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The ubiquitination pathway is a highly dynamic and coordinated process that regulates degradation
as well as numerous processes of proteins within a cell. The p53 tumor suppressor and several fac-
tors in the pathway are regulated by ubiquitin as well as ubiquitin-like proteins. These modifica-
tions are critical for the function of p53 and control both the degradation of the protein as well
as localization and activity. Importantly, more recent studies have identified deubiquitination
enzymes that can specifically remove ubiquitin moieties from p53 or other factors in the pathway,

Just and the reversible nature of this process adds yet another layer of regulatory control of p53. This
review highlights the recent advances in our knowledge of ubiquitin and the p53 pathway.
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1. Introduction

The tumor suppressor p53 is a complex, multi-functional se-
quence specific transcription factor that has critical regulatory
functions in a cell. The seemingly endless discovery of additional
factors that have a regulatory effect on p53 underscores its signif-
icance in the control of normal cellular growth and function. While
initial in vitro and cell-based assays have provided a detailed
understanding of p53 function, more recent and complex in vivo
modeling has identified some interesting and unexpected mecha-
nisms of p53 control.

Post-translational modifications are key processes that control
how p53 protein functions. Acetylation, methylation, phosphoryla-
tion, neddylation, sumoylation, and ubiquitination all have impor-
tant downstream effects on how p53 is stabilized and activated as
a transcription factor. In addition, the spatial and temporal overlap
of these reactions can have a profound impact on the outcome of
cellular fate. Since p53 has important control of cell cycle arrest
and apoptosis in response to cellular stress, these modifications
are critical for the stability and transcriptional activity of p53 as
the protein activates downstream target genes that dictate the cel-
lular response.

Ubiquitination of p53 and the functions of the ubiquitin-prote-
osome pathway have a marked impact on p53 protein levels and
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turnover. p53 was first shown to be regulated by this pathway with
the discovery that the human papilloma virus (HPV) E6 protein
could induce degradation [1]. Since then, a greater understanding
of the importance of this process in controlling p53 activity has
uncovered several E3 ubiquitin ligases and other associated factors
that directly affect the p53 levels, sub-cellular localization, and
activity. In addition, it has been found that the process is reversible
by the activity of deubiquitination enzymes, and other ubiquitin-
like (UBL) proteins have also been shown to have an impact on
p53 control. Taken together, the process of ubiquitination has pro-
found effects on p53 activity, and the cell has a number of factors
that are orchestrated together to insure that p53 remains under
strict regulatory control. This review highlights our current under-
standing of p53 ubiquitination and summarizes recent findings of
p53 regulation by ubiquitin.

1.1. Regulation of p53 through ubiquitination

The ubiquitin pathway provides an efficient, structured, and
reversible mechanism for controlling a number of cellular pro-
cesses, including signaling, protein degradation, trafficking, DNA
repair, and apoptosis [2,3]. The process of ubiquitination is an
enzymatically orchestrated event that involves E1 activating en-
zymes, E2 conjugating enzymes, and E3 ubiquitin ligases [4]. To-
gether, these enzymes function in a cascading event to attach an
ubiquitin molecule, which is an evolutionarily conserved protein
that consists of 76 amino acids, to a lysine residue on a target
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substrate. Ubiquitin is linked to lysine residues of the target
substrate directly (monoubiquitination) or to another ubiquitin
protein (polyubiquitination) though a covalent isopeptide bond.
Monoubiquitination acts as an important signaling event for the
regulation of a number of proteins, whereas polyubiquitination
of at least four ubiquitins serves as a signal for degradation by
the 26S proteosome.

