ti ! u. For the base

case, assume u&u
0 (resp. uyu

0, u�u
0): one concludes using rule (E3) (resp.

(E2), (P2)). 2

We are now ready to prove that S(u) = S(v) entails u! v. The proof is

by induction on juj+ jvj. We assume that u and v are resp. c In (u1; : : : ; un)

and c
0
I

m (v1; : : : ; vm) and consider several cases:

� If c 2 Q and c
0 = 0, then S(u) = (c;

P
i S(ui)) and S(v) =

P
j S(vj).

Hence there is some k s.t. S(vk) = S(u) and for all j 6= k, S(vj) = ;. By

ind. hyp. we have vk ! u and vj ! 0 for j 6= k. Thus v ! 0 Im

(0; : : : ; 0; u; 0; : : : 0) by Lemma A.1. Then v! 0 I u by (E2) and v! u

by (E1). The case where c = 0 and c
0 2 Q is symmetric.

� If c = 0 = c
0, then S(u) =

P
i S(ui) and S(v) =

P
j S(vj). If c; c

0 2 Q, then

S(u) = (c;
P

i S(ui)) and S(v) = (c0;
P

j S(vj)). In both cases, c = c
0 andP

i S(ui) =
P

j S(vj).
Now, if each ui and each vj has the form q I

� (: : :) with q 2 Q, then

n = m and there is a bijective h s.t. S(ui) = S(vh(i)). By ind. hyp.,

ui ! vh(i), then u! c I
n (vh(1); : : : ; vh(n)) by Lemma A.1, then u! v

by (P1).

Otherwise some ui or vj has the form 0 Ik (w1; : : : ; wk), we use rule (E2)
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to 
atten the corresponding term in u or v and we repeat the process until

no such ui and vj exists. Eventually we obtain u&�
u
0 and v&�

v
0 with u

0

and v
0 having the form of the previous subcase, concluding the proof.
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