
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 16 pages

Synchronized Regular Expressions �

Giuseppe Della Penna 1,2 Benedetto Intrigila 1,3

Enrico Tronci 1,4

Area Informatica, Università di L’Aquila,
Coppito 67100, L’Aquila, Italy

Marisa Venturini Zilli 1,5

Dip. di Scienze dell’Informazione, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

Abstract

Text manipulation is one of the most common tasks for everyone using a computer.
The increasing number of textual information in electronic format that every com-
puter user collects everyday stresses the need of more powerful tools to interact with
texts. Indeed, much work has been done to provide non–programming tools that
can be useful for the most common text manipulation issues. Regular Expressions
(RE), introduced by Kleene, are well–known in the formal language theory. RE
received several extensions, depending on the application of interest. In almost all
the implementations of RE search algorithms (e.g. the egrep [14] UNIX command,
or the Perl [17] language pattern matching constructs) we find backreferences (as
defined in [1]), i.e. expressions that make reference to the string matched by a
previous subexpression. Generally speaking, it seems that all the kinds of synchro-
nizations between subexpressions in a RE can be very useful when interacting with
texts. Therefore, we introduce the Synchronized Regular Expressions (SRE) as a
derivation of the Regular Expressions. We use SRE to present a formal study of
the already known backreferences extension, and of a new extension proposed by
us, which we call the synchronized exponents. Moreover, since we are talking about
formalisms that should have a practical utility and can be used in the real world, we
have the problem of how to present SRE to the final users. Therefore, in this paper
we also propose a user–friendly syntax for SRE to be used in implementations of
SRE–powered search algorithms.

� An extended version of this paper is considered for publication in Acta Informatica
1 This research has been partially supported by MURST project TOSCA
2 Email: gdellape@univaq.it
3 Email: intrigila@univaq.it
4 Email: tronci@univaq.it
5 Email: zilli@dsi.uniroma1.it

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82475301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Della Penna et al.

1 Introduction

Text manipulation is one of the most common tasks for everyone using a
computer. The increasing number of textual information in electronic format
that every computer user collects everyday (email, web pages, word processor
documents, even paper documents are usually converted to electronic format
to save space) stresses the need of more powerful tools to interact with texts.
This is true at every level – from the beginner to the advanced user – although
very expert users may have tasks that can be accomplished only writing ad-hoc
programs.

Indeed, much work has been done to provide non–programming tools that
can be useful for the most common text manipulation issues.

Regular Expressions (RE from now on), introduced by Kleene, are well–
known in the formal language theory. RE today are present in almost all
the text processing programs, mainly used in search/replace functions. Users
are familiar with this formalism, and this suggests to exploit all the power of
RE to perform much more complex operations on texts. RE received several
extensions, depending on the application of interest. As an example, wildcards
like ’?’ or ’*’ are used as abbreviations of more complex RE in all the operating
systems command shells.

Patterns introduced by Angluin [2] and also studied by other authors (see
[16] for an overview), are extended RE used to find identical substrings in
the same string. In almost all the implementations of RE search algorithms
(e.g. the egrep [14], sed and awk UNIX commands, or the Perl [17] language
pattern matching constructs) we find backreferences (as defined in [1], see also
[8]) as a generalization of patterns, i.e. expressions that make reference to the
string matched by a previous subexpression.

Another interesting extension that, to the best of our knowledge, has not
been studied or implemented yet, may allow to find if certain subexpressions
are repeated the same number of times in a text. This can be useful in a variety
of cases, from integrity checks to advanced word count tools, especially when
mixed with other extensions such as backreferences.

Generally speaking, it seems that all the kinds of synchronizations between
subexpressions in a RE (like backreferences) can be very useful when interact-
ing with texts. Therefore, we introduce the Synchronized Regular Expressions
(SRE) as a derivation of the well–known Regular Expressions. We use SRE to
present a formal study of the already known backreferences extension, and of a
new extension proposed by us, which we call the synchronized exponents. We
focus on these kinds of synchronizations since they share very good properties:

• they seem to be useful in a significant number of cases;

• they can be implemented in a very user-friendly way strictly similar to the
use of ordinary wildcards (see Section 6);

• they have an acceptable computational complexity, when used under rea-
sonable constraints (see Section 5).

