Metadata, citation and similar papers at core.ad

SCIENcE

ELSEVIER Physics Letters B 574 (2003) 47-56

PHYSICS LETTERS B

www.elsevier.com/locate/npe

Mesons: relativistic bound states with string tension

Ramesh Anishetty, Santosh Kumar Kudtarkar

Institute of Mathematical Sciences, Chennai 600 113, India
Received 3 June 2003; accepted 25 August 2003
Editor: M. Cvett

Abstract

A systematic method of analysing Bethe—Salpeter equation using spectral representation for the relativistic bound state wave
function is given. This has been explicitly applied in the context of perturbative QCD with string tension im\trexpansion.
We show that there are only a few stable bound state mesons due to the small “threshold mass” (constituent mass) of quarks.
The asymptotic properties of the bound states are analytically analysed. The spectrum is derived analytically and compared
phenomenologically. Chiral symmetry breaking and PCAC results are demonstrated. We make a simple minded observation to
determine the size of the bound states as a function of the energy of the boundstate.
0 2003 Elsevier B.V. Open access under CC BY license.
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1. Introduction An important observation has been that the most gen-
eral “spectral’ representation [3] for the bound state
We address relativistic bound states which are wave function exists and is very simple to work with.
due to a causal interaction kernel. Investigation of WC wave functions are a special class of this repre-
these systems is essential to understand approxi-sentation.
mate Goldstones such as the physical pion. Wick— In this work we will study quark—antiquarigq)
Cutkosky (WC) model [1,2] was one such model bound states in the Bethe—Salpeter (BS) formalism
which was investigated in great detail, wherein they in the context of the field theoretic modet QCD)
have presented a fairly general series expansion tech-proposed in [4]. To recapitulate the essential points
nique. Here we simplify and make their formalism of this model, string tension teriiw/k%) was explic-
more transparent and infact we find that “deeply bound itly incorporated in perturbative QCD using auxillary
states”, those whose binding energy is comparable or fields such that ultraviolet renormalisation is assured.
more than the rest mass energy due to a very strongThe ultraviolet (UV) behaviour remains the same as
interaction kernel can be understood in a simpler way. in QCD. The string tensiofioc) vanishes asymptoti-
cally in the UV limit. In this model we will be work-
mspondmg author ing in the leading 1IN approxmatlon anger is as-
E-mail addresses: ramesha@imsc.res.in (R. Anishetty), sumed to be small for all energies wheres the QCD
sant@imsc.res.in (S.K. Kudtarkar). gauge coupling constant. The infrared singular confin-
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P P P ory, N, g2N and IN of which we will treato N
\ = I+ u as a non-perturbative parameter and the latter two per-
B B _ turbatively. The BS equation (Fig. 1) for the quark—
P P antiquark bound state in the & expansion sums only

the ladder graphs ofe’ exchange’ (Eq. (1)) where
guark—antiquark propagators are the non-perturbative

propagators obtained by summing the rainbewek-
ing part of the interaction is given by the string tension change’ [5].

term. Our analysis is done in Minkowskt-, —, —, —)
space.
In 0 QCD with our approximations we have seen o(p, p)
that the quark propagator has no pole and it does
not have a simple pole structure [5] unlike in WC $(5) / 4%k <0N¢((p —k), (p+k))
=23(P)Vu

Fig. 1. Bethe—Salpeter equation summing up ladder graphs.

model. Consequently the BS equation which involves i(2m)* (p — k)

the quark propagator has more algebraic complica-

tions. Even then the bound state spectral representa- g2No((p —k), (p+k)) M 1
tion is still valid and this enables us to perform analytic - (p—k)2 )V S(p), @)
calculations. Qualitatively we see that quark propaga-
tor poles are missing but they have “threshold mass-
es” [5] which determines the onset of the imaginary
part of the propagator. This is a more precise notion
in our model corresponding to constituent mass of
strong interaction phenomenology. For completeness
we have presented the angular decomposition of the
wave function in detail. For brevity we have looked at
single quark flavour system. Our analysis can equally
well handle cases of more than one flavour.

