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Abstract

We describe how to compute topological objects associated to a polynomial map of several
complex variables with isolatesingularities. These objects are tHéree critical values, the affine
Milnor numbers for all irregular fibers, theitical values at infinity, and the Milnor numbers at
infinity for al irregular fibers. Then for a family of polynomials we detect parameters where the
topology of the polynomials can change. Implementation and examples are given with the computer
algebra systemISGULAR.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Review on the local case

Letg: C",0 — C, 0 be agerm of a polynomial map with isolated singularities. One
of the most important topological objects attached ts its local Milnor numberMilnor,
1968:

po = dimg C{xg, ..., xp}/Jagg)
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where Ja@) = ({f—g, e, 3379”) is the Jacobian ideal df. It is possible to omputeug
with the help of a Gobner basis. For example such a computation can be done with the
computer algebra systemN&ULAR (Greuel et al.2001).

Let us consider a family(gs)sefo,1, With gs : C",0 — C, 0 germs ofisolated
singularities, such thags is a snooth function ofs. To eachs e [0, 1] we associate the
local Milnor numberuo(gs). The main topological result for families is theconstant
theorem ofLé and Rananujam(1976 andTimourian(1977).

Theorem 1. If n # 3 and uo(gs) is constant(s € [0, 1]) then the family(gs)scfo,17 IS @
topologically trivial family.

1.2. Motivation and aims for the global case

Let us consider now a polynomial functidn: C" — C. The study of the topology
of f is not just the glueing of local studies because of the behaviour af infinity;
seeBroughton(1988. For example the polynomidi(x, y) = x(xy — 1) has no affine
singularities but the fiberf ~1(0) has two connected components while the other fibers
f~1(c), c # 0, have only one.

We attach to the polynomial “Milnor numbers”u, A and finite sets of critical values
Batt, Boo, B = Bag U B (see definitions below). The first aim of this work is to compute
these objects and to give the topology of the fibérs (c) for all c € C.

There is a global version of the localconstant theorem (séheorem 2 where the
Milnor numberug is replaced by ailnor multi-integerm = (u, #Bas, A, #80, #5). In
order to verify ifm( fs) remains onstant ina family ( fs)sc[o,1; we have tacomputem( fs)
for infinitely many values. The second aim of the work is to give (and compute) a finite
setS suchthatm( fs) is constat for s € [0, 1]\S. Herce we finally just have to compute
m( fs) for finitely many values.

The rest of this section is devoted to definitions and results.
1.3. Critical values

Let f : C" — C be a polynomial mam > 2. By a result ofThom (1969 there is a
finite minimal set of critical values3 of points ofC suchthat f : f ~1(C\B) — C\B is
a locdly trivial fibration. In the next two paragraphs we give a descriptiofsof

1.4. Affine singularities

We suppose thaaffine singularities are isolatede. that the sefx € C" | grad; x = 0}
is a finite set. Lefuc be the sum of the local Milnor numbers at the points of-(c). Let

Bat = {C| uc >0} and M=Zuc
ceC

be theaffinecritical valuesand theaffine Milnor numberMorally w is thenumber of affine
singularities counted with multiplicities.
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1.5. Singularities at infinity

To explain the behaviour of #apolynomials at infinity we need some definitions; see
Broughton(1989. Letd be the degree of : C" — C, andletf = 94 fd-14...4 {0,
where f1 is homogeneous of degree Let f(x,2z) (with x = (x1,...,%n)) be the
homogenisation of with the new variable: f(x,z) = f4(x)+ f9-1(x)z+- - -+ fO(x)ZC.

Let

X={((x:2,t) eP"xC| f(x,2)—tz2 =0}.

X is a compactification of" associated to the polynomiél Let H, be the hyperplane
atinfinity of P" defined by(z = 0). The singular locus oX at infinity has the form¥’ x C,
where

fd ﬂz fd-1

8X1 T 8Xn

{(X 0)

—o| c 7t

We suppose thaff hasisolated singularities at infinitythat is b saythat X' is finite. This
is always true fon = 2. We say thatf hasstrong isolated singularities at infinitiy

ofd  afd
(x:0) =... =0
3X1 aXn
is finite.
For apoint (x : 0) € Hs assume for example that = (x1, ..., Xp—1, 1) and set
X = (X1, ..., X%n—1) and

Fe(X,2) = f(xq, ..., %n_1, 1) — cZ.