In this paper we give a formal syntax and semantics for both extensions.
Then we study the classification of SRE in the formal languages hierarchy.
Finally, we study the complexity of the pattern matching problem.

2

Della Penna et al.

Since we are talking about formalisms that should have a practical utility
and can be used in the real world, we also have the problem of how to present
SRE to the final users. We started looking at how backreferences and other
already implemented extensions are given to the user in well–known programs
and noticed that, despite their obvious utility, few people actually use them.

Indeed, many low–level, non programmer users are not able to write the of-
ten complex commands (sometimes even small programs) needed to use these
extensions. Moreover, the implementations are nonstandard: users find diffi-
cult to understand the new syntactic constructs proposed for such extensions
in each application.

Backreferences, for example, have a recursive definition that allows to nest
expressions with their references, and to use the full RE power in the binding
operation. Instead, most users do not need all this power, and their approach
to backreferences is difficult.

The second aim of this paper is to propose a user–friendly syntax for
SRE to be used in implementations of SRE–powered search algorithms. Our
syntax has two levels: the first, aimed to the “advanced users”, presents the
extensions in a fully functional fashion available through the well–known RE
syntax, without the introduction of other complex constructs or the need
of programming. Nevertheless, the full syntax can be also seen as a high–
level programming language for algorithms that handle large quantities of
structured data. In this way, SRE can help programmers to rapidly write the
code to solve complex data manipulations problems.

On the other hand, we identified a set of processing tasks that represent,
in our opinion, those that a beginner user may need, and in the second level
syntax we present a set of macro–constructs that accomplish these tasks in a
very simplified and intuitive way.

The paper is organized as follows.
In Section 2 we define our Synchronized Regular Expressions and show

how to assign them a language.
In Section 3 we study where such languages lie in the formal language hier-

archy, showing that they are Context Sensitive and, under certain conditions,
included in the Scattered Context Grammars [6]

In Section 4 we address the membership problem in our context. We show
that the membership problem turns out to be NP-complete, even when the
number of occurrences of each synchronized element is bound to two.

In Section 5 we consider a natural restriction of SRE, namely limiting the
number of synchronized elements. This time the problem turns out to be
polynomial.

In Section 6 we address the problem of defining an user–friendly syntax
for SRE, suitable to different kinds of users.

The related work Section 7 contains a comparison between our approach
and others, both in the theory of formal languages and in implementations of
regular expressions.

3

Della Penna et al.

2 Synchronized Regular Expressions

2.1 Syntax of Synchronized Regular Expressions

In this section we define our extension of the classical RE. We give the standard
definition of RE, enriched with the syntax for backreferences from [1], and the
new syntax for synchronized exponents.

Definition 2.1 The Synchronized Regular Expressions on an alphabet A, a
set of variables V and a set of exponents X are defined as follows:

• ∅ ∈ SRE (empty language)

• ε ∈ SRE (empty string)

• ∀a ∈ A a ∈ SRE (letters)

• ∀v ∈ V v ∈ SRE (variables)

If e1, e2 ∈ SRE, then:

(i) e∗1 ∈ SRE (star)

(ii) ∀x ∈ X ex
1 ∈ SRE (exponentiation)

(iii) ∀v ∈ V (e1) %v ∈ SRE (variable binding)

(iv) e1e2 ∈ SRE (concatenation)

(v) e1 + e2 ∈ SRE (union)

We will address variable occurrences that are not arguments of a binding
operation as backreferences.

The backreferences syntax from [1] seems to be underspecified. The defini-
tion allows different interpretations (compare, for example, [1] with the more
end-user oriented [8]) since the intended meaning of some expressions implies
several restrictions that are not expressed in the syntax, and these may cause
problems to the user. In fact, the above definition allows:

• Multiple bindings on the same variable. For example, consider the SRE
(a∗) %v b v (b∗) %v c v. If, as natural, we suppose that one binding replaces
the previous, the language generation would rely on a not specified “expres-
sion ordering”.

• Loops on variable bindings. These may cause deadlocks, as in the expression
(v1 a) %v2 d (v2 b) %v1. Expressions containing binding loops always express
the empty language or do not generate any definite language, depending on
the interpretation.

