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Statisticians have begun to realize that certain deliberately induced biases 
can dramatically improve estimation properties when there are several parameters 
to be estimated. This represents a radical departure from the tradition of un- 
biased estimation which has dominated statistical thinking since the work of 
Gauss. We briefly describe the new methods and give three examples of their 
practical application. 

1. INTRODUCTION 

Two young statisticians were interviewing for the same job. 
“Suppose,” said the would-be employer, “that you observed n inde- 
pendent normally distributed random variables with mean 0 and variance 
1, say 

xi ‘2 J-(8, 1) i = 1, 2 )...) 72, 

and on the basis of x G (xi, x2 ,..., XJ I asked you to estimate the 
unknown parameter 0. What would you do ?” 

The first statistician, a quick fellow, answered “I would use the 
unbiased estimation rule 

It has minimum variance among all unbiased estimators (those satisfying 
&8(x) = 19 for all 8, “Eo” indicating expectation when ~9 is the param- 
eter value), and likewise among all translation invariant estimators 
(6(x + (6 c, G-7 c)) = 6(x) + c). M oreover it is minimax (minimizes 
the maximum expected squared error), admissable (no competing 
estimation rule has smaller expected squared error for all values of O), 
and it is the maximum likelihood estimator (choosing 0 = K maximizes, 
among all values of 0, the probability of obtaining the value of x actually 
observed).” 
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Naturally the employer was impressed, but a sense of fairness com- 
pelled him to give the second statistician his chance. “Well, sir,” he 
responded after an embarrassing silence, “I think I might try 

P(x) SE x - d(x) 

where J--x) = ----d(x) and for x > 0, 

’ d(x) = 21/n min(& x, @(-l/n x)), 

where of course 

Q(t) z -& 4, e--W@ ds s 
represents the normal distribution function as usual.” 

After the laughter had died down the employer asked him how he 
could justify such a bizarre recommendation. The second statistician 
admitted that S1 had none of the nice properties of so. It wasn’t unbiased, 
wasn’t invariant, wasn’t minimax, and wasn’t even admissable. “On 
the other hand my guess will be closer than my competitor’s to the 
true value of 8 more than half of the time, no matter what 0 is!” After 
an easy computation, which the reader may want to do for himself, 
it turned out that indeed 

Prob,{l al(x) - 0 / < [ SO(x) - 0 I} > 4 

for all 8. He got the job of course. As the employer put it, “Why should 
I settle for second best ?” 

Now it is possible to give a good argument that the first statistician 
deserved the job, and that So is really a better estimator than 6r. Never- 
theless our shaggy statistician story has a serious point: in more com- 
plicated situations involving the estimation of several parameters at 
the same time, statisticians have begun to realize that biased estimation 
rules have definite advantages over the usual unbiased estimators. This 
represents a radical departure from the tradition of unbiased estimation 
which has dominated statistical thinking since Gauss’ development of 
the least squares method. A brief description of the new theory is 
given in Section 2 followed in Section 3 by examples of its application 
to three data analysis problems. 

My purpose in writing this article is to whet the interest of non- 
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statisticians in the use of these new estimators. An equivalent of the 
Surgeon-General’s warning may be in order: these methods are not 
perfectly understood yet, and are still the subject of heated controversy 
among statisticians (see the discussion following [7]). Most of the 
material presented here is abstracted from a series of articles by Carl 
Morris and myself [3-81. Th e unsatisfied reader may wish to read [6] 
for more theoretical background and [8] f or a fuller description of data 
analysis procedures. 