This is the localisation of at the point at infinity(x : 0). Let uy(F¢) be the local Milnor
number ofF at the poini(X, 0). If (x : 0) € X' thenuy(F¢) > 0. Forageneris, ug(Fs) =
v, and fa finitely manyc, g (Fc) > vx. We sethe x = 1x(Fe) — v, Ac = X (x.0)e 5 Ae.x:
Thenic > 0if andonly if at some point at infinity the compactification of the filfer!(c)
is more singular than a generic fiber. Let

Bow={CeC|A >0 and A:ZAC
ceC
be thecritical values at infinityand theMilnor number at infinity

We can now describe the set of critical valugss follows (sedda and L(1984 and
Parusi'ski(1999):

B = Baft U Boo.

Moreover, byHa and L€(1984 andSiersma and Tiér(1999 for all c € C\B, f ~1(c) has
thehomotopy type of a wedge @f + 1 spheres of real dimensian— 1. And for allc € C
the Euler characteristic of a fiberjg f ~1(c)) = 1 — (=)™ Y + & — e — A¢).

Forour examplef (x, y) = x(xy — 1) there are no affine singularities; hertég: = &
andu = 0. But at the poin{0 : 1 : 0) in P? we have a singularity at infinity such that
Bso = {0} andx = 1. Then the fiberf ~1(c), ¢ # 0, is homotopic to a circle, anfi=1(0)
is homotopic to the union of a point and a circle.
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1.6. Families of polynomials

We associate to a polynomial ifglilnor multi-integerm = (u, #Bax, A, #8o0, #B5).
Two polynomial mapsf,g : C" — C are topologically equivalenif there exist
homeomorphism® : C" — C"and ¥ : C — C suchthatf o & = ¥ o g. The
topological equivalence preses the topology of the singularities and in particular the
Milnor multi-integer is a topological invariant; that is to say,fifandg are topologically
equivalentthem(f) = m(g). We recall a result that is a kind of converse of this property.

Let (fs)sefo,17 be a family of polynomials, such thd¢ hasstrongisolated singularities
at infinity and isolated affine singularities for al € [0, 1]. For eachs € [0, 1] we
consider the Milnor multi-integer ofs, m(fs) = (u(S), #Bax(S), A(S), #5.0(S), #5(S)).
We suppose that the coefficients of the family are polynomials,iand ttat the degree
degfs is constat. The result oBodin (2003 andBodin and Tilar (2003 is:

Theorem 2. Let n = 3. If m(fs) is constant(s € [0, 1]), then § is topologically
equivalent to {.

How is it possible to verify the hypotheses from a computable point of view? We
computem( fs) for infinitely manys € [0, 1] by using the fact thain(fs) is constant
except for finitely manys; we denote bysS the set of theseritical parametersThe aim of
Section 4is to give a computation of these critical parameters.

1.7. Implementation

The results of this paper have been implemented in two libratieig;ic anddefpol.
The first one enables the calculatiof all the objects defied aboveBag, 1, e for ¢ € Bag,
Bso, A, and ¢ for ¢ € B. These programs are written foriiSGULAR (Greuel et al.
200). They are based on polar curves and on the articl8iefsma and Tiér (1995.
For polynomials in two variablegn = 2) a program in MAPLE has been written by
Bailly-Maitre (2000 basd on a discriminant formula afla (1989. For families of
polynomials the second library computes a finita®dhat contains the critical parameters.

2. Milnor numbersand critical valuesin affine space
2.1. Milnor number

The computation of the affine Milnor numbgeris easy and well-known. For details see
Greuel and Pfistef2002 Chapter 3). Letf € C[Xy, ..., Xa]. Let J be the Jacobian ideal
of the partial derivativegof/dx;)i. Then by definition u is the vector space dimension
(overC) of the quotientC[xy, ..., Xn]/J. But if L(J) denotes the leading ideal dfand
if G is a Giobner basis of then

w:=dimC[Xq, ..., Xn]l/J =dimC[Xq, ..., Xa]/L(J) = dimC[Xy, ..., Xa]/L(G).

