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Abstract

We describe how to compute topological objects associated to a polynomial map of several
complex variables with isolatedsingularities. These objects are the affine critical values, the affine
Milnor numbers for all irregular fibers, the critical values at infinity, and the Milnor numbers at
infinity for all irregular fibers. Then for a family of polynomials we detect parameters where the
topology of the polynomials can change. Implementation and examples are given with the computer
algebra system SINGULAR.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Review on the local case

Let g : Cn, 0 −→ C, 0 be agerm of a polynomial map with isolated singularities. One
of the most important topological objects attached tog is its local Milnor number(Milnor,
1968):

µ0 = dimC C{x1, . . . , xn}/Jac(g)
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where Jac(g) = (
∂g
∂x1

, . . . ,
∂g
∂xn

) is the Jacobian ideal ofg. It is possible to computeµ0

with the help of a Gr¨obner basis. For example such a computation can be done with the
computer algebra system SINGULAR (Greuel et al., 2001).

Let us consider a family(gs)s∈[0,1], with gs : Cn, 0 −→ C, 0 germs ofisolated
singularities, such thatgs is a smooth function ofs. To eachs ∈ [0, 1] we associate the
local Milnor numberµ0(gs). The main topological result for families is theµ-constant
theorem ofLê and Ramanujam(1976) andTimourian(1977).

Theorem 1. If n �= 3 andµ0(gs) is constant(s ∈ [0, 1]) then the family(gs)s∈[0,1] is a
topologically trivial family.

1.2. Motivation and aims for the global case

Let us consider now a polynomial functionf : Cn −→ C. The study of the topology
of f is not just the glueing of local studies because of the behaviour off at infinity;
seeBroughton(1988). For example the polynomialf (x, y) = x(xy − 1) has no affine
singularities but the fiberf −1(0) has two connected components while the other fibers
f −1(c), c �= 0, have only one.

We attach to the polynomialf “Milnor numbers”µ, λ and finite sets of critical values
Baff, B∞, B = Baff ∪ B∞ (see definitions below). The first aim of this work is to compute
these objects and to give the topology of the fibersf −1(c) for all c ∈ C.

There is a global version of the localµ-constant theorem (seeTheorem 2) where the
Milnor numberµ0 is replaced by aMilnor multi-integerm = (µ, #Baff, λ, #B∞, #B). In
order to verify ifm( fs) remains constant ina family ( fs)s∈[0,1] we have tocomputem( fs)
for infinitely many values. The second aim of the work is to give (and compute) a finite
setS suchthatm( fs) is constant for s ∈ [0, 1]\S. Hence we finally just have to compute
m( fs) for finitely many values.

The rest of this section is devoted to definitions and results.

1.3. Critical values

Let f : Cn −→ C be a polynomial map,n ≥ 2. By a result ofThom(1969) there is a
finite minimalset of critical valuesB of points ofC suchthat f : f −1(C\B) −→ C\B is
a locally trivial fibration. In the next two paragraphs we give a description ofB.

1.4. Affine singularities

Wesuppose thataffine singularities are isolated, i.e. that the set{x ∈ Cn | gradf x = 0}
is a finite set. Letµc be the sum of the local Milnor numbers at the points off −1(c). Let

Baff = {c | µc > 0} and µ =
∑
c∈C

µc

be theaffinecritical valuesand theaffine Milnor number. Morally µ is thenumber of affine
singularities counted with multiplicities.
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1.5. Singularities at infinity

To explain the behaviour of the polynomials at infinity we need some definitions; see
Broughton(1988). Letd be the degree off : Cn −→ C, and let f = f d+ f d−1+· · ·+ f 0,
where f j is homogeneous of degreej . Let f̄ (x, z) (with x = (x1, . . . , xn)) be the
homogenisation off with the new variablez: f̄ (x, z) = f d(x)+ f d−1(x)z+· · ·+ f 0(x)zd.
Let

X = {((x : z), t) ∈ P
n × C | f̄ (x, z) − tzd = 0}.

X is a compactification ofCn associated to the polynomialf . LetH∞ be the hyperplane
at infinity of Pn defined by(z = 0). The singular locus ofX at infinity has the formΣ ×C,
where

Σ =
{
(x : 0)

∣∣∣∣ ∂ f d

∂x1
= · · · = ∂ f d

∂xn
= f d−1 = 0

}
⊂ H∞.