An important control mechanism for p53 regulation is through
ubiquitination. It has been shown that p53 ubiquitination is highly
dynamic and reversible, with monoubiquitination and polyubiqui-
tation playing important and distinct roles in the functions of p53.
The first indication that p53 was regulated by the ubiquitination
pathway was by the identification of the human papilloma virus
(HPV) E6-associated cellular protein EGAP [5]. The HPV E6 protein
commandeers E6GAP to reduce p53 levels as a mechanism for repli-
cating in the host cell. Shortly thereafter, Mdm2 was identified as a
cellular factor that ubiquitinates and degrades p53 in the absence
of exogenous factors [6-8]. A number of studies have shown that
Mdm?2 is the predominant and critical E3 ubiquitin ligase for p53
and mediates p53 ubiquitination through a RING domain. To-
gether, p53 and Mdm2 function in a negative feedback loop, with
p53 driving the transcription of mdm2 during times of normal
homeostasis and maintaining low levels of p53 protein. However,
upon DNA damage or other type of cellular stress event, p53 pro-
tein levels rise due to both a disruption of p53-mediated mdm?2
transcription and the post-translational inhibition of Mdm2 func-
tion. The direct importance of these interactions was highlighted
with the generation of mdm2 null mice, which exhibit embryonic
lethality at day E6.5. Interestingly, the lethality is completely res-
cued in a double knockout of mdm2 and p53 [9-12].

A number of mechanisms have been described that inhibit the
p53-Mdm?2 interaction during cellular stress, suggesting that this
interplay is critical for regulating the balance of p53 protein at
any given time in the cell. Phosphorylation of p53 at Ser15 and
Ser20 in response to DNA damage and other types of cellular stress
by ATM, ATR, DNA-PK, Chk1, and Chk2 are thought to abrogate the
Mdm2-p53 protein—protein interaction and thereby stabilize p53
[13]. Moreover, the acetylation of p53, which is a process that is
critically important for transcriptional activity, occurs on the same
C-terminal lysine residues as ubiquitination, and therefore this
enzymatic process can compete with and block ubiquitination to
induce p53 stabilization. Indirect mechanisms of p53 stabilization
exist as well. The tumor suppressor p14ARF can stabilize p53 by
binding to and preventing Mdm2 from physically interacting with

p53 [11,12]. Although p14ARF is known to be a nucleolar protein,
the Mdm?2 sequestration and subsequent p53 activation has been
shown to occur both inside and outside of the nucleolus [14,15].
It has also been shown that p14ARF can block Mdm2 in response
to aberrant oncogenes, which provides the cell with a response
mechanism for the activation of p53 to this type of cellular stress
[12].

Mdmz2 ubiquitinates p53 at six key lysine residues located at
the C-terminus of the protein, including K370, K372, K373, K381,
K382, and K386 (Fig. 1) [16,17]. Knock-in studies, where the lysines
are replaced with arginines (the so-called p53-6KR mutant) in vivo,
have shown that p53 expression levels are not dramatically al-
tered, suggesting that while these lysines are important for the
regulation and function of p53, they are not sufficient for degrada-
tion [18,19]. The in vivo half-life of the p53-7KR mutant, which is
the murine equivalent of the p53-6KR mammalian mutant, was
also shown to be similar to wild-type p53 [19]. These findings sug-
gested that alternative sites on p53 may be important for stability.
More recently, it was shown that p53 can also be ubiquitinated
in vitro within the DNA binding domain as well [20]. When this do-
main was removed, the overall ubiquitination and stability of p53
decreased, though these sites we also not sufficient for complete
p53 degradation.

Another structurally related protein to Mdm2, MdmX, adds a
layer of complexity to p53 regulation. Although MdmX has se-
quence homology to Mdm2 and possesses a RING domain, it does
not have E3 ligase activity for p53. Instead, MdmX was shown to
repress p53-mediated transcriptional activation [21]. Interestingly,
mdmx null mice are embryonic lethal, but can be rescued by cross-
ing with p53 null mice [22,23]. More recently, animal studies have
aimed to address the intricate functions of Mdm2 and MdmX on
p53. In one study, mutant knockout mice were generated that
lacked p53 together with either mdm2 or mdmx [24-27]. A temper-
ature sensitive p53 mutant was then reintroduced into the mice,
which allowed for a detailed in vivo analysis of p53 in the selective
absence of Mdm?2 or MdmX. Interestingly, a differential effect was
observed, where loss of mdm2 promoted p53-dependent activation
of apoptosis-related genes, while loss of MdmX promoted p53-
dependent activation of cell cycle arrest genes. This study provided
the first in vivo analysis on the specific effects of these proteins on
P53 activity, and suggests distinct functions for these two proteins.
MdmX and Mdm2 both bind to the promoters of p53-responsive
genes and form a 3 protein complex with p53 by interacting with
the transactivation domain [28-30]. This interaction has been