And the lastdimension can be recursively computed.
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2.2. Critical values
We add a new ariablet. We considerthe variety
C={x,t)eC"xC| f(x) —t = 0andgrad x = 0}.
The critical values are the projection ©fon thet-coordinate Ba = pr; (C).
2.3. Milnor number of a fiber

Letc € C. We would like to computesc, the sum ofhe Milnor numbers of the points
of f~1(c). Let J be the Jacobian ideal df and letx be a critical point. We denote h¥
the localisation of] atx. Let Iy = (t — ¢, Jx); thedimension ofl is equal to the Milnor
number of f atx. Fork > 1 we @nsiderkKX = ((f — t)X, Ix). Then f (x) = cif and
only if Kff has non-zero dimension (as a vector space). Moreovérxj = c then by
the Nullstellensatz f — t)X isin I for a sufficently largek. For such &, thedimension
of K}} is the Milnornumber ax if f(x) = ¢, and itis O otherwise. Such ks less than
or equal to the Milnor number at, butk can often be chosen much less. The minimal

k is the first integer such that the vector space dimensioK}bfs equal to the one of
Kk+L,

3. Milnor numbersand critical valuesat infinity

We give the omputation of the objects at infiy and its implementation in SGULAR.
We will suppose thaff has isolated singularities at infinity; in fact computations are valid
for a larger class of polynomials but it is not possible to compufelielongs to this class.
The algorithm is based on the articleSiersma and T (1995 that gives critical values
at infinity and Milnor numbers at infinity with the help of polar curves.

3.1. Working space

We will work in P" x C, with the honogeneous coordinates Bf: (x1 : ... : Xp : 2);
we still need, which is a @mrameter or a variable depending on the context.
Werecall that

X={((x:2),t) e P"x C| f(x,2) —tz% = 0}.
The part at infinity ofX is Xoo = X N (Hso x C):
Xoo = {(x:0),t) e P"x C | f9x) = 0},

wheref = f4 + fd-1 4 ... is the decomposition in homogeneous polynomials.
In SINGULAR we write:

ring r = 0, (x(1..n),z,t), dp;

poly £ = ...;
poly fH = homog(f,z)-t*z"deg(f);
ideal X = fH;

ideal Xinf = z, fH;
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3.2. Polar curve

Letk bein{1, ..., n}. Thepolar curveP is the critical locus of the map : C" — C2
defined forx = (X1, ..., Xn) by ¢(X) = (f(X), Xk):

P:{xe@”

of .
8—Xi(x)=0,‘v’| ;ék}.

We have thaf is a curve or is void. We calPy the projective closure dP. This aurve
intersects the hyperplane at infinity, in finitely many points.

ideal P = diff(f,x(1)),..., diff(f,x(k-1)), diff(f,x(k+1)),...;
ideal PH = homog(P,z);

The former objects can be viewedX) we will also denote byPy the setPy x C)N X.
In the chartxx = 1 we denote the curvePy by C. The “real” polar curveC in this chart is
the closure o€\ X:

ideal Cbar = x(k)-1, PH, X;
ideal C = sat(Cbar,Xinf) [1];

3.3. Critical values at infinity

We reed the following result oBiersma and Tiar(1999. A valuec is a critical values
at infinity if and only if there is a coordinate and a poini(x : 0, t) in X, (with xx # 0)
suchthat(x : 0,t) € C. That is to sayB is the projection o€, = X N C on the space
of parameters € C.

Then the critical valas are computed with:

ideal Cinf = z, C;
poly Binf = eliminate(Cinf,x(1)x(2)..x(n)z) [1];

The set of critical values at infinity are the roots of the polynomialf, which belongs
to C[t].