We suppose thatf hasisolated singularities at infinity; that is to saythatΣ is finite. This
is always true forn = 2. We say thatf hasstrong isolated singularities at infinityif

Σ ′ =
{
(x : 0)

∣∣∣∣ ∂ f d

∂x1
= · · · = ∂ f d

∂xn
= 0

}

is finite.
For a point (x : 0) ∈ H∞ assume for example thatx = (x1, . . . , xn−1, 1) and set

x̌ = (x1, . . . , xn−1) and

Fc(x̌, z) = f̄ (x1, . . . , xn−1, 1) − czd.

This is the localisation off at the point at infinity(x : 0). Let µx̌(Fc) be the local Milnor
number ofFc at the point(x̌, 0). If (x : 0) ∈ Σ thenµx̌(Fc) > 0. For a generics, µx̌(Fs) =
νx̌, and for finitely manyc, µx̌(Fc) > νx̌. We setλc,x̌ = µx̌(Fc)−νx̌, λc = ∑

(x:0)∈Σ λc,x̌.

Thenλc > 0 if andonly if at some point at infinity the compactification of the fiberf −1(c)
is more singular than a generic fiber. Let

B∞ = {c ∈ C | λc > 0} and λ =
∑
c∈C

λc

be thecritical values at infinityand theMilnor number at infinity.
We can now describe the set of critical valuesB as follows (seeHà and Lê (1984) and

Parusiński (1995)):

B = Baff ∪ B∞.

Moreover, byHà and Lê(1984) andSiersma and Tib˘ar(1995) for all c ∈ C\B, f −1(c) has
thehomotopy type of a wedge ofµ + λ spheres of real dimensionn − 1. And for allc ∈ C

the Euler characteristic of a fiber isχ( f −1(c)) = 1 − (−1)n−1(µ + λ − µc − λc).
Forour examplef (x, y) = x(xy − 1) there are no affine singularities; henceBaff = ∅

andµ = 0. But at the point(0 : 1 : 0) in P2 we have a singularity at infinity such that
B∞ = {0} andλ = 1. Then the fiberf −1(c), c �= 0, is homotopic to a circle, andf −1(0)

is homotopic to the union of a point and a circle.
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1.6. Families of polynomials

We associate to a polynomial itsMilnor multi-integer m = (µ, #Baff, λ, #B∞, #B).
Two polynomial maps f, g : Cn −→ C are topologically equivalentif there exist
homeomorphismsΦ : Cn −→ Cn andΨ : C −→ C suchthat f ◦ Φ = Ψ ◦ g. The
topological equivalence preserves the topology of the singularities and in particular the
Milnor multi-integer is a topological invariant; that is to say, iff andg are topologically
equivalent thenm( f ) = m(g). We recall a result that is a kind of converse of this property.

Let ( fs)s∈[0,1] be a family of polynomials, such thatfs hasstrong isolated singularities
at infinity and isolated affine singularities for alls ∈ [0, 1]. For eachs ∈ [0, 1] we
consider the Milnor multi-integer offs, m( fs) = (µ(s), #Baff(s), λ(s), #B∞(s), #B(s)).
We suppose that the coefficients of the family are polynomials ins, and that the degree
deg fs is constant. The result ofBodin (2003) andBodin and Tibăr (2003) is:

Theorem 2. Let n �= 3. If m( fs) is constant(s ∈ [0, 1]), then f0 is topologically
equivalent to f1.

How is it possible to verify the hypotheses from a computable point of view? We
computem( fs) for infinitely many s ∈ [0, 1] by using the fact thatm( fs) is constant
except for finitely manys; we denote byS the set of thesecritical parameters. The aim of
Section 4is to give a computation of these critical parameters.

1.7. Implementation

The results of this paper have been implemented in two libraries,critic anddefpol.
The first one enables the calculation of all the objects defined above:Baff, µ, µc for c ∈ Baff,
B∞, λ, andλc for c ∈ B∞. These programs are written for SINGULAR (Greuel et al.,
2001). They are based on polar curves and on the article ofSiersma and Tib˘ar (1995).
For polynomials in two variables(n = 2) a program in MAPLE has been written by
Bailly-Maı̂tre (2000) based on a discriminant formula ofHà (1989). For families of
polynomials the second library computes a finite setS ′ that contains the critical parameters.