Mdm2, Pirh2 ,COP1, ARF-BP1, E4F1, Msl2
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Fig. 1. Overview of major ubiquitination, neddylation, and sumoylation sites of p53. The major sites are shown with their corresponding modifying enzymes. Ub,

Ubiquitination; Ne, Neddylation; Su, Sumoylation.
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shown to inhibit p53-mediated transcription of some p53 target
genes [30]. In addition, although both Mdm2 and MdmX have
important effects on p53 function, in vivo evidence suggests that
only Mdm2 has an effect on p53 protein levels [31,32]. Neverthe-
less, additional in vivo studies of MdmX in relation to Mdm2 and
p53 will help identify the true physiological mechanisms at play
in p53 regulation.

1.2. Mdm2-independent ubiquitination of p53

Although Mdm2 has been shown to be the predominant E3
ubiquitin ligase for p53, and mdm2 null mice exhibit embryonic
lethality, later studies have shown that p53 is still degraded
in vivo in mdm2 deficient mice [33]. Using a switchable endoge-
nous p53 model, mice were raised to adulthood possessing a p53
deficiency, crossed with mdm2 null mice, and then acutely restored
with p53 function, which allowed for an in vivo analysis of homeo-
static p53 stability in the absence of Mdm2. Remarkably, p53 was
still degraded in the absence of Mdmz2, suggesting the presence of
other mechanisms for p53 degradation. Indeed, a number of E3 li-
gases have been described for p53, including, Pirh2, COP1, ARF-
BP1, WWP1, E4F1, and Ubc13 (Fig. 2) [34]. Both Pirh2 and COP1
can ubiquitinate p53 independently of Mdm2, which leads to deg-
radation mediated by the 26S proteosome. Topors have been
shown to both ubiquitinate and sumoylate p53, though the physi-
ological effects of these modifications are unclear [35,36]. CARP1
and CARP2 ubiquitinate both unmodified p53 and phosphorylated
p53 at S20 in stressed cells [37]. Moreover, the reduction of CARP2
by siRNA increases the G1/S ratio, indicating an accumulation of
p53. ARF-BP1 was purified as an ARF associated factor from p53
null cells and associates with ARF in vivo [38,39]. Interestingly,
ARF-BP1 can directly ubiquitinate p53, and this effect is inhibited
by ARF. These findings suggest that ARF-BP1 is a critical regulator
of both p53-dependent and p53-indpendent tumor suppression
functions of ARF.

The type of ubiquitination occurring on a substrate can have
very different downstream consequences, with polyubiquitination
acting as a signal for degradation by the 26S proteosome and
monoubiquitination leading to several degradation-independent
processes, including endocytosis and transcriptional regulation
[40]. Mdm?2 has the ability to catalyze both mono- and poly-ubiq-
uitination of p53. Interestingly, monoubiquitination of p53 induces
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nuclear export in an Mdm2 dose-dependent manner [16,41].
Therefore, maintenance of Mdm2 levels may provide another
mechanism for controlling p53 activity, since during times of
non-stressed homeostasis the low levels of Mdm2 would induce
P53 monoubiquitination and drive the protein out of the nucleus
and away from transcriptional targets. During cellular stress, when
p53 levels are quickly up-regulated, the increased expression of
Mdm2 would provide a mechanism for polyubiquitinating and
degrading p53 to subsequently reduce levels after repair has oc-
curred and the protein is no longer needed. These interesting find-
ings will require further investigation; however, they do suggest an
added mechanism for regulating p53 function.