3.4. Milnor numbers at infinity

Actually the results ofSiersma and Tié" (1999 are mae precise. For a fixed let
Xt = {(x : z,t) € X}; this is aprojective model for the fibef ~(t).

Theorem 3. The Milhor number at infinity at a poingx : 0,t) € Cu is givenby the
intersection number (in X) af with X; at (x : 0, t).

Roughly speaking, the polar curve arrives atnitfi exactly on the dtical fiber at infinity,
and the order of contact with this fiber is the Milnor number at infinity. Socfer5.,, the
Milnor number at infinityic (for the chartxx # 0) is equal to the sumfall intersection
numbers ofXc andC in Xq.

We conpute an ideal which corresponds tX¢ N C; then weonly deal with points at
infinity by intersecting this set with® = 0 for a sufficiently largeq.

number c
ideal Xc

t-c, X;
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ideal I = Xc, C;
ideal K = z°q, I; // q > 1
lambdac = vdim(std(K));

Once we have computed for all ¢ € By, we haver = ZceBoc Ac.

4. Families of polynomials

Let (fs)se[o,17 be a family of complex polynomials in variables. We suppose that
the mefficients are polynomial functions af and thatfor all s € [0, 1], fs has affine
isolated singularities and strong isolatedgilarities at infinity. The implementation is
similar to the one of Section 3and will be omitted. Theset of critical parameterss
the finite minimal setS such ttat for s € [0, 1]\S the Milnor multi-integerm(fs) =
(u(S), #Bat(S), A(S), #B0(S), #3(S)) is constant.

4.1. Change in affine space

The Milnor number.(s) is constant excepted at finitely many values; we do not need to
compute it for all values but we detect a change ¢f). The Milnor numben(s) changes
if andonly if some critical points escape at infinity. Then we can detect critical parameters
for 1 as follows. Letd = {(X1,...,%n,S) € C" x C | g—i = % = 0} be the
se of critical points (that corresponds to the Jacobian idedlfiry, . .., Xn, S]). Let J be
the homogenisation ofl with the new variablez, while s is considered as a parameter.
The part at infinity ofJ corresponds to thd,, = J N (z = 0), and the affie part of
Jis Jar = J\Jso. Now the citical paraméersfor 1 are Pe(Jaif) C C, whee pr is the
projection to thes-coordinate.

It is possible to comput®x(s) for all s € [0, 1] by a direct exension of the work
of Section 2 Then we can compute the parameters where the cardinality of this set
changes.

4.2. Change at infinity

Again we bok for the parameters whebgs) changes. We extend the definition of
Section 3y adding a parameter We setd = degfs and

X ={((x:2),t,9 € P"x Cx C| fs(x,2) —tz¢ = 0}.
The part at infinity ofX is Xoo = X N (Heo x C x C):
Xoo = {((x:0),t,5) € P" x C | fd(x) = 0}.
The polar “curve” is
of
P= {(x,s) eC"xC a—;(x)zo,‘v’i ;ék}.
|
In the chartxx = 1 we denote the homogenisation @t (with s a paameter) byC, and

the “real” polar curveC in this chart is the closure af\ X». The part at irfinity of C is
Coo = CN Xeo.
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Let Boo(S) = pr{(X : 0,t,5) € Cux}. For a gnerics’, Boo(S') = B (). Then the
critical parameters foB,(S) are included in the set of parameters wheBg#s) fails to
be equal to 8, (s') (in fact B (s) may be infinite).

We setX, = {(x : z,¢,s) € X | (X :0,¢,s) € Cx}; for non-critical parameters this
corresponds to union of the irregular fibers at infinity. Now a changeamfrresponds to
a dhangein the value of the intersection multiplicity of the polar cu@eavith X.. The
critical parameters fax are given as the projection to teecoordinate of

(€N X)\Coo N (z = 0).

At last we compute parameters where the cardin@ @ = Bax(S) U B (S) changes.
As a onclusion, ifS is the set of critical parameters ©fs), then we have@nstructed
a finite and omputable sef’ suchthat

Scds.

Now to check if a values € &' is in S, we conputem(fs) and we compare it with
m(fy), wheres' is any value of0, 1]\S’; nows € S if andonly if m(fs) # m(fy).