2. Milnor numbers and critical values in affine space

2.1. Milnor number

The computation of the affine Milnor numberµ is easy and well-known. For details see
Greuel and Pfister(2002, Chapter 3). Let f ∈ C[x1, . . . , xn]. Let J be the Jacobian ideal
of the partial derivatives(∂ f/∂xi )i . Then by definition µ is the vector space dimension
(overC) of thequotientC[x1, . . . , xn]/J. But if L(J) denotes the leading ideal ofJ and
if G is a Gröbner basis ofJ then

µ := dimC[x1, . . . , xn]/J = dimC[x1, . . . , xn]/L(J) = dimC[x1, . . . , xn]/L(G).

And the lastdimension can be recursively computed.
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2.2. Critical values

We add a new variablet . We considerthe variety

C = {(x, t) ∈ C
n × C | f (x) − t = 0 andgradf x = 0}.

The critical values are the projection ofC on thet-coordinate:Baff = prt (C).

2.3. Milnor number of a fiber

Let c ∈ C. We would like to computeµc, the sum of the Milnor numbers of the points
of f −1(c). Let J be the Jacobian ideal off and letx be a critical point. We denote byJx

the localisation ofJ at x. Let Ix = (t − c, Jx); thedimension ofIx is equal to the Milnor
number of f at x. For k ≥ 1 we considerK k

x = (( f − t)k, Ix). Then f (x) = c if and
only if K k

x has non-zero dimension (as a vector space). Moreover, iff (x) = c then by
the Nullstellensatz( f − t)k is in Ix for a sufficiently largek. For such ak, thedimension
of K k

x is the Milnornumber atx if f (x) = c, and it is 0 otherwise. Such ak is less than
or equal to the Milnor number atx, but k can often be chosen much less. The minimal
k is the first integer such that the vector space dimension ofK k

x is equal to the one of
K k+1

x .

3. Milnor numbers and critical values at infinity

We give the computation of the objects at infinity and its implementation in SINGULAR.
We will suppose thatf has isolated singularities at infinity; in fact computations are valid
for a larger class of polynomials but it is not possible to compute iff belongs to this class.
The algorithm is based on the article ofSiersma and Tib˘ar (1995) that gives critical values
at infinity and Milnor numbers at infinity with the help of polar curves.

3.1. Working space

We will work in P
n × C, with the homogeneous coordinates ofP

n: (x1 : . . . : xn : z);
we still needt , which is a parameter or a variable depending on the context.

We recall that

X = {((x : z), t) ∈ P
n × C | f̄ (x, z) − tzd = 0}.

The part at infinity ofX is X∞ = X ∩ (H∞ × C):

X∞ = {((x : 0), t) ∈ P
n × C | f d(x) = 0},

where f = f d + f d−1 + · · · is the decomposition in homogeneous polynomials.
In SINGULAR we write:

ring r = 0, (x(1..n),z,t), dp;

poly f = ...;

poly fH = homog(f,z)-t*z^deg(f);

ideal X = fH;

ideal Xinf = z, fH;
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3.2. Polar curve

Let k be in{1, . . . , n}. Thepolar curveP is the critical locus of the mapφ : Cn −→ C2

defined forx = (x1, . . . , xn) by φ(x) = ( f (x), xk):

P =
{

x ∈ C
n

∣∣∣∣ ∂ f

∂xi
(x) = 0,∀i �= k

}
.

We have thatP is a curve or is void. We callPH the projective closure ofP . This curve
intersects the hyperplane at infinityH∞ in finitely many points.

ideal P = diff(f,x(1)),..., diff(f,x(k-1)), diff(f,x(k+1)),...;
ideal PH = homog(P,z);

The former objects can be viewed inX; we will also denote byPH the set(PH ×C)∩X.
In the chartxk = 1 we denote the curvePH by C̄. The “real” polar curveC in this chart is
the closure ofC̄\X∞:

ideal Cbar = x(k)-1, PH, X;
ideal C = sat(Cbar,Xinf)[1];

3.3. Critical values at infinity

We need the following result ofSiersma and Tib˘ar (1995). A valuec is a critical values
at infinity if and only if there is a coordinatexk and a point(x : 0, t) in X∞ (with xk �= 0)
suchthat(x : 0, t) ∈ C. That is to say,B∞ is the projection ofC∞ = X∞ ∩ C on the space
of parameterst ∈ C.