2. THE JAMES-STEIN ESTIMATOR 

Suppose we wish to estimate several parameters Or , Oz ,..., 0, , and 
for each one we observe n independent random variables, 

(2-l) 

Here u2 is the common variance of the xij , which for convenience of 
presentation we assume known although this isn’t necessary for the 
theory which follows. A sufficient statistic (one which contains all the 
information) for 19, is 

the more exact statement being that the vector y = ( yr , y2 ,..., yk) is 
sufficient for the parameter vector 8 = (0,) 8, ,..., 0,). The yi are 
independently normally distributed with mean 0, and variance D = G/n, 

yi % hf-(ei , D) i = 1, 2 )...) k. (2.3) 

From the vector y we wish to infer the value of 8. It is customary to 
do so by means of an estimation rule 

S(Y) = @l(Y), s,(Y)>-, %(YN> 

&(y) being the estimator of 8, . 
Model (2.3) is the simplest case of Gauss’ “linear model” 

y==eM+~ (2.4) 
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where y is a 1 x r vector of observed variables, 8 a 1 x K vector of 
unknown parameters, and M a known k x r “structure matrix” which 
we assume to be of rank k with R < Y to avoid some nasty details. 
(For (2.3), r = K and M = I, the k x K identity matrix.) The noise 
vector E = (or , Ed ,..., c,) is assumed to have independent normal 
components with mean 0 and common variance, that being D in (2.3). 

Gauss suggested the “least squares estimator” for this situation, 

So(y) = yMT(MMT)-l, 

which is also “maximum likelihood” and “minimum variance unbiased” 
for 8. (Among unbiased estimators, E&y) = 8 for all 8, So has minimum 
variance component by component, and also for any linear combination 
of the components.) 

The linear model is used extensively in all the sciences, So usually 
being the estimator of choice. It turns out that (2.4) can be reduced to 
(2.3) by suitable linear transformations, so that the simpler structure 
(2.3) actually h as all the statistical content of the full linear model. 
The least squares estimator So is simply 

*O(Y) = Y (2.5) 

in this case. This says the obvious: yi is the best unbiased estimator 
of 0, in the model (2.3). 

In 19601 James and Stein [9] suggested another estimator for 8, 

V(y) E [l - @ -s2)D] y, (2.6) 

where 

s s [I y  112 G 5 yi2. (2.7) 
i=l 

(Here and henceforth we a-ssume k > 3.) At first sight S1 appears ridiculous 
since the estimate of Bi , 

6: = [ 1 - @ -,""] yi , 

depends not only on yi but on the seemingly irrelevant values of yj , 
j # i. Ah, but beware! 

1 Stein suggested a similar estimator in his 1955 paper [ll]. 
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Suppose one measures the performance of an estimator 5 by its 
expected sum of squared error risk, 

R(8, S) = E&3, S(y)) = Elj t (S,(y) - O,)Z 
i=l 

EE E, 11 s - 8 112. (2.8) 

(In the usual parlance R(0, S) is the risk function of S under the loss 
function L(0, S) = 11 S - 8 II”.) For So = y we have from (2.3) that 

qe, SO) = kD 

for all 8. We know that So minimizes R(o, S) among all unbiased 
estimators 8. However James and Stein showed that 

R(e, V) < kD 

for all 8, so that in terms of total squared error risk S1 is uniformly 
preferable to So! 

The advantage enjoyed by S1 is by no means trivial. Figure 1 compares 

1.0 -_-__--_-_- -____-__-_--- --- 80 

~~;;~ 

04’ ‘2 
3+T4 5 6 7 

FIG. 1. Risk of the James-Stein rule S1 compared to that of the unbiased estimator b”, 
for K = 10. 

R(e, S1) and R(e, SO), for K = 10, as a function of (1 8 l12/KD. We see 
that the most favorable case is 0 = 0 for which R(e, Sl)/R(e, So) = 2/10. 
(For dimension k, R(0, Sl)/R(O, So) = 2/K.) 

Why haven’t statisticians and users of statistics rushed to embrace 
this considerable improvement over the method of least squares ? (They 
haven’t-it’s barely been used at all.) Several reasons can be given. 