The movement of p53 into the cytoplasm allows for transcrip-
tion-independent activities, including apoptosis and autophagy
[42-44]. Once in the cytoplasm, p53 can interact with members
of the Bcl family, such as Bcl-XL and Bcl-2, and promote the oligo-
merization of proapoptotic factors Bak and Bax at the outer mito-
chondrial membrane. The formation of a pore in the membrane
allows for the release of cytochrome c and other apoptotic factors
into the cytoplasm [45-47]. CBP and p300 have been described as
cytoplasmic E4 ubiquitin ligases for p53, and are required for the
endogenous polyubiquitination of p53 [48,49]. Another protein,
synoviolin, a protein that is located in the endoplasmic reticulum
(ER), mediates ER-associated degradation (ERAD) of p53 by seques-
tering and polyubiquitinating the protein in the ER [50]. ERAD was
shown to be a mechanism for the transport of polyubiquitinated
p53 to the 26S proteosome. However, the specific roles of p53 with
the ER are as yet unclear. The chaperone-associated ubiquitin li-
gase CHIP is also able to polyubiquitinate p53 and induces degra-
dation. CHIP ubiquitin ligase functions are dependent on an
association with the molecular chaperones Hsc70 and Hsp90.

1.3. Ubiquitination and acetylation

Post-translational modifications of p53 are intricately complex
and often times occur at the same residues of p53. While the ubiq-
uitination of p53 is critical for maintaining appropriate protein lev-
els at all times and under all conditions, acetylation of p53 is an
equally important step for quickly stabilizing and activating the
protein. Acetylation of p53 occurs at a number of key residues
throughout the protein, but predominantly occurs at the C-termi-
nus. Within this region, it has been shown that acetylation at key

Mdm2 Synoviolin
Pirh2 CARP1
26S proteosome-
copP1 CARP2 el p53 mediated
degradation of p53
ARF-BP1  TOPORS Bl
CHIP p300/CBP
Ubc13
MSL2
WWP1 é p53 é Nuclear translocation
of p53
Mdm2
p53-mediated
transcriptional
E4F1 a 2R ) activation of cell
cycle arrest genes

Fig. 2. E3 ubiquitin ligases that target p53. E3 and E4 ubiquitin ligases have diverse effects on p53, including 26S proteosome-mediated degradation, nuclear export, and

transcriptional activation.
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C-terminal lysine residues can inhibit Mdm2-mediated ubiquitina-
tion [51]. Moreover, purified acetylated p53 cannot be ubiquitinat-
ed in vitro, and the level of ubiquitination has been shown to be
reduced after the induction of acetylation [52,53]. Acetylation of
eight specific lysine residues of p53 also blocks interaction with
Mdm2 [30]. Therefore, the stepwise process of quickly stabilizing
and activating p53 to a level that is sufficient to induce cell growth
arrest or apoptosis requires the interplay and balance between
ubiquitination inhibition and acetylation.

The histone acetyltransferase (HAT) CBP/p300, which, as men-
tioned above, possesses intrinsic E4 ligase function, is also a major
HAT for p53 and Mdm2. Whereas CBP/p300-mediated p53 acetyla-
tion is critical for activity as a transcription factor, the acetylation
of Mdm2 within the RING domain has been shown to prevent
interaction with p53 and promotes p53 stabilization [54]. Another
HAT that has activity on Lys320 of p53, PCAF, has also recently
been shown to have intrinsic ubiquitination function and can di-
rectly ubiquitinate Mdm2 [55]. Both HATs therefore have dual
mechanisms for inhibiting the p53-Mdm2 interaction and activat-
ing p53 transcriptional activity, showing that some factors in the
p53 pathway have multiple roles for the quick stabilization and
activation of p53.