In the BS bound state description of mesons we
show that even in the presence of string tension there
are only a few number of stable mesons and this is a
consequence of the existence of the threshold mass.
There however are many unstable (complex energy) Di
bound states and we have not made any attempt to
study them systematically.

Heavy quark bound systems under certain standard
assumptions do reduce to non-relativistic Schrédinger
theory bound systems. This is alluded to briefly as
it is well understood in the literature. As for light Substituting Eq. (2) in the BS equation, we get the
mesons we derive the relationship between the massfollowing decomposition for the scalar, pseudoscalar,
of the pion and the current quark masses consistentvector and pseudovector amplitudes with the propa-
with PCAC. gators given byS(p) = i (pA(p?) + B(p?)), S(p) =

i(PA(P?) + B(p%)

whereS(p) andS(p) are the quark propagators,is

the string tensiong is the gluon-fermion coupling
constant anaV is the number of colours. In the above
we have also included an additiongd N term for
the following reason. It is evident in the theory that
the leading UV behaviour is governed lgy. Hence

to discuss the bound state UV behaviour we need
to consider this contribution too. With our ansatz of
g2N small, we only include the leading UV behaviour.
(There are additiona¢?N terms interfering witho
exchange but these are subleading in the UV regime.)
In this work we do not consider a runniggor o .

The BS amplitude is decomposed in terms of 4

rac matrices [6,7]

¢ = s+ ysdp + vudy + vursdlh +oundl’ . (2)

2. Bethe-Salpeter equation
65 =4AAp-p+ 58) [ o5
We address the quark—antiquark bound state prob-
lem in perturbative QCD with string tension. As dis- — Z(ABﬁu + AEPM/‘W’ 3)
cussed in [4,5] there are three parameters in the the-
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V' = 4(ABp + ABP) / o

+ ZiAAe““mﬁapﬁya f oy
— 2(AA(Pub — P - PYu + PPy
+ BBy,) / -

yspp =4(AAp - p — §B>y5/¢p

(4)

_Z(ABﬁu _AEPM)VS/‘Pg’ )

yysd = AABp — ABp)ys / .

+2iAA6““ﬁ5ﬁapﬁyaV5f¢vu
- Z(AA(ﬁulﬁ =P PYutPpu)
- EB)//L)V5/‘¢§' (6)

The symbol/ stands for the 4-d momentum inte-
gral corresponding to the sum of the confining and the
gluon interactions.

f¢—f id% (oN¢<(p—k>,<ﬁ+k)>
) @ (p =4
NG ((p — k), (p +K)

: )
(p—k)? )

In addition the tensor components are totally deter-
mined by the above components.

Since the momentum of the bound states has to be

time like, we can go to the centre of mass frame of
the bound state wherein the total momentum vector
is given byg = (qo = M, 0,0,0) where M is the
mass of the bound state. The little grouS3(3). In

this frame the angular momentum decomposition of
the BS amplitude can be done in terms of 3-d solid
harmonics and (3) scalar functions op?, p in the
following manner,

¢i(]) = ¢i(])(PO» ﬁ)yjm (8)
fori =S, P,0V,04, i.e., scalar, pseudoscalar, time
component of vector and pseudovector, respectively.

The remaining 3-d vector components are decom-
posed as [8]

97 = (po1y + T3 +i(h x H®5))vim

49
= Zjms®y" O Y UM (), 9)

A = (PO p+ TPy +i(px NP )Yjm
= E/maﬁbf;m(a)17(j+5’1)jm(ﬁ), (10)

where s = 0,1, ¢} = (dov, dv), ¢4 = (boa,$a),
yjm = |pl’Yjm, Whereyj,, are the solid harmonics,
J =P x V; and YUHDim(5) are the 3-d vector
spherical harmonics [8].

The relation betweembi({}) and (b{}’"(‘s) is given
by [8]

j+1

) jm(1)
D = — (0]
v 2j+17Y
+ | pim-D (11)
2j+1 YV 7
o) L pimo (12)
VNG +y Y
o) — _ 1 Mm@
3V G+DEj+1n "
Sl pime (13)
PP\ Jjeji+1n Y

similar equations apply for the pseudovector part.