• Recursion on a variable binding. This is a special case of the previous
problem.

• Late binding. A variable could be used before being bound to an expression,
for example a v b (c∗) %v. This may lead to various problems, and it is
unnecessary in practice.

• Unbound variables. A variable could be used while no binding for it occurs
in the expression. A SRE with unbound variables does not express a definite
language.

4

Della Penna et al.

• Disjunction between an expression and its backreference. An expression can
bind a variable on one side of a sum “+” and backreference it on the other
side. As an example, consider the SRE (a∗)%v + v. Since the evaluation of
the two subexpressions is mutually exclusive, we have an unbound variable
in the right side.

To fix the syntax, we impose the following restrictions on valid SREs:

Definition 2.2 A Synchronized Regular Expression is valid if, when the ex-
pression is analyzed in left–to–right order, the following holds:

(i) Bindings are always done on fresh (i.e. not used in the preceding subex-
pression) variables.

(ii) Backreferences always refer to bound (i.e. not fresh) variables.

Such restrictions solve all the above problems, with the exception of the
disjunction problem that is treated by the semantic rules in Section 2.2.

Proposition 2.3 A valid SRE does not allow:

(i) multiple bindings on the same variable,

(ii) looped variable bindings,

(iii) recursive bindings,

(iv) late bindings,

(v) unbound variables.

Note 1 In the present paper we omit the proofs for all the propositions. These
proofs can be found in the full-length version of the paper, which is unavailable
at present since it has been submitted to Acta Informatica.

Remark 2.4 Since we shall consider valid SRE only, we stipulate that, from
now on, ”SRE” stands for ”valid SRE”.

2.2 Synchronized Regular Expressions Semantics

We present a semantics for SRE, corresponding to that originally presented
in [1], using induction on the expression structure.

Let Eval (PS, VB, VF , EB) be our evaluation function, where

• PS is a set of (pattern, string) pairs;

• VB is a set of (variable, string) pairs, representing all the variables already
associated to a string by a binding operation;

• VF is a set of (variable, string) pairs, representing the unsolved backrefer-
ences (variables used but not yet bound) and the strings they should match;

• EB is a set of (exponent, number) pairs, representing all the exponents
already set to a number.

The function is true if, for every (pattern, string) pair in PS, pattern
matches string using the binding rules given in VB, VF and EB.

5

Della Penna et al.

The rules for Eval are the following:

Eval ({(a, α)} ∪ PS, VB, VF , EB) =
Eval (PS, VB, VF , EB) ∧ (α = a)

Eval ({(e1e2, α)} ∪ PS, VB, VF , EB) =∨
α1α2=α Eval ({(e1, α1) , (e2, α2)} ∪ PS, VB, VF , EB)

Eval ({(e1 + e2, α)} ∪ PS, VB, VF , EB) =
Eval ({(e1, α)} ∪ PS, VB, VF , EB) ∨ Eval ({(e2, α)} ∪ PS, VB, VF , EB)

where e2 is obtained from e2 by substituting the leftmost backreference of each
variable that is not bound in e2 with the corresponding binding taken from
e1. This solves the “disjunction problem” introduced in Section 2.1.

Eval ({((e) %v, α)} ∪ PS, VB, VF , EB) =
Eval ({(e, α)} ∪ PS, V ′

B, V ′
F , EB) ∧ (∀ (v, α′) ∈ VF) (α′ = α)

where
V ′

B = (VB \ {(v, α′) |α′ ∈ A∗}) ∪ {(v, α)}
V ′

F = VF \ {(v, α′) |α′ ∈ A∗}
note that if Eval is applied only to valid SREs (see Definition 2.2), the rule
for V ′

B can be simplified deleting the multiple-binding check:
V ′

B = VB ∪ {(v, α)}

Eval ({(v, α)} ∪ PS, VB, VF , EB) ={
Eval (PS, VB, VF , EB) ∧ (α = α′) if ∃ (v, α′) ∈ VB

Eval (PS, VB, VF ∪ {(v, α)} , EB) otherwise

Eval ({(ex, α)} ∪ PS, VB, VF , EB) ={
Eval ({(en, α)} ∪ PS, VB, VF , EB) if (x, n) ∈ EB∨

n Eval ({(en, α)} ∪ PS, VB, VF , EB ∪ {(x, n)}) otherwise

note that this rule also applies to the star-expression e∗, which can be consid-
ered as an exponent-expression ex where the exponent x is always fresh and
not synchronized.

