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II inner root sheath keratins, previously 
K6irs1–K6irs4, are now named K71–K74 
and are followed by K6hf, the type II 
keratin located in the companion layer. 
K77–K80 are the type II keratins, discov-
ered by sequencing of the type II kera-
tin locus. The gene designation for each 
keratin carries the same number as the 
protein with the prefix KRT.

Although we can be almost 100% 
confident that all the human keratins 
have been identified, enough flexibility 
in the nomenclature has been provided 
to allow for the discovery of new kera-
tins in other mammals. Because keratins 
are cell type and differentiation specific, 
it is not hard to imagine that the vast dif-
ferences in morphology of the skin that 
have evolved between mammals (for 
example, elephant, dolphin, armadillo, 
duck-billed platypus, deer, porcupine) 
might coincide with a requirement for 
keratins with different structural prop-
erties. Certainly several type II keratins 
have been identified that do not exist in 
humans, including a keratin in the goril-
la and chimpanzee that is redundant in 
humans (Winter et al., 2001).

In the last 24 years, Moll et al. (1982) 
has been cited more than 4,000 times. A 
lot has happened in that time, including 
many expression studies, the identifica-
tion of almost 20 genetically inherited 
diseases caused by keratin mutations, 
the generation of more than 30 trans-
genic mice (either keratin knockouts or 
mice carrying altered keratin genes), and 
numerous in vitro structural studies and 
cellular functional studies. For Schweizer 
et al. (2006) to be cited as often in the 
next 24 years will depend on the future 
of research into keratins. Certainly the 
legacy of the last few years is the ques-
tion: why are there are so many keratins? 
This question alone should keep scien-
tists approaching keratin biology from all 
angles busy for some time to come.
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A New Nail in the CTCL Coffin
Stuart R. Lessin1

The impact of immunotherapy on the natural progression of cutaneous 
T-cell lymphoma (CTCL), particularly the mycosis fungoides and Sézary syn-
drome variants, has been based on our evolving understanding of the dis-
ease’s immunobiology.
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The characterization of the T-helper 2 
(Th2) cytokine phenotype (IL-4, IL-5, 
and IL-10 predominance) of the malig-
nant CD4+ T lymphocytes of cutaneous 
T-cell lymphoma (CTCL) has provided 
an immunologic basis for the immune 
dysfunction correlated with advancing 
stages of CTCL (Vowels et al., 1994). 

The Th2 phenotype is associated with 
IFN signal transduction pathway defects 
(Sun et al., 1998), thus rendering the 
CTCL cell devoid of endogenous IFN 
immunoregulation. These observa-
tions provided the rationale leading to 
the therapeutic use of IFNs (INF-α and 
INF-γ) in CTCL (Olsen, 2003). Further 
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immunopathologic correlations have 
shown that IFNs exert their Th1 thera-
peutic effects by inhibiting tumor-cell 
Th2 cytokine production and enhanc-
ing antitumor cell-mediated cytotoxic-
ity (Kim et al., 2005). Combination of 
IFNs with other immunomodulatory 
therapies appears to augment clinical 
responses, suggesting cooperative 
or synergistic Th1 antitumor effects 
(Suchin et al., 2002).

Künzi et al. (2006) report mecha-
nisms underlying the cytolytic effect 
of recombinant measles virus (rMV) on 
CTCL cells. Using cell lines and xeno-
grafted nude mice, they demonstrate 
that (1) CTCL cells express receptors 
for measles virus (CD150 and CD46); 
(2) rMV replicates lytically and is 
cytopathic in CTCL cells; and (3) intra-
tumoral injections of rMV result in 
regression of CTCL xenografts. These 
studies, combined with the clinical 
responses obtained in a phase I trial of 
intratumoral rMV in CTCL patients pre-
treated with IFN-α (Heinzerling et al., 
2005), are an exciting translation of the 
immunobiology of CTCL into a novel 
immunotherapeutic approach.

The specificity of rMV therapeutic 
targeting of CTCL lies not with CD150 
and CD46 expression (as these recep-
tors are expressed on normal cells), but 

rather with CTCL’s acquired defect in 
IFN signaling (Heinzerling et al., 2005; 
Sun et al., 1998). This renders CTCL 
cells a virtual IFN-free microenviron-
ment in which rMV is unencumbered 
to replicate and induce cytolysis. This 
complements the current IFN-based 
immunotherapy strategies in CTCL.

Clinically, IFNs have been shown to 
be a highly active agent in CTCL with 
response rates as high as 70%, depend-
ing on the route of administration 
(Olsen, 2003). Low-dose subcutaneous 
IFN appears to be the most effective and 
best tolerated. It is often combined with 
other biologic response modifiers, and 
these combinations have been shown 
to impact disease survival in advanced 
stages (Suchin et al., 2002).

The addition of an oncolytic virus in 
the context of IFN-based therapy has 
great potential to augment response 
rates. There still are significant issues, 
however, that require further investi-
gation. Targeting rMV by intratumoral 
injection has been effective in the 
current models but has limited clini-
cal application in many cases, such as 
Sézary’s syndrome. Titrating the optimal 
dose is critical with any new therapeu-
tic agent but is especially significant 
with oncolytic viruses. The therapeu-
tic margin of this treatment interfaces 
with the host’s immune protection of 
non-CTCL cells from measles infec-
tion. Acquired immunity to measles 
virus must be evaluated as a variable 
of both efficacy and safety. The effects 
of viral cytolysis in inducing a broader 
antitumor immunity, critical in other 
CTCL immunotherapies, require criti-

cal analysis. In addition, a broader tox-
icity profile is needed through further 
clinical testing. Nevertheless, the initial 
data are promising, and it appears that 
rMV used in combination with IFN-α 
and possibly other immunomodula-
tory therapies offers an exciting new 
avenue in immunotherapeutic targeting 
of CTCL.
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