3. Representation of the wave functions

In Egs. (8)—(11) we have introduced functiong8f
and p. They are Lorentz scalars as they are defined in
the rest frame of the bound state. A convenient repre-
sentation is required to make our analysis transparent.
Consider a scalar 3-point function. In general this is a
scalar function of momenta associated with three inde-
pendent Lorentz scalar quantities, namgfy p?, ¢2
with p, — p, = g, owing to momentum conservation.
Any scalar function associated with the 3-point func-
tion is a function of these three variables. There ex-
ists a spectral representation for such a function, that
of Deser et al. [9]. In the BS wave function we are
in a similar situation with one of the scalar variables
namelyg? fixed due to an eigenvalue condition. There
are many equivalent ways of representing such a spec-
tral representation. We find the most convenient one is
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due to [3], +2(AB + AB)p* f f 1), (16)
1 00 ~

/d / b(a,y) /550 = 4(ABj° + ABp°) // 3y

) % (p—yq)z—a‘i‘iE _ _ _ s
. +2(AA;3.p—BB—AAﬁ0p°)//¢>é()

= [ ay (- yar.y). (14) w2Aa(0+ )7 [ 3. an
0

Note that(p — vg)% = (1= ) p2+ y 52 — y(1— )q? f 1)) =4(AB + AB) f f oy
The spectral functiog («, y) in general is complex

and range of can be from zero to infinity. For a stable —2AA(p° + p°) /f &)

bound state we know from physical considerations that

it has a finite size and for certain range of energies 1+ 2(AAj-p— BB +2AAF) /f 3.
of the constituents this size is not infinity. The size of

the bound state is defined by the onset of exponential (18)
fall off in coordinate space. This is possible only if

the o integration range is above some positive non- [PI[A] sector

vanishing quantitg? wheres is the inverse of the size ~(j) - — ~(j)

of the bound state. In generélmany depend ory. /CDP =4(AAp-p BB)// Pp

Here we will take it to be the minimum possible value _ _ .

in the range of integration. In WC model[2] the BS —2(ABp° - AB)p") ff ¢éf4)
wavefunction can be cast into the above form where _

§2(y) is fixed in terms of masses of the constituents +2(AB — AB)p? /f 3 (19)

and ¢ is a series in derivatives of(« — 82). This

is also a simple case of the so-called Perturbation f5</> 4(ABp° — ABp® //(p(/)
Theory Integral representation [10]. Substituting this

representation for the each of the scalar functions

. 2(AAp-p+BB—2AAp°p%) [ | &)
Eq. (8), we can do the loop momentum integrals + ( prp p-p )// 04

by introducing the appropriate Feynman parameter =0 ON=2 ~()
integrals as shown in detail in [5]. It is instructive +24A(P° +p°)P // P14 (20)
to note the following self-reproducing property of i ~(i)
the solid harmonics which follows from the defining @, =4(AB — AB) // o,
property [2], namelyV2y;,, (p) =0
p oxa(70, 0 =(7)
2AA(P°+p )/f(DOA
/d?’k F(K?)yjm(k + p) _ _ _ ~(j)
+2(AAp-p+ BB +2AAp?) ff .
—yin® [ ¢ F @), (15) 1)
whereF (k) is a sufficiently well-behaved function. The [V][A] mixed sector: for j > 1
() ()
[S][V] sector f%A =2(AAp - p+BB)ff¢
/5;” =4(AA,3.p+EB)// 3y +2AAq°,‘52// X (22)

—2(ABp° + ABp°) // &) /@é’V)_Z(AAp.p—EB)// B
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+2444° / f ) (23)
() VI =(j)
/¢2V =2(AAp-p BB)//(Dzv
+ 24495 / / &), (24)
fcpég)_z(AAp p+BB)/f<D(’)
+2AA / / ) 25
q 2V ( )
where the symbo] stands for
1
/5,-(’) =/dy 37 ((p—y)2. ) (26)
0
and [ stands for
N[ [ d
f[70= o 2
! (4m)2 1—x
0 0
x (x-/+14~>i(j)(X(p —y9)%.y)
- 3((p - y9)? y))
1
d
(4n>2/ xf g
0
x(pfyq)2
x dpx1 (B, y) @7)

—00

fori =S, P,0V,04,2V,2A. Thex/ in the previous
equation is replaced hy/*1 for i = 1V, 3V, 14, 34
and the equations are written in unitscolV /(47)% =
& = 1. Also we defing?N /(4n)% = a.