Eval ({} , VB, VF , EB) ={
true if VF = ∅
false otherwise

Given a string s and a SRE e, the pattern matching problem of e on s is
evaluated by the expression Eval ({(s, e)} , ∅, ∅, ∅).

Note that the function Eval is always defined on every input. In fact, the
rules given above may extend the PS set, but always decrease the complexity
of its elements. When an element reduces to a single letter or variable it is
removed from the set without adding other elements, so finally the evaluation
reaches the exit rule where PS = ∅.

However, Eval is well–defined only under the restrictions given in Defini-
tion 2.2. Indeed, without the restrictions, Eval is always defined but nonde-
terministic (for the “multiple binding problem” explained in Section 2.1).

6

Della Penna et al.

To evaluate more easily a SRE, the reader can actually assign all the
exponents at the beginning of the evaluation. The following Definition 2.5
and Proposition 2.6 prove the correctness of this approach.

Definition 2.5 An exponent assignment is a function σX : X → N.

The action of an exponent assignment on a SRE is as follows:

σX (e) =

v if e ≡ v

σX (e1) %v if e ≡ (e1) %v

a ife ≡ a

σX (e1)
∗ if e ≡ e1

∗

σX (e1) σX (e2) if e ≡ e1e2

σX (e1) + σX (e2) if e ≡ e1 + e2

(e1)
n = σX (e1) . . . σX (e1)︸ ︷︷ ︸

n−times

, where n = σX (x) if e ≡ e1
x

(1)

We have the following

Proposition 2.6 For every SRE e, L (e) =
⋃

σX
L (σX (e))

3 Synchronized Regular Expressions in Formal Languages

Here we classify Synchronized Regular Expressions in the formal languages
hierarchy.

3.1 Synchronized Regular Expressions are Context Sensitive

To show that SRE are Context Sensitive [11] and that the membership algo-
rithm for SRE is in NP [9] (result that will be later used in Section 4) we
proved the following

Proposition 3.1 The language of a SRE can be accepted by a nondetermin-
istic Turing Machine in linear space and polynomial time w.r.t the input size.

In Section 4.1 we use the following more general result to prove that the
membership algorithm for SRE is NP-Complete:

Corollary 3.2 There is a nondeterministic Turing Machine M ′ that, given a
SRE e and a string α, accepts the string if α ∈ L (e) or rejects it if α �∈ L (e),
using polynomial time w.r.t |α|+ |e| and linear space w.r.t |α| · log|e|.

3.2 Synchronized Regular Expressions and Scattered Context Grammars

Scattered Context Grammars (SC grammars from now) belong to the family of
grammars with controlled derivations [6]. Let us briefly recall their definition:

A SC grammar is a quadruple G = (N, A, P, S), where:

7

Della Penna et al.

• N, A and S are specified as in a context free grammar (that is, they are the
alphabet of non-terminal symbols, the alphabet of terminal symbols and
the start symbol, respectively), and

• P is a finite set of matrices

(ξ1 → γ1, ξ2 → γ2, . . . , ξk → γk)

where k ≥ 1, ξi ∈ N , and γi ∈ (N ∪ A)∗, for 1 ≤ i ≤ k (the number k can
differ from matrix to matrix).

It is known that (see [6]):

• the languages of SC grammars without erasing productions are included in
context sensitive languages;

• the languages of SC grammars with erasing productions coincide with that
of recursively enumerable languages.

In the following we deserve the name SC for the scattered context grammars
without erasing productions.

We introduce a proper subclass of SRE, namely the 1-level or “flat” SRE.
1-SRE are a yet useful but much less complex subclass of SRE that can be
naturally placed in the hierarchy of grammars with controlled derivations as
a proper subclass of SC grammars. We were not able to prove whether the
same holds for general SRE.

Definition 3.3 1-level SRE (1-SRE) are SRE where variables and exponents
cannot be nested (i.e., variables and exponents cannot appear inside an expo-
nentiated expression or in the expression that binds to a variable)

Proposition 3.4 Every 1-SRE language that does not contain the null string
ε is in SC.