(i) Blind stupid prejudice. Unbiased estimators have been used 
on literally millions of real problems, with generally satisfactory results. 
The new estimators haven’t. Their theoretical superiority has yet to be 
tested in the rigors of wide-spread application. Prejudice of this sort 
isn’t really blind or stupid, just conservative. 
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(ii) Counter-intuition. We would expect that changing the 
origin and scale of our measurements would change any reasonable 
estimator in the obvious way, 

S(by + (c, c, c,..., c)) = bS(Y) + (c, c,..., c) 

for any numbers b and c. S1 does not have this invariance property. 
As mentioned before S1 is also statistically counter-intuitive in that 
it uses data other than yi to estimate 0, . If the different Bi refer to 
obviously disjoint problems (e.g., 8, is the speed of light, 8, is the 
price of tea in China, 0, is the efficacy of new treatment for psoriasis, 
etc.) combining the data can produce a definitely uncomfortable feeling 
in the statistician. 

(iii) Bias. The very name “unbiased” suggests the appeal of 
this concept to notions of scientific objectivity. All values of the parameter 
vector 9 are treated with an equal hand by So. Not so with S1, which 
biases estimators toward the origin, the more so the closer y itself is 
to the origin. As a matter of fact (2.6) shows that for 5’ < (k - 2), 
G(y) is actually pulled past the origin in the direction opposite y. 
It can be shown that if we legislate out this behaviour by refusing 
to go past the origin, that is we use the “plus-rule” estimator 

P+(y) E?E [l - @ ,““1+ Y, 

where [XI+ = max(O, X) as usual, then R(0, &l-t) < R(0, V) for all 8, 
giving a reduction in risk for all 0. (The plus-rule and its variations 
are actually the proposed competitors to So in Section 3, but of course 
unless S < k - 2 you can’t tell the difference between S1+ and Sl.) 

There is no need to give 0 the preferred position in the definition 
of V or V+. For any vector P = (pi, pa ,..., Pi) define 

a:+ = pi + [ 1 - @ -s2)D]+ ( yi - &, 2. = 1) 2 )...) K, (2. IO) 

where now 

s = f (Yi - PiY = II Y - P l12. 
i=l 

This rule also uniformly dominates 6O no matter what the choice of P. 
By choosing TV in different ways we can make 81+(y) take on any value 
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we want within a sphere of radius (K - 2)lj2 centered at y. Even assuming 
we play fair and choose p before observing y we are still biasing our 
results toward p*, a value of 8 that may have vested interest for the 
statistician. 

(iv) Sum of squared-error loss. What if we change the loss 
function from L(9, 5) = JI 6 - 6 jJ2 to, say, L(0, 6) = J& 1 Si - ei J. 
Is Sr still preferable to SO ? The answer is probably yes, though the 
mathematics speak less clearly than for I[ 0 - S /12. Roughly speaking, 
present indications are that for any “ensemble” loss function, that is 
one that sums errors over all the coordinates, s1 or some variation 
of it will dominate So. Even the assumption of normal distributions 
doesn’t seem to be very important, see [2], [6]. 

Another example of an ensemble loss function is the multi-parameter 
analogue of that employed by the statistician who got the job in Section 1. 
It is possible to show that Prob&I 6’ - 0 /I < 11 Lo - 8 II} is greater 
than 4 for all values of 8. An explicit formula, which won’t be derived 
here, is 

Probe{11 S1 - 8 1) < j/ 6O - 0 II} = Prob /xr2 (g) < g + ‘91, (2.11) 

where xk2(C: oi2) is the distribution of C: wi2, wi being independent 
normal random variables with mean ui and variance 1. For k reasonably 
large (say 28) and 11 0 l12/kD reasonably small (say <3), (2.11) gives 
quite high probabilities of 11 6l - 0 1) being less than Ij So - e II, on the 
order of 90%. 

It is actually the “sum” in “sum of squared errors” that is the crucial 
assumption. If we really aren’t interested in 8,) 0, ,..., 0,) just 0, , 
then i&(e, 5) = (6, - 0,)a is a more reasonable loss function than 
II 6 - 8 /12. It is not true that &,(Sll - Q2 < E&jr0 - Q2 for all 8. 
As a matter of fact E&&l - Q2/Ee(8ro - 8J2 can be as large as about 
2/K for certain configurations of e1 , 8, ,..., 8, , (namely e1 = z/K, 
e2 = 0, = 1-e = 0, = 0). 