These coupled integral equations essentially be-
come four different cases as expected from angular
momentum algebra, namely the sum of two spi2 1
and orbital angular momentumyields total angular
momentumy as

B P P
J=Ie5 95

=I®l-1®lel+1. (28)

This explicit decomposition manifested in Egs. (16)—
(25) is as far as we know a new result.

51

4. Asymptotic behaviour

First we consider the behaviour of the wave func-
tion for large space likg?. Here the wave function
is real and probes the short distance behaviour. The
integral equation does not couple the UV behaviour
of the wave function to the IR or intermediate regime
of the theory. The UV behaviour of the wavefunc-
tion is determined self-consistently by the UV inter-
action alone. The leading UV behaviour®QCD is
the same as in QCD. Using the asymptotic behaviour
of A(p?) andB(p?),

1
—p?/2aIn(=p?)’
In(=p?)
B(p?) ~ —E5~
(V) ~ "%
we adopt the same procedure as shown in [5].
The leading order asymptotic behaviour of the BS
amplitudes in the [P][A] and [S][V] sector are the

same. Its in the next to leading order (NLO) that they
differ. The leading order BS amplitudes go like,

A(p?) ~ (29)

(30)

) O 1 31

N i

60) ~ g) ~ 1 , (32)
(—p2)i+2(In(—p2)) 71

o) ~ ) ~ 1 ‘ (33)
(= p2)I+3(In(— p2)t 72

Forj>1

9) ~ ) ~ 1 , (34)
(—pD)+2(In(—p2)) 71

o) ~ 95 ~ ! (35)

(—p?)I*3(In(—p2) 72
We have not used running in the above analy-
sis. It is seen tha(p?) function dominates as ex-
pected and the asymptotic behaviour of the wave func-
tion is independent oft due to the dependence of
A(p? on & as given in Eq. (29). It is also evident
that no further infinite renormalisations are needed as
the BS wavefunction asymptotic behaviour is suffi-
ciently small that all momentum integrals are finite.
This demonstrates that the theory is made finite by the
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standard wavefunction, mass and string tension renor-both sides.) Consequently the BS equation reduces to

malisations alone. The leading asymptotic behaviour
as shown in Egs. (31)—(35) is the same both in QCD
andoQCD. For completeness we mention that if we
ignore theg?N term in Eq. (1) then the asymptotic
analysis, yields similar results as Egs. (31)—(35) with
the powers ofp? decreased by one and all(p?)
powers are zero.

5. Spectrum of light mesons

The BS equation is simplified considerably in their
algebraic complexity. Generically it is very much
like in the WC model. Major difference being that
the propagator functions are complicated functions
unlike simple poles in the WC model. The eigenvalue
problem is well defined once the explicit(p?) and
B(p?) functions of the quark propagator are given.

The most important properties df( p2) and B(p?)
that we exploit is that they are analytic functions
near p?2 = 0 and the onset of non-analyticity is near
the threshold massi, i.e., p2 = m2 in units of &.
Considering the BS wavefunctions Egs. (16)—(25) we
first note that these functions are real and analytic for
p? <2 and 52 < ii°. This is equivalent to saying
that for all eigenvalueg such thatgo < i + m the
wave functions are real and analytic. It is also evident
from the standard arguments [1-3] that {@r> m +
m the wavefunctions are necessarily complex and
perhaps even unstable, i.e., the eigenvalyétself
may be complex.