3.3 Synchronized Regular Expressions do not generate all Context Free Lan-
guages

We proved that the Synchronized Regular Expressions on an alphabet with
more than one letter do not contain all the Context Free (CF) Languages on
the same alphabet. To this aim, we make use of the language of palindromes,
that is known to be context free.

Proposition 3.5 No Synchronized Regular Expression can generate the lan-
guage of palindromes on an alphabet A with |A| > 1.

4 Complexity of Membership Algorithm on SRE

Here we show the complexity of the membership test on SRE, and look at
some restrictions that may lower this complexity while leaving enough expres-
siveness to the language.

8

Della Penna et al.

4.1 Membership on SRE is NP-Complete

We already proved (in Section 3.1) that the membership problem for SRE is
in NP. Moreover, Regular Expressions with backreferences have already been
proved to be NP-Complete [1], and this obviously extends also to our SRE.

However, we want to prove that even for SRE without backreferences, that
is only with synchronized exponents, the membership is NP-Complete. We
proceed by reducing the well-known 3-CNF problem (satisfiability of boolean
expressions in conjunctive normal form with three literals per clause) to the
SRE membership problem through a polynomial transformation.

Proposition 4.1 The 3-CNF problem can be reduced to the membership prob-
lem on SREs.

In the proof of the above proposition we use Synchronized Regular Ex-
pressions with exponents synchronized several times, thus one may think that
the complexity may be somehow lower if we use synchronization in its basic
form: each exponent is repeated only twice, i.e. only one synchronization per
exponent is allowed.

To answer this question, we also proved that exponents ranging in {0, 1}
(like those used in the proof of Proposition 4.1) can be synchronized without
using the explicit synchronization of SRE more than two times on each expo-
nent, so there is no complexity growth if the number of synchronizations in
the expression increases.

Using this technique, we may rewrite the proof above using only pairs
of explicit exponent synchronizations (i.e. the same exponent is used only
twice). Since the transformation is polynomial, we ensure that the proof of
Proposition 4.1 is valid regardless of the number of synchronizations used.
Therefore, we have the following:

Proposition 4.2 The membership problem on SREs that

• do not contain backreferences,

• contain exponents synchronized at most two times,

is NP–Complete.

In other words, the complexity is intrinsic in the problem of exponent
synchronization. Making use of the same technique, we can also improve a
result of [2] as follows:

Proposition 4.3 The membership problem on SREs that

• do not contain exponents,

• contain each backreference at most two times (including the binding occur-
rence),

• the SRE backreferenced is always A∗,

is NP–Complete.

Observe that, by the third hypothesis, variables behave as those of [2].

9

Della Penna et al.

5 Synchronized Regular Expressions with Limited Syn-
chronization Elements

In Section 4 we proved that the general pattern matching problem with SREs
is NP-Complete even with an alphabet of only two symbols or when we limit
the number of synchronizations for each variable or exponent. This is true for
expressions containing variables, exponents or both.

However, examples of SRE uses like those in Section 6 show that, in real ap-
plications, the number of synchronization elements used in a single expression
is often very small. Typical applications can safely fix a limit on the number
of variables and/or exponents that the user can write in each expression. This
limit is often suggested by the application domain itself.

When the number of synchronized variables and exponents in the expres-
sion is constrained (but not the number of times each of these can be used)
the SRE membership complexity becomes polynomial. This has been already
stated for backreferences only [1]. Here we expand the proof extending it to
exponent synchronization.

Remark 5.1 When we state that the number of synchronized elements is
fixed, we should take into account also the nested expressions. That is, for
example, an exponentiated variable ((v)x) counts as two elements.

5.1 A simple polynomial algorithm for SRE pattern matching

The polynomial algorithm for SRE pattern matching has some similarities
with the dynamic programming technique, but is actually enumerative. Like-
wise dynamic programming algorithms, we have a notion of state. Our states
are tuples like (pattern, string, assignments) that show a pattern, the string
it must match and the assignments done to variables and exponents so far.
The initial state s0 contains the pattern and string given to the algorithm by
the user, and the assignments are empty. On each step, the algorithm looks at
all the states in the current state set and performs a single matching step on
each of these, generating the next state set. Note that a single matching step
can often be performed in many ways (e.g. an exponent can be assigned to
different values), producing more than one state. The algorithm stops when
it generates the empty state (string and pattern are empty), meaning that the
match is successful, or when the new state set is empty, i.e. the match cannot
be carried out in any way.