There are the beginnings of a paradox here: we expect / i&l - 0, 1 
to be smaller than 1 6,O - 0, I for a majority of the coordinates Bi . 
(For example if 1) a /12/kD is near 1 and no one of the ei is enormously 
large then for large K it is possible to show that sir will be closer for 
about 65 o/o of the coordinates.) On the other hand for any one coordinate 
we can’t guarantee we are doing better, even in expectation, and we 
may do considerably worse. 
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Morris and I have confronted those criticisms, at least the last 3, 
in our long series of papers. Some of our answers will be clear from 
the examples of Section 3. The truth is that V is less automatic than 
So, does involve more judgmental factors in its use, and can lead to 
greater disasters if misused. Nevertheless, as the examples show, 
not using 51 or some close cousin can make one a very inefficient 
statistician, a disaster in its own right. 

3. THREE EXAMPLES OF BIASED ESTIMATION IN PRACTICE 

(i) 18 Baseball Players. Table I, column 1, shows the batting 
averages of 18 major league players after their first 45 times at bat in 

TABLE I 

1970 Batting Avergages for 18 Major League Players 

Unbiased Parameter At bats, 
estimate value James-Stein est. remainder 

i sio = yi 6 Si’ of 1970 

1 0.400 0.346 0.293 (0.334) 367 
2 0.378 0.298 0.289 (0.312) 426 
3 0.356 0.276 0.284 (0.290) 521 
4 0.333 0.221 0.279 276 
5 0.311 0.273 0.275 418 
6 0.311 0.270 0.275 467 
7 0.289 0.263 0.270 586 
8 0.267 0.210 0.265 138 
9 0.244 0.269 0.261 510 

10 0.244 0.230 0.261 200 
11 0.222 0.264 0.256 277 
12 0.222 0.256 0.256 270 
13 0.222 0.304 0.256 434 
14 0.222 0.264 0.256 538 
15 0.222 0.226 0.256 186 
16 0.200 0.285 0.251 558 
17 0.178 0.319 0.247 (0.243) 405 
18 0.156 0.200 0.242 (0.221) 70 

Player Batting average Batting average 3 + [l - (k - 3)D/S](jii - 9) Average 
number after 45 at bats remainder of = 0.265 + 0.212(yi - fi remainder 

3 = 0.265 season at bats 
= 369.3 

Q Limited translation estimate. All other values agree with &‘. 
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the 1970 season. These can be considered as unbiased estimates yi 
of e,, the true probability of Player i getting a hit. Column 2 gives 
a much better estimate of 19~) the batting average for Player i during 
the remainder of the season, based on an average of about 370 more 
at bats. We consider these to be the acutal Si, though a more careful 
analysis would include the sampling error in these numbers. 

We now apply the James-Stein estimator in form (2.10), choosing 
all the pi equal to p 3 Ct yi/18. Letting the data choose the pi in this 
way effectively removes one dimension (“one degree of freedom” in 
statistical jargon) from the problem, leading to the estimator 

Notice that the lost dimension has changed k - 2 to k - 3. For this 
problem II is unknown (actually depending on 19,) but from the properties 
of the binomial distribution we can estimate it by 

D = y(l -r) = 0 oLj332. 
45 * 

The resulting estimation rule, ai1 = 0.265 + 0.212(y, - y), is given 
in column 3. The losses are 

F @i” - Q2/D = 17.68, 2 (S,l - fQ2/D = 5.05 (3.2) 
1 1 

so Sil outperforms Sio by a factor of 3.50. 
It is shown in [4] that if we follow the estimation rule Sil as closely 

as possible subject to the constraint that no estimated value be more than 
one standard deviation D away from the unbiased estimate Sio, then (a) 
we still get most of the sum of squared errors risk reduction associated 
with Sil; and (b) the maximum possible risk for individual components 
is reduced substantially. This “limited translation rule,” an attempt 
to have our cake and eat it too vis-a-vis objection (iv) of Section 2, 
is also given in Table I. Notice that it does appear to protect Player 1 
(Roberto Clemente!) from over shrinking toward the common mean. 