5. Examples
5.1. Brian®n polynomial

The following example shows how to use the program onces8LAR is started. We
have toload the librarycritic.1ib, then we set th ring, withn + 1 variables; the last
variable will enable us to have the critical values (as the zeros of a polynomial) in return.
The following code gives the critical values at infinity of the Briangolynomial. Let
q=xy+1,p=xq+1andf(x,y) =3yp>+3p°q—5pg—q.

LIB "critic.lib";
ring r = 0, (x,y,t), dp;
poly q = xy+1;

poly p = x*q+1;
poly f = 3%y*p~3+3*p~2*q-b*p*q-q;
crit(f);

The result is:

> Affine critical values are the roots of 1

> Affine Milnor number : O

> Critical values at infinity are the roots of 3t2+16t
> Milnor number at infinity : 4

> Details of critical values at infinity :

> t 1
> 3t+16 3

This shows that there is no affine critical value (as the root of the polynomial 1) and that
Bsx = {0, —16/3} (as the root of the polynomialand 3 + 16) are the critical values at
infinity with Milnor number at infnity respectively equal to 1 and 3.
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5.2. More variables

Let f(a,b,c,d) = a+ a*b + b?c® + d° be the example o€houdary and Dimca
(1999 andArtal et al. (1998. This polynomial has isolated singularities at infinity. The
only singularity is a singularity at infinitfor the critical value 0. Let us check it.

ring r = 0, (a,b,c,d,t), dp;

poly f = at+a”4*b+b"2*c"3+d"5;

crit(f);

> Affine critical values are the roots of 1

> Affine Milnor number : O

> Critical values at infinity are the roots of t
> Milnor number at infinity : 8

The computation shows that actualfy, = {0}, and moreovek = 8.
5.3. A family

We give an eample of deformation. We first need to load the libragfpoly.1ib;
then we introduce a ring in 4 1 variabks, where the last variable is the parameter of the
deformation. For instance, we consider the deformati@r, y) = y(1—sx)(y—(s—21)X).

LIB "defpol.lib";

ring r = 0, (x,y,s), dp;

poly f = yx(1-sx)*(y-(s-1)*x);

parCrit(£);

> Critical parameters are included in the roots of s2-s

Then the critical parameters ase= 0 ands = 1.
5.4. A trivial family
Another deformation igs(x, y) = x(x3y + sx2 4 $2x + 1).

LIB "defpol.lib";

ring r = 0, (x,y,s), dp;

poly f = x*(x"3*y+s*x”~2+s"2%x+1);

parCrit(£);

> Critical parameters are included in the roots of 1

Thenm(fs) and the degree are constaflieorem 2mplies that for alls, s’ € C, fs and
fy are topologically equivalent.

5.5. Combination
We onsiderthe family fs(x, y) = (x — s2 — 1)(x2y + 1).

LIB "defpol.lib";
ring r = 0, (x,y,s), dp;
poly f = (x-s"2-1)*(x"2*y+1);
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parCrit(£);
> Critical parameters are included in the roots of s2+1

The critical parameters arei and—i (withi2 = —1).
For a g@eric values # +i we have

LIB "critic.lib";

ring r = (0,s), (x,y,t), dp;

poly f = (x-s72-1)*(x"2%y+1);

crit(f);

> Affine critical values are the roots of t

> Affine Milnor number : 1

> Critical values at infinity are the roots of t+(s2+1)
> Milnor number at infinity : 1

So fors # =i, Bagt(S) = {0}, u(s) = 1 andBuo(s) = {—s% — 1}, with A(s) = 1.
And for a critical parameteis(= i ors = —i) we haveBag(S) = @ andBs(s) = {0},
with A(s) = 1:

ring r = (0,s), (x,y,t), dp;

minpoly = s72+1;

poly f = (x-s72-1)*(x"2%y+1);

crit(f);

> Affine critical values are the roots of 1

> Affine Milnor number : O

> Critical values at infinity are the roots of t
> Milnor number at infinity : 1
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