The complexity of this algorithm is simple to express: let n be the length of
the target string and m be the length (in characters) of the pattern. If we fix
the number of possible synchronizations (both with variables and exponents)
to k, we have that the number of states generated by synchronization elements
is at most nk. All the other RE matches can be considered linear w.r.t. n ·m,
so the complexity of our algorithm is O

(
m · nk

)
, a polynomial with degree

equal to the limit of synchronizations we fixed.
We can summarize the results of this section in the following proposition:

Proposition 5.2 The membership problem for SREs with a limited number

10

Della Penna et al.

of synchronization elements (i.e. less or equal to a fixed number k) can be
solved in polynomial time O

(
m · nk

)
, where n is the size, in characters, of the

target string and m is the size, in characters, of the pattern to match.

6 A User-Friendly Syntax for Synchronized Regular Ex-
pressions

The second aim of this paper is to fix a common syntax for SRE extensions to
be used in implementations such as text editors, command line search utilities
like grep [14], etc. In the rest of this section, we use the word syntax to denote
the syntax used to write SRE on a computer terminal, that is obviously a little
different from the formal syntax introduced in Section 2.

Our idea is to let the user access the power of SRE on various levels, since
we observed that, even if backreferences and exponents are useful to all classes
of users, the beginner user usually applies them to solve a limited number of
common problems. In these cases the fully–general syntax may be excessive
and useless. Instead, we introduce other constructs that accomplish these
common tasks acting as macros (i.e., shortcuts, that can be expanded in SRE
syntax).

Let us first introduce the full syntax for SRE. We inherit all the common
syntax used for RE, adding the following constructs:

• /(e)var / is a binding for variable named var to the SRE e.

• /var / is a backreference for variable called var.

• {id } on the right of any subexpression binds the exponent called id to
that expression.

Of course in our syntax the character / is reserved, and can be accessed
literally using the expression //. This is a very common technique, actually
used for other metacharacters like \.

In this paper we limit to two examples of SRE applications. Many other
examples, both using simplified syntax and full syntax, can be found on the
full-length paper.

6.1 Simplified Syntax for the Non-Expert User

A very common use of backreferences is to group a substring and later use its
value in the same or another expression. For example, we may want to find
if a string contains a substring repeated at two different positions, or we may
get a substring from an expression and use it in another one, that is mostly
common is search/replace or data extraction functions. In both cases, we are
usually interested in a generic substring that can be bound to a SRE variable
with expressions like /(.*)v/ and then referenced with /v/.

It seems quite unnatural to force the low-level user to this syntax for very
simple tasks like these. We may reintroduce the concept of asterisk wildcard,
known by all users as a part of the filename globbing utility of almost every
UNIX command shell. In these programs, the star has not the semantics of
RE, but stands for a generic string.

11

Della Penna et al.

Therefore, we may use our synchronized variables as synchronized asterisks.
We say that, if a certain name is never bound to a SRE in an expression, then
it can be bound to any string in A∗. Thus, /v/ acts both as binding to
the (.*) expression and as backreference, where the first use of a particular
variable is its binding, and all the following are backreferences. This is what
the user usually expects.

Example 6.1 In some releases of the standard C header math.h, there is a
predefined macro called random(n) used to get a random number in the range
[0 . . . n]. This macro is expanded to the expression rand() % n using the stan-
dard rand() function that returns a number in the range [0 . . . MAXINT]. Since
this macro is not standard, many compilers don’t recognize it and generate
an error.

The best way to solve the problem is using a synchronized regular expres-
sion over our source files in a search and replace function. We have just to use
this expression:

Search: random(/arg/)

Replace with: rand() % /arg/

Example 6.2 If we have two texts in files F1 and F2, and suspect that one
has been obtained from the other by simply “shuffling” its paragraphs and
phrases, then we may try to check this using a UNIX command like:

cat F1 Sep F2 |

match (/p1/+/p2/+/p3/){n}

’cat Sep’

(/p1/+/p2/+/p3/){n}

we suppose to have a third file called Sep, which contains a separator text that
does not appear in F1 and F2. The meaning of this command is the following:

(i) concatenate the file F1 with the file Sep and then append F2 to the result;

(ii) pass the obtained file to the match command, that is supposed to return
true if its input matches the given SRE. Note that in the middle of the
SRE we used a standard UNIX shell substitution command (’cat Sep’)
that expands to the contents of the file Sep.