A more careful treatment of this data is given in [8], but it is reassuring 
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to see S1 working as predicted in a situation where no attempt has 
made to exactly satisfy the model (2.1). 

(ii) Ten Reaction Time Experiments.2 Each of ten subjects was 
asked to perform a certain task under seven different conditions. Let 
xii indicate the (natural) log reaction time of subject i under conditionj, 
i = 1, 2,..., 10, j = 1, 2 ,..., 7. The two way analysis of variance model 
(“ANOVA”) 

(3.3) 

was used to analyze the data. Here p is the overall mean, cq the main 
effect for Subject i, & the main effect for Condition j, and l ii the random 
noise, assumed to be independent normal with mean 0 and variance u2, 

Eij iz!! N-(0, 9) i = 1, 2 ,..., 10, j = 1, 2 ,..., 7. (3.4) 

For example a value of 01~ = 0.12 means that Subject 1 would average 
0.12 greater on the log scale than all 10 subjects together, in the absence 
of the noise from the qj-that is he would be about 12% slower than 
the group average. In the discussion below we are only interested in 
estimating the patient main effects oli from the data xii . 

An unbiased estimate of 01~ is 

(3.5) 

for which a simple calculation gives 

Yi - N(% 3 O>, D = (9/70) u2. (3.6) 

The yi are not independent since they, like the 01~ , must sum to zero. 
The applicable version of the James-Stein estimator is 

6; = [l - Ck Q3jD] yi ) k = 10. (3.7) 
1 

This is really the same rule as (3.1) except here we are not interested 
in putting the overall mean back into the estimates. 

2 I am grateful to Dr. R. Angel of the Stanford Medical School for allowing me to 
abstract this data from a larger experiment he is conducting. 
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c?, hence D, is unknown to us, but can be estimated in the usual 
way from model (3.3). This gives an unbiased estimate CP independent 
of yi , and we can take fj = (9/70)S2. (For those familiar with ANOVA, 
52 is biased on a chi-square variable with 58 degrees of freedom. Actually 
it can be shown that a slightly biased estimator for D is preferable, 
but we shall ignore this small improvement.) 

This whole experiment was repeated 10 times, yielding a total of 
700 observations-10 Subjects, 7 conditions, 10 experiments. We can 
use these repetitions as a check on how a given estimator performed in 
any given experiment. Each column of Table 2 refers to an experiment 
analyzed separately from the others. The upper number in each box 
is Sio = yi , the unbiased estimate of oli for that experiment. For 
example experiment 1 has ya = -.16, indicating that Subject 1 reacted 
about 16 o/o faster than the average of the 10 subjects for that experiment. 
The lower number in each box is &i as given in (3.7), with B sub- 
stituted for D. fi is given at the bottom of each column, along with 
the shrinkage factor [I - (K - 3)D/S] in (3.7). 

For each i we can average the values of ai over the 10 experiments 
to obtain a much more accurate unbiased estimate of cyi . We take 
these to be the true ai values even though they still have some sampling 
variability in them. They are listed as the top numbers in the “com- 
bined” column. The last column of Table 2 compares Sio with 6,l 
over the 10 experiments. If (62,) ai,) represent the two estimates for 01~ 
in experiment e, e = 1, 2 ,..., 10. Then the two numbers given are 

5 (SyO - cyi)’ and F (S:s - oli)‘. 
e=1 e=l 

(3.8) 

The first of these is greater than the second for eight out of the ten 
Subjects. Overall 

10 10 10 10 

iT, ,c, (SE? - ad2 = 1.025, & ,2, (% - ad2 = o-759 (3.9) 

indicating that 6,l was about 25% more accurate than Sio over all 10 
experiments. 