For light quarks where the renormalised mass (cur-
rent mass)n is much smaller thaa, we have shown
[5] that threshold mass (constituent mag¥ < &,
indeed we estimated thak? ~ 0.025. For stable
mesonsyo < 7 4+ m, consequentlyg < /. There-
fore all stable bound states in this system are nec-
essarily deeply bound. For simplicity we ignore the
gluon coupling and keep only the string tension con-
tribution to the BS equation. We solve the BS equa-
tion at p?2 = p% = 0 where we know explicitly the

an ordinary matrix eigenvalue equation in each of the
different sectors ap? = p2 = 0. Solution to these ho-
mogeneous equations is guaranteed if the correspond-
ing determinant of the matrix is zero. Noting that all
our calculations are valid only i > 0 the relevant
solutions resulting from the vanishing of the determi-
nant are given below. The explicit answers are given
for renormalised quark mass,= m.

(2b3H + 1)(4b3L — 1)
2a3L(1— 2bZH)

For small quark masses we have forj =0 and 1,
M?2(j?) whereP is the intrinsic parity

[S][V] sector:¢? = (36)

1 153
M20T)~ =+ — 7
O~ 7+ Tggm™ S
5 2171
M3(1~ 38
SR 138 6348" (38)
2b2L — 1)(4b3L + 1
[P][A] sector: g2 _ ¢ ° - )\ L ) (39)
2a§L(1+ 2b§L)
For small quark masses we have forj =0
3
M2 =M?07)~ 2" (40)
2 (WBH+D(2HZL-)
. a2(L+H) ’
[VI[A] sector: _ <2bgH0—1>(2bgL+1>
T &(L+H)
For small quark masses we have forj =1
121
M3t 41
@n= 160 160" (41)
7 13
M2 )~ — 42
SR 160Jr 32" (42)
where
—+/m?2+416 b
0= u, ap= —>—, (43)
m — bg
1 x]+2 ! xj+l -1
H= /dx =/dx —. (44)
1—x
0 0

propagator functions. Consider the case when the BS Although the angular momentugncan become arbi-

wavefunction is non-vanishing a2 = 52 = 0, since

g% <« 1, we neglect therg? dependence in the r.h.s
of Egs. (16)—(25). Then al integrations can be done
explicitly. (They integration can be done formally on

trarily large, we find for largerj than what we have
consideredg? becomes negative, thus negating our
initial assumption thago is time like. Hence these are
discarded.
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In addition we can have solutions where the BS
wavefunctions vanish ai2 = 52 = 0. Since they have

53

Many of the eigenvalues both real and complex
have to satisfy the finite size criterion. Namely the

to be analytic they have to vanish as integer powers of size of a bound state or the extent to which the

p? or p2. Noting that in our representation Eq. (14),
this can only be of the forni(p — yg)?" and in the
limit of small ¢2 this also approximately vanishes.
Implementing these kind of wavefunctions we get
precisely the radial excitations. Trivial algebra shows
that approximately the eigenvaluag? are functions
of j + n only. All these eigenfunctions can be given
Taylor expansions inp? and p2 just as we did in

wave function is spread out should be finite, 8.,
in Eq. (14) should be non-zero. We are unable to
estimate this analytically from the BS equation but a
heuristic argument to be stated later suggests that all
eigenvalues witly® < /i + m, wherem andm are the
threshold masses, can exist.

Let us look at the phenomenological implications
of our spectrum. Fig. 2 gives eigenvalu€ versus the

[5] for the quark propagator. This is a double series quark mass:, both of which are in units of and+/s,
and convergence properties of this series is technically respectively. We first compare pseudoscafarviith
more cumbersome to handle and we have postponed itthe rest. This is very well understood in QCD [11].

for later study.

From first principles both in continuum and lattice un-

Indeed the above conditions are only necessary der wide circumstances one can show that the light-
conditions for the existence of the bound state. Suffi- est meson is the pseudoscalar, in partictag0 ™) <
cient conditions have yet to be stated. In additionto the M(17). This is also borne out by experimental data.
above there are many complex solutions with real part In our theory this inequality cannot be formally shown

of go > i + m. While these are acceptable as eigen-

to be valid, however it is maintained for renormalised

value conditions, these should be truly taken as unsta-massn less than @7 and it is disobeyed for larger.

ble resonances.