1.4. Non-degradation effects of p53 ubiquitination

Although one of the predominant functions of the ubiquitin-
proteosome pathway is for the efficient and expeditious degrada-
tion and removal of proteins from the cell, it has become more
apparent in recent years that ubiquitin is also an important signal-
ing factor in several processes. These unique non-degradation
functions of ubiquitin have also been identified in the p53 path-
way, and several E3 ubiquitin ligases can induce proteosome-inde-
pendent ubiquitination of p53. Msl2 was identified as an E3
ubiquitin ligase that can induce polyubiquitination of p53 to pro-
mote nuclear export [56]. Although Msl2 has a RING domain, is
does not affect p53 protein levels or Mdm2-mediated ubiquitina-
tion. In addition, MslI2 ubiquitinates K351 and K357 of p53, which
are not sites of Mdm2 ubiquitination. Similar to Msl2, WWP1 can
also ubiquitinate p53 and induce nuclear export of a fraction of
the protein [57]. Interestingly, WWP1-mediated ubiquitination of
P53 seems to stabilize the protein and ubiquitination is not depen-
dent on Mdm?2. p53 also reduces WWP1 expression, suggesting an-
other intricate feedback loop. The E2-ubiquitin conjugating
enzyme Ubc13 induces K63-dependent ubiquitination of p53,
which reduces Mdm2-mediated p53 ubiquitination and promotes
cytoplasmic translocation. Ubc13 also increases p53 stability, but
it was shown to reduce p53 transcriptional activity and can in-
crease the pool of monomeric p53, thereby reducing the availabil-
ity of p53 monomers for tetramerization.

The transcription factor E4F1 was also recently shown to ubig-
uitinate p53, though it does not have an effect on p53 stability [58].
E4F1 is an atypical ubiquitin ligase because it does possess a com-
monly associated ubiquitin ligase domain (RING or HECT), though
the enzymatic activity was narrowed to amino acids 41-85, which
resemble the core enzymatic domain of the SUMO E3 ligase Ran-
BP2 [59,60]. E4F1-mediated ubiquitination of p53 increases the
fraction of protein associated with chromatin, and this association
specifically coincides with p53-mediated transcriptional activation
of genes involved with cell cycle arrest, but not apoptosis. These
findings are interesting, as the mechanisms the allow p53 to selec-
tively induce a cell cycle arrest or apoptosis response due to DNA
damage or cell stress has remained elusive. Interestingly, E4F1
ubiquitinates K320 of p53, which is also a PCAF acetylation residue,
and therefore these two enzymes compete for modification of the
same site. The effect of PCAF acetylation on p53 function remains
unclear, though it has been hypothesized that by blocking

PCAF-mediated acetylation of p53 at K320, E4F1 ubiquitination at
this position may promote a particular p53-mediated response.
Future studies of the consequences of these interactions may add
clarity to these findings and mechanisms.

1.5. p53 sumoylation and neddylation

Other ubiquitin-like (UBL) proteins can be covalently linked to
p53 through enzymatic processes similar to ubiquitination and
have an impact on the function of the protein (Table 1). Mdm2
has been shown to neddylate K370, K372, and K373, which inhibit
p53-mediated transcriptional activation [61]. Moreover, Fbxo11
seems to have a similar effect on p53 function by neddylating
K320 and K31 [62]. Interestingly, these sites coincide with Mdm2
ubiquitination sites, and since Mdm2 is capable of both ubiquiti-
nating and neddylating p53, it is as yet unclear what mechanism
allows for Mdm?2 to selectively induce one reaction over the other.
More recently, it has been shown that NUB1, a non-covalent inter-
acting protein of Nedd8, decreases p53 neddylation and stimulates
ubiquitination [63]. NUB1 promotes the cytoplasmic localization of
p53, suggesting the p53 neddylation may block nuclear export.

Sumoylation of p53 occurs predominantly at K386, and the ma-
jor cellular factors that mediate this reaction are members of the
PIAS family [64]. The function of sumoylated p53 is not clear, with
some studies showing the sumoylation promotes p53 transcrip-
tional activity and others showing that the process promotes cyto-
plasmic translocation [65,66]. Since the lysines of p53 that have
been identified for sumoylation and neddylation are also ubiquiti-
nated, and in some cases acetylated, the detailed mechanisms and
in vivo effects of these modification remains to be elucidated.