The SRE is forced by the presence of the separator text to match the
contents of both files with the expression (/p1/+/p2/+/p3/){n} that means
“the text is composed by (at most) three blocks, whose content is assigned to
the variables p1,p2 and p3, (mixed and) repeated n times”. If this expression
matches both files with synchronization between all the variables, then we
know that the files are both composed by n parts with the same contents.
This means that only the order is changed and possibly some parts have been
substituted by others. The number of backreference variables that we use in
the expression increases the granularity of the comparison, so we may be able
to discover more complex manipulations.

12

Della Penna et al.

6.2 Full Syntax for the Expert User

We show an example where we use the SRE syntax with its full power. The ex-
pressions used are of course very complex but, as we stated in the introduction
of this section, the general SRE syntax is reserved to expert users.

Example 6.3 Web documents written in HTML usually contain links to
other resources. These links have a displayed form, that usually identifies
the link target, and an internal form, which contains other useful information
and, most interesting of all, the link address. For example, a line of HTML
like

Follow this

link

would display in any browser as “Follow this link”.

If we print the page, we loose all the link addresses. It may be very
useful to automatically process the page and write these addresses near their
description text. We may do this with SRE in a search/replace:

Search: </(A[^>]*HREF="/([^"]*)1/"[^>]*)2/>

/(([^<]|<[^A])*)3/<//A>

Replace with: /2/ /3/ <//A> (/1/)

7 Related work

We already considered several related notions in the body of the paper; here
we limit ourselves to a few other significant related works. In the ECFG (Ex-
tended Context Free Grammars) [7] parameters have been added to nontermi-
nal characters of a context free production rule in order to control the number
of applications of the rule. So an instantiated value of the parameter acts in
this case as a counter. For instance, {A(N) −→ aA(N−1), A(1) −→ a}, with
{N ← 3} gives rise to A(3) −→ aA(2) −→ aaA(1) −→ aaa. A class of such
grammars with an infinite set of terminal characters represent a grammatical
extension of logic programs, namely the DCG (Definite Clause Grammars),
used in several Prolog implementations. In them strings are atoms or terms
of a first order language and a production rule can handle a sequence of them.

Indeed, parameters occurrence within production rules dates back to WG
(van Wijngaarden Grammars), designed to define the syntax of contextual
programming languages and whose variants are widely used for compiler con-
structions. A WG rule is a rule schema of an infinite set of context free
production rules. So the alphabet of nonterminal characters can be infinite,
whilst the alphabet of terminal ones is finite. The values a parameter can
assume are dealt with by a context free grammar. So the WG grammars have

13

Della Penna et al.

been considered as two level grammars.
Instead of pointing out the exact relationships among the previous gram-

mars, we notice the known fact that all of them are included in the contextual
grammars known as AG (Attribute Grammars), RAG (Relational Attribute
Grammars), FAG (Functional Attribute Grammars) or CAG (Conditional At-
tribute Grammars). Such extensions of context sensitive grammars are able
to express also the semantics of programming languages (the so called Knuth
semantics). However, all these extensions go far beyond our goals. The same
holds for the other extension of the DCG grammars, namely the well-known
λHHG (Higher Harrop Grammars). They represent the grammatical view of
λ-Prolog as the DCG of Prolog.

We end with some words about the actual implementations of backrefer-
ences in common tools and languages. As in our SRE, backreferences in text
editing tools allow to be synchronized with an arbitrary preceding subexpres-
sion of their expression, which has been marked and grouped with parentheses.
For example, the expression (.*)\1 would match any string composed by two
identical half. Here (.*) stands for “any sequence of any character”, and \1 is
a backreference to the value assigned to (.*). In our SRE syntax, this would
be expressed with the pattern (A∗) %vv.