Then the critical values are computed with:

ideal Cinf = z, C;
poly Binf = eliminate(Cinf,x(1)x(2)..x(n)z)[1];

The set of critical values at infinity are the roots of the polynomialBinf, which belongs
to C[t].
3.4. Milnor numbers at infinity

Actually the results ofSiersma and Tib˘ar (1995) are more precise. For a fixedt let
Xt = {(x : z, t) ∈ X}; this is aprojective model for the fiberf −1(t).

Theorem 3. The Milnor number at infinity at a point(x : 0, t) ∈ C∞ is givenby the
intersection number (in X) ofC with Xt at (x : 0, t).

Roughly speaking, the polar curve arrives at infinity exactly on the critical fiber at infinity,
and the order of contact with this fiber is the Milnor number at infinity. So, forc ∈ B∞, the
Milnor number at infinityλc (for the chartxk �= 0) is equal to the sum of all intersection
numbers ofXc andC in X∞.

We compute an idealI which corresponds toXc ∩ C; then weonly deal with points at
infinity by intersecting this set withzq = 0 for a sufficiently largeq.

number c = ...;
ideal Xc = t-c, X;
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ideal I = Xc, C;
ideal K = z^q, I; // q >> 1
lambdac = vdim(std(K));

Once we have computedλc for all c ∈ B∞ we haveλ = ∑
c∈B∞ λc.

4. Families of polynomials

Let ( fs)s∈[0,1] be a family of complex polynomials inn variables. We suppose that
the coefficients are polynomial functions ofs, and thatfor all s ∈ [0, 1], fs has affine
isolated singularities and strong isolated singularities at infinity. The implementation is
similar to the one of Section 3and will be omitted. Theset of critical parametersis
the finite minimal setS such that for s ∈ [0, 1]\S the Milnor multi-integerm( fs) =
(µ(s), #Baff(s), λ(s), #B∞(s), #B(s)) is constant.

4.1. Change in affine space

The Milnor numberµ(s) is constant excepted at finitely many values; we do not need to
compute it for all values but we detect a change ofµ(s). The Milnor numberµ(s) changes
if andonly if some critical points escape at infinity. Then we can detect critical parameters
for µ as follows. LetJ = {(x1, . . . , xn, s) ∈ Cn × C | ∂ fs

∂x1
= · · · , ∂ fs

∂xn
= 0} be the

set of critical points (that corresponds to the Jacobian ideal inC[x1, . . . , xn, s]). Let J̄ be
the homogenisation ofJ with the new variablez, while s is considered as a parameter.
The part at infinity ofJ corresponds to theJ∞ = J̄ ∩ (z = 0), and the affine part of

J is Jaff = J̄\J∞. Now the critical parametersfor µ are prs(Jaff) ⊂ C, where prs is the
projection to thes-coordinate.

It is possible to computeBaff(s) for all s ∈ [0, 1] by a direct extension of the work
of Section 2. Then we can compute the parameters where the cardinality of this set
changes.

4.2. Change at infinity

Again we look for the parameters whereλ(s) changes. We extend the definition of
Section 3by adding a parameters. We setd = deg fs and

X = {((x : z), t, s) ∈ P
n × C × C | f̄s(x, z) − tzd = 0}.

The part at infinity ofX is X∞ = X ∩ (H∞ × C × C):

X∞ = {((x : 0), t, s) ∈ P
n × C | f d

s (x) = 0}.
The polar “curve” is

P =
{
(x, s) ∈ C

n × C

∣∣∣∣ ∂ fs
∂xi

(x) = 0,∀i �= k

}
.

In the chartxk = 1 we denote the homogenisation ofP (with s a parameter) byC̄, and
the “real” polar curveC in this chart is the closure of̄C\X∞. Thepart at infinity of C is
C∞ = C ∩ X∞.
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Let B∞(s) = prt {(x : 0, t, s) ∈ C∞}. For a generics′, B∞(s′) = B∞(s′). Then the
critical parameters forB∞(s) are included in the set of parameters where #B∞(s) fails to
be equal to #B∞(s′) (in fact B∞(s) may be infinite).

We setX∗ = {(x : z, c, s) ∈ X | (x : 0, c, s) ∈ C∞}; for non-critical parameters this
corresponds to union of the irregular fibers at infinity. Now a change ofλ corresponds to
a changein the value of the intersection multiplicity of the polar curveC with X∗. The
critical parameters forλ are given as the projection to thes-coordinate of

(C ∩ X∗)\C∞ ∩ (z = 0).