1.6. Deubiquitination

Deubiquitination enzymes (DUBs) have important and diverse
functions in a number of cellular processes [2,67,68]. The ability
to reverse ubiquitination is particularly important when ubiquitin
acts as a signal for non-proteosomal processes [69]. DUBs have
been shown to have activity on several factors in the p53-Mdm?2
pathway (Table 1). The first DUB shown to function in this pathway
was USP7, also called Herpes-Specific Ubiquitin Specific Protease
(HAUSP), which was found to directly deubiquitinate and stabilize
p53 [51]. Interestingly, it was also found that a somatic knockout of
hausp in HCT116 cells caused a dramatic increase in p53 protein
levels, suggesting that the effects of HAUSP on p53 were more
complex than a single downstream function [70]. Indeed, HAUSP
can also deubiquitinate Mdm2, which has auto-ubiquitination
activity and is inherently unstable [71]. The somatic loss of HAUSP
destabilizes and reduces the levels of Mdm2, which results in the

Table 1
Deubiquitinases and ubiquitin-like proteins that affect the p53 pathway.
Deubiquitinase Target Effect
p53 Stabilization
Mdm?2 Stabilization
HAUSP MdmX Stabilization
FOXO4 Inhibits transcriptional activity
USpP2a Mdm2 Stabilization
USP10 p53 Stabilization
PIAS 053 Promotes p53 tran_scrlptlonal §Ct|V|ty
and cytoplasmic translocation
Topors p53 Increases p53 levels
Mdm2 p53 Inhibits p53 transcriptional activation
NUB1 Nedd8 Promotes p53 cytoplasmic translocation
FBXO11 p53 Inhibits p53 transcriptional activity
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indirect stabilization of Mdm2. HAUSP can also deubiquitinate and
stabilize MdmX and has a role in DNA-damaged induced degrada-
tion of MdmX [72]. Although the effects of HAUSP on p53, Mdmz2,
and MdmX presumably occurs in the nucleus, HAUSP localizes to
both the nucleus and cytoplasm, and mitochondrial HAUSP has
been shown to deubiquitinate a cytoplasmic pool of monoubiquiti-
nated p53 upon arriving at the mitochondria through a stress-in-
duced p53-HAUSP complex, which thereby creates a sub-fraction
of non-ubiquitinated p53 that can induce transcription-indepen-
dent apoptosis [43]. These findings suggest an interesting mecha-
nism that allows for monoubiquitinated p53, which is exported
into the cytoplasm, to be functionally active in mitochondria
though deubiquitination by HAUSP.

The effects of HAUSP on p53, Mdmz2, and MdmX are complex
and clearly do not occur as isolated interactions. In addition,
HAUSP has been shown to have other important effects on cellular
function, including the negative regulation of FOX04, and has been
shown to exhibit some tumor suppression characteristics in a hu-
man colon carcinoma xenogaft model [73,74]. Inactivation of hausp
in vivo causes early embryonic lethality between E6.5 and E7.5 due
to a severe reduction of cell proliferation from both p53-dependent
and -independent mechanisms [75]. Interestingly, the cross be-
tween hausp and p53 null mice did not rescue this defect, suggest-
ing a complex network of HAUSP-mediated effects that are both
p53-dependent and p53-indendent. It is also possible that
HAUSP-mediated p53 effects could be tissue specific, and more re-
cently it was shown that neural cell-specific inactivation of HAUSP
in mice caused p53-dependent hypoplasia and brain development
deficiencies [76]. Together, these findings suggest a complex role of
HAUSP in the deubiquitination of p53, Mdm2, and MdmX, and
additional in vivo studies may further refine the roles of this
important DUB in the context of the p53 pathway.

Other DUBs also impact the functions of p53 and other members
of this pathway. USP2a was shown to associate with and specifically
deubiquitinate Mdmz2, but not p53, and promote Mdm2-dependent
p53 degradation [77]. The endogenous inhibition of USP2a also in-
duced the stabilization and activation of p53, suggesting a clear role
in the regulation of Mdm2. More recently, USP10, a cytoplasmic
DUB, was found to directly deubiquitinate p53 [78]. Upon induction
by DNA damage, a fraction of USP10 is phosphorylated by ATM and
translocates to the nucleus where it deubiquitinates p53. This ac-
tion directly opposed Mdm2-mediated nuclear export of p53,
which provides yet another mechanism for the nuclear accumula-
tion of p53 and subsequent transcriptional activation.