0.25
=T
T
02 e
L =
=
/’)‘//
///
1+ //
0 _
pn el
—
015 [~ ==
o
01 [~
~2 T
4m_ | —
me e
|
005 [~ (g )
o
1 L 1 L L | | L
0 4 0.02 0.04 0.06 4 0.08
m, m m,

Fig. 2. Meson spectrum with?’ . The one in the bracket is a radial excitation. Only mesons qﬁtla: 42 are stable.
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So we have to conclude from this that this theory is
qualitatively different from QCD fom > 0.07.

Next we will take M, and M, mesons as given
to fix physical values fog and the mass of the up
quark,m, (for down quark we taken; = m,). We
find from Egs. (38) and (40); = (4 GeW? and
m, =6 MeV [12]. The scalar © turns out to be very
heavy (1.56 GeV) and cannot certainly be a stable
bound state as it is greater tha#,2 wherem, is the
threshold mass of thep quark which we estimate in
this model to be about 0.56 GeV. This implies @l
anddown quark bound states less than 1.2 GeV are
stable.

In the strange quark sector, the Yector bound
state ofss is unambiguously known to be(1020.
From Fig. 2, it can be inferred that the strange quark
mass(m;) is about 0.26 GeV and a pseudoscalar 0
will have a mass 0.95 GeV which corresponds to the
n’ meson. That is, in this scenario most of the mass
of then” meson can be thought of as coming frei
(flavour mixing is not attempted in our calculations).
In our model strange quark mass is very close to
the crossover regime where land 0- cross, beyond
which the model qualitatively fails to be QCD like.

Eq. (40) demonstrates the well-known consequence po ~

of PCAC namely, the square of the mass of the
pion is proportional to the current quark massand
the proportionality constant in this model §/G =

3 GeV. Furthermore we see that there are two states

way above the threshold, namely" Gand 1". O
state is the well-known & particle”. It is clearly

extraordinarily massive and is expected to be unstable
even in this lowest order calculation as it exceeds the

threshold energy.

Physical spectrum is expected to show a lot of mix-
ing in flavour neutral particles. This can be anticipated
in this model purely because the threshold mass for all
the flavours is about the same [5], heng&vlcorrec-

. . . . o =2
tions can become dominant due to kinematical reasonss? = mln(mz, m )(1 —

alone. By carrying out AN calculation we can have
better fit to phenomenology.
Now we make a semi-analytic discussion as to the

R. Anishetty, SK. Kudtarkar / Physics Letters B 574 (2003) 47-56

whereS(p) andS(p) are the propagator functions of
the constituents and& is the interaction kernel. In
general spatial length scales can be present from the
interaction kernel. For our discussion we shall assume
that the interaction kernel has long range like the
massless gluon. Even the string tension term is long
ranged. For these type of kernels, the length scales
come from the propagators of the constituents alone.
For light quarks these are complicated and not so well-
known functions. however we do know that they have
spectral representations starting from a threshold mass

- ~2 .
m? andm”. Hence the smallest mass scale entering the
equation comes through this threshold mass. A crude
approximation of the propagators fer < /2 and

_ ~2
p2 <m would be,
1

: (46)
_ 2
pZ

wherep = p — ¢. This is qualitatively reasonable but
not quantitatively. In the rest frame let us anticipate
that there is an average enepgfy/for quark andp® for
antiquark. This can be estimated to be

— 1
S(p)S(p) = = .
p2—im? 2 _ 2

m
——=qo and qo— po~ ——=qo (47)
m-+m m-+m
then we have
S(p) S(p) !
p p)= > 72 ~ = 2
(P2 + 2= (i + m)? — gf))
1
X = N o
(P + Glimys (07t +m)2 — q))
(48)

Hence naturally in Eq. (48) the largest length scale
given by the exponential fall off of the wave function
in position space is set by

a6 )
(i +m)2 )"
where 1§ is the size of the system. For quarks this
is an estimate since the propagator is not a simple

(49)

size of the bound states from general considerations of pole. But the existence of the spectral representation