At last we compute parameters where the cardinal ofB(s) = Baff(s) ∪ B∞(s) changes.
As a conclusion, ifS is the set of critical parameters of( fs), then we have constructed

a finite and computable setS ′ suchthat

S ⊂ S ′.

Now to check if a values ∈ S ′ is in S, we computem( fs) and we compare it with
m( fs′), wheres′ is any value of[0, 1]\S ′; nows ∈ S if andonly if m( fs) �= m( fs′).

5. Examples

5.1. Briançonpolynomial

The following example shows how to use the program once SINGULAR is started. We
have toload the librarycritic.lib, then we set the ring, with n + 1 variables; the last
variable will enable us to have the critical values (as the zeros of a polynomial) in return.
The following code gives the critical values at infinity of the Brianc¸on polynomial. Let
q = xy + 1, p = xq + 1 and f (x, y) = 3yp3 + 3p2q − 5pq − q.

LIB "critic.lib";
ring r = 0, (x,y,t), dp;
poly q = xy+1;
poly p = x*q+1;
poly f = 3*y*p^3+3*p^2*q-5*p*q-q;
crit(f);

The result is:

> Affine critical values are the roots of 1
> Affine Milnor number : 0
> Critical values at infinity are the roots of 3t2+16t
> Milnor number at infinity : 4
> Details of critical values at infinity :
> t 1
> 3t+16 3

This shows that there is no affine critical value (as the root of the polynomial 1) and that
B∞ = {0,−16/3} (as the root of the polynomialt and 3t + 16) are the critical values at
infinity with Milnor number at infinity respectively equal to 1 and 3.
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5.2. More variables

Let f (a, b, c, d) = a + a4b + b2c3 + d5 be the example ofChoudary and Dimca
(1994) andArtal et al. (1998). This polynomial has isolated singularities at infinity. The
only singularity is a singularity at infinityfor the critical value 0. Let us check it.

ring r = 0, (a,b,c,d,t), dp;
poly f = a+a^4*b+b^2*c^3+d^5;
crit(f);
> Affine critical values are the roots of 1
> Affine Milnor number : 0
> Critical values at infinity are the roots of t
> Milnor number at infinity : 8

The computation shows that actuallyB∞ = {0}, and moreoverλ = 8.

5.3. A family

We give an example of deformation. We first need to load the librarydefpoly.lib;
then we introduce a ring inn + 1 variables, where the last variable is the parameter of the
deformation. For instance, we consider the deformationfs(x, y) = y(1−sx)(y−(s−1)x).

LIB "defpol.lib";
ring r = 0, (x,y,s), dp;
poly f = y*(1-sx)*(y-(s-1)*x);
parCrit(f);
> Critical parameters are included in the roots of s2-s

Then the critical parameters ares = 0 ands = 1.

5.4. A trivial family

Another deformation isfs(x, y) = x(x3y + sx2 + s2x + 1).

LIB "defpol.lib";
ring r = 0, (x,y,s), dp;
poly f = x*(x^3*y+s*x^2+s^2*x+1);
parCrit(f);
> Critical parameters are included in the roots of 1

Thenm( fs) and the degree are constant;Theorem 2implies that for alls, s′ ∈ C, fs and
fs′ are topologically equivalent.

5.5. Combination

We considerthe family fs(x, y) = (x − s2 − 1)(x2y + 1).

LIB "defpol.lib";
ring r = 0, (x,y,s), dp;
poly f = (x-s^2-1)*(x^2*y+1);
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parCrit(f);
> Critical parameters are included in the roots of s2+1

The critical parameters are+i and−i (with i 2 = −1).
For a generic values �= ±i we have

LIB "critic.lib";
ring r = (0,s), (x,y,t), dp;
poly f = (x-s^2-1)*(x^2*y+1);
crit(f);
> Affine critical values are the roots of t
> Affine Milnor number : 1
> Critical values at infinity are the roots of t+(s2+1)
> Milnor number at infinity : 1

So fors �= ±i , Baff(s) = {0}, µ(s) = 1 andB∞(s) = {−s2 − 1}, with λ(s) = 1.
And for a critical parameter (s = i or s = −i ) we haveBaff(s) = ∅ andB∞(s) = {0},

with λ(s) = 1:

ring r = (0,s), (x,y,t), dp;
minpoly = s^2+1;
poly f = (x-s^2-1)*(x^2*y+1);
crit(f);
> Affine critical values are the roots of 1
> Affine Milnor number : 0
> Critical values at infinity are the roots of t
> Milnor number at infinity : 1
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