1.7. The p53 pathway - a therapeutic target?

Given the global cellular impact of p53 in cellular regulation and
the occurrence of mutations in over 50% of all human tumors, p53 is
a logical cellular factor to consider for therapeutic intervention.
However, the fact that p53 is a potent tumor suppressor and is gen-
erally deleted or mutated in a vast majority of tumors, one has to
ask, is p53 a druggable target [79]? In tumors that possess an inac-
tive form of p53, the reintroduction of a wild-type copy of p53
would potentially render the tumor susceptible to the introduced
gene. Animal studies have shown that the reactivation of p53 in
p53 null tumors induces tumor regression [80-82]. Moreover, gene
therapy using p53 expressed in an adenovirus has shown some
promise in clinical trials [83]. As an alternative, gene therapy has
been used to re-introduce an oncolytic adenovirus containing
p53, which selectively replicates in tumor cells that are p53
negative and induces cell death [84]. The therapy, ONYX-015, was
recently assessed in patients with advanced carcinoma or sarcomas
and showed both efficacy and safety [85,86]. Gene therapy is cur-
rently being tested for several conditions, and the reintroduction

of p53 into p53 negative tumors represents one possible therapeu-
tic intervention that will require additional trial analysis.

For tumors that retain wild-type p53, which represent approx-
imately 25% of human cancers, an alternative therapeutic strategy
is to directly target upstream regulators of p53 as an indirect meth-
od for activating p53. One such agent, called reactivation of p53
and induction of tumor cell apoptosis (RITA), is a small molecule
that induces p53-mediated apoptosis in several cancer lines by
blocking the p53-Mdm?2 interaction [87]. Another class of small
molecules, called Nutlins, are potent inhibitors of Mdm2 and in-
duce non-genotoxic activation of p53 by binding Mdm2 in the
p53 binding pocket in nanomolar range [88]. Nutlins readily pene-
trate several tumor cell types and potently activate p53, and Nut-
lin-3a was shown to be orally bioavailable in human tumor
xenografts. Two other compounds, HIL98 and MI-219, inhibit the
E3 ubiquitin ligase activity or p53-Mdm2 interaction, respectively
[89,90]. In particular, MI-219 was shown to have 10 000-fold high-
er selectivity for Mdm2 than MdmX.

In addition to targeting Mdm2, inhibitors for other p53 regula-
tors are also being developed. Tenovins are small molecule inhibi-
tors of SIRT1, which is an NAD-dependent histone deacetylase for
p53 [91]. The inhibition of p53 acetylation prevents transcription,
and therefore by blocking SIRT1 activity, Tenovins have been
shown to potently activate p53 transcription at single-digit micro-
molar concentrations [91]. Other SIRT1 inhibitors, such as sirtonol,
cambinol, and EX-527 have also shown promise as p53 activators
[92-94]. More recently, it has been shown that a small molecule
inhibitor of HAUSP, HBX41108, stabilizes p53 and induces p53-
dependent apoptosis in cancer cell lines that retain wild-type
p53 [95]. Importantly, HBX41108 was shown to inhibit cancer cell
growth without inducing genotoxic stress.

2. Conclusions

The reversible process of ubiquitination provides a critical reg-
ulatory control in the p53 pathway. Although the maintenance of
p53 at low protein levels by polyubiquitination and subsequent
degradation by the 26S proteosome is imperative for normal cellu-
lar growth and homeostasis, the monoubiquitination of p53 has
more recently been shown to have important signaling effects of
p53 as well. The transcriptional activity of nuclear p53 is required
for efficient and effective activation of downstream signaling
events in response to cellular stress, but cytoplasmic p53 has also
been shown to have important transcription-independent func-
tions, and ubiquitin is a key factor for mediating these effects. In
addition, the number of E3 ligases that have specificity for p53
and the redundancy of their functions indicate the importance of
this process for maintaining p53 at low levels when not needed.
Still, a number of unanswered questions remain, including how
the various E3 ligases network for effective p53 ubiquitination
and how DUBs are regulated. Future studies, and in particular cre-
ative in vivo studies, will help elucidate the complexity of p53
ubiquitination.
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