BS equation. These equations have a generic form as

=SS / Ko, (45)

for quark propagators seems to indicate that it is a
good estimate. For deeply bound states the size is
entirely determined by the threshold mass. The above
estimate holds good exactly for long range interacting
non-relativistic systems such as coulomb interactions.
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This estimate also suggests that whgnreaches the size of the bound states. For stable bound states
threshold,§ vanishes suggesting that the bound sys- the argument presented earlier is good enough but
tem attains infinite size. This simple consideration is for unstable bound states this needs to be improved
always valid as an estimate whenever there are noupon.
massive exchange interactions in the interaction ker-  Another alternative is to invent a formal series so-
nel. Indeed when there are such interactions the largestlution as done in WC model. In principle this method
length scale between the propagators and the interac-can be applied here as well but the tedium makes the
tions (or small mas$ scale) dominates in dictating physics non-transparent. Our analytic method of com-
the size of the system. From the simple minded con- puting the tightly bound spectrum (low lying tightly
siderations above we can conclude that massless partitbound states when the coupling is large) was applied
cles cannot be bound as it will necessarily have infinite to WC model and we reproduced the known conven-
size. We make an interesting observation about chiral tional results [13].
symmetric phase of quarks at zero temperature. In this  Fitting experimental data to this model has shown
phase the quark has vanishing threshold mass hencehat the threshold mass ford or s quarks is about the
from our considerations it cannot be bound. Chiral same because of the string tenswrbeing so large.
symmetric vacuum is automatically a non-confining Consequently it is easy to anticipate that there can be
vaccum. large flavour mixing. In our model this is next order in
1/N. Consequently we expect N corrections are not
necessarily small for light quarks.

6. Discussion There are several normalisation schemes [14] for
the BS wave function such as Cutkosky, charge,

We have discussed a complete relativistic descrip- energy normalisation conditions. One of the primary
tion of bound states and the BS equation is reduced to drawbacks here is that all known normalisations for
a set of simpler equations. The form of Eqgs. (16)—(25) relativistic bound states are not positive norms in the
is valid for a general chiral symmetric interaction ker- standard sense. Consequently they are not of much
nel. Many of our later algebraic simplifications is due utility. However it has been shown that all the known
to the absence of a mass scale in the interaction kernelnormalisations are equivalent [14].
however our method can handle even if there isamass We have not dealt with heavy quarks for they fall in
scale in the interaction kernel. a different class altogether. In this model string tension

We have concentrated mostly on tightly bound sys- decreases at larger energy scales. So the value of string
tems primarily because the string tensiois large in tension is indeed much smaller for heavy quarks and
o QCD. Consequently the tight binding approximation thus they fall into the loosely bound regime. That
is relevant. For a range of low quark masses the light- is the binding energy is much smaller than the rest
est meson is the pseudoscalar which extrapolates allmass or the threshold mass. This is precisely the
the way to the Goldstone mode. We verified the PCAC non-relativistic limit. If we perform the standard non-
result that the pion mas¥;, is related to the renor-  relativistic approximation to Egs. (16)—(25), we do get
malised quark mass as shown in Eq. (40). the standard Schrddinger picture [15] in momentum

On general grounds we find that there are very space along with spin—orbit interactions.
few stable mesons. This follows entirely from the fact 0 QCD model has many features of QCD as we
that threshold masses for light quarks are much explicitly emphasised in our papers [4,5]. Yet we have
smaller than the string tensian. The BS equations  shown that for renormalised quark mass (current mass)
can be studied to look for complex eigenvalues and m > 0.07+/c we disobey a well-known inequality of
thus the unstable mesons. We did find several complexthe meson spectrum which is understood theoretically
eigenvalues numerically to the set of Egs. (16)—(25). and valid experimentally, namely in any flavour sector
We are as yet unable to systematically analyse them.the pseudoscalar is the lightest meson. This follows
Primary reason being that the method of finding purely from the positivity properties of QCD in the
the spectrum is necessary but not sufficient. Another Euclidean formulation. Analogous positivity property
important necessary condition we can argue is that of is not valid in our model. But it is interesting to note
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