Synchronized Regular Expression variables act exactly as backreferences.
Moreover, they “name” the subexpressions, so references are given in a way
more clear than the implicitly–indexed one. The rule “backreferences can only
be done after binding” is forced by the syntax in the indexed backreference
method, and is given as a semantic rule in our definitions. Our SRE also allow
a different kind of synchronization, exponentiation, where the content of two
subexpressions may change but their repetitions must be the same.

A well-known implementation of backreferences is in the GNU regex li-
brary [10]. Thanks to this many GNU tools like egrep [14] allow the user to
use them. The GNU matching engine demonstrates our claims about com-
plexity: when backreferences are present in the regular expression, it switches
from a very fast DFA algorithm to a NFA [8]. Actually the implementation is
very similar to a (mathematically defined) NFA, but diverges from it in some
points.

The price to pay for this extended recognition power is that the NFA
implementation is an exponential algorithm with very extensive use of recur-
sion. That is, the algorithm is slower and it may potentially need much more
memory to run.

Some attempts have been done to extend the implementation of the DFA
model and obtain a regex engine which is fast as a DFA and has the power
of a NFA. To our knowledge, the best done so far is to slightly extend the
boundary between the DFA and NFA domain, that is the regex engine can
match more patterns without switching to NFA. But as long has NFAs are
completely excluded (if they can be excluded) from these matching engines,
the complexity problem using backreferences and similar matacharacters will
remain.

Another implementation of backreferences is in the PERL language [17].
We know many books that discourage the use of backreferences in PERL
because this could make the matching very complex and time consuming [8].

14

Della Penna et al.

PERL also allows to use an indefinite number of backreferences (while the
GNU code limit this number to nine), and this appears to be unsafe, since the
unexperienced user may feel free to use them too many times, writing very
inefficient programs.

References

[1] A.V. Aho, Algorithms for Finding Patterns in Strings, in
J. van Leeuwen, editor Handbook of Theoretical Computer
Science vol 1, pp. 257-300 (Elsevier Science Publishers B.V.,
1990)

[2] D. Angluin, Finding Patterns Common to a Set of Strings, in
Journal of Computer abd System Sciences vol 21, (1980) pp.
46-72

[3] D. Boneh, J. Shaw, Collision–secure Fingerprinting for
Digital Data, in D. Coppersmith, editor Proceedings
CRYPTO 95 LNCS vol 963, pp. 452-465 (Springer-Verlag,
1995)

[4] M. Crochemore, W. Rytter Text Algorithms (Oxford
University Press 1994)

[5] A. De Luca, S. Varricchio, Finiteness and regularity in
semigroups and formal languages (Springer, 1999)

[6] J. Dassow, G.Păun, A. Salomaa, Grammars with Controlled
Derivations in G. Rozenberg, A. Salomaa, editors Handbook
of Formal Languages (Springer-Verlag 1997)

[7] P. Deransart, J. Maluszyński, A Grammatical View of Logic
Programming in Journal of Symbolic Computation (1993)

[8] J. E. F. Friedl Mastering Regular Expressions (O‘Reilly, 1997)

[9] M.R. Garey, D.S. Johnson, Computers and intractability : a
guide to the theory of NP-completeness (Freeman, 1979)

[10] The GNU Project : http://www.gnu.org/

[11] J.E. Hopcroft, J.D. Ullman, Introduction to automata theory,
languages, and computation (Addison-Wesley, 1979)

[12] J. van Leeuwen, editor Handbook of Theoretical Computer
Science vol 1, (Elsevier Science Publishers B.V., 1990)

[13] M. Lothaire, Combinatorics on Words, in Gian-Carlo Rota,
editor Encyclopedia of Mathematics and its Applications vol
17, pp. 6-8 (Addison-Wesley, 1983)

[14] A. Magloire, Grep: Searching for a Pattern (iUniverse.com,
2000)

15

Della Penna et al.

[15] F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn, Information
Hiding, a Survey, in Proceedings of the IEEE, special issue on
protection of multimedia content (IEEE, 1999)

[16] G. Rozenberg, A. Salomaa, editors Handbook of Formal
Languages (Springer-Verlag 1997)

[17] L. Wall, T. Christiansen, J. Orwant Programming Perl, 3rd
Edition (O’Reilly, 2000)

16