Notice that the two Subjects who do worse under Sil then ai are the 
slowest (Subject 6) at the fastest (Subject 8, tied with Subject 3). This 
underscores the point that 6$ can have high risk on the more unusual 
components 8, . The limited translation modification mentioned pre- 
viously can be used effectively here. 



TA
BL

E 
II 

Te
n 

Re
ac

tio
n-

Ti
m

e 
Ex

pe
rim

en
ts.

 
Up

pe
r 

Nu
m

be
r 

is
 

Un
bi

as
ed

 
Es

tim
at

e-
 

Lo
we

r 
Nu

m
be

r 
is

 
Ja

m
es

-S
te

in
 

Es
tim

at
e 

on
 

th
at

 
Co

lu
m

n’
s 

Da
ta

 

1 
2 

3 

ce
 

(8
6 

- 
4 

Ex
pe

rim
en

t 
+ 

---
’ 

4 
5 

6 
7 

8 
9 

10
 

Co
m

bin
ed

 
C,

 
(a

i, 
- 

~~
1%

 

0.
05

45
 

ii&
 

E R fE
 

-0
.0

0 

-0
.0

0 

-0
.0

3 

-0
.0

1 

0.
06

 
-0

.0
8 

0 
-0

.0
5 

- 
0.

04
 

-0
.0

2 

0.
08

 
0.

24
 

0.
17

 
0.

14
 

0.
03

 
0 

0.
10

 
0.

08
 

-0
.1

6 

-0
.0

6 

0.
07

 
-0

.3
2 

0 
-0

.1
8 

-0
.3

0 

-0
.1

8 

-0
.0

4 

-0
.0

1 0.
08

 

0.
03

 

0.
02

 
0.

02
 

0.
04

 
-0

.0
5 

-0
.0

5 
-0

.1
6 

-0
.0

2 
0.

13
 

-0
.1

2 
-0

.0
3 

0 
0.

01
 

0.
02

 
-0

.0
3 

-0
.0

4 
-0

.1
1 

-0
.0

1 
0.

09
 

-0
.0

4 
- 

0.
03

 

0.
01

 
0.

03
 

0 
0.

02
 

-0
.0

0 

-0
.0

0 

-0
.0

5 

-0
.0

3 

0.
15

 
0.

05
 

0.
03

 
-0

.1
0 

0.
13

 
0.

04
 

0.
01

 
-0

.0
7 

-0
.0

6 

-0
.0

2 
1 2 

5 b’
 2 

3 4 5 

0.
37

 
0.

20
 

0.
11

 
0.

26
 

-0
.0

7 
0.

14
 

0.
17

04
 

4 

0.
32

 
0.

14
 

0.
04

 
0.

18
 

-0
.0

2 
0.

13
 

ZiG
 

5 

-0
.0

6 

-0
.0

4 

-0
.2

8 
-0

.1
8 

-0
.1

9 
-0

.2
5 

-0
.0

8 

-0
.1

9 
-0

.1
5 

-0
.1

3 
-0

.1
0 

-0
.0

6 

-0
.0

9 

- 
0.

03
 

-0
.1

8 

-0
.1

7 

0.
13

00
 

iG
!&

 

0.
06

15
 

iii&
 

0.
06

 
-0

.2
2 

-0
.0

0 
-0

.2
3 

0.
05

 
-0

.1
5 

-0
.0

0 
-0

.1
6 

-0
.1

0 

-0
.0

3 

-0
.0

2 

-0
.0

2 

0.
13

07
 

KG
& 

0.
14

 

0.
10

 



6 7 8 

tj 5 3 
9 10
 

0.
25

 
0.

15
 

0.
17

 
0.

35
 

0.
21

 
0.

24
 

0.
29

 
0.

02
 

0.
28

 
0.

22
 

0.
22

 
0.

07
18

 

0.
09

 
0 

0.
10

 
0.

21
 

0.
14

 
0.

21
 

0.
20

 
0.

01
 

0.
19

 
0.

07
 

0.
20

 
0.

15
42

 

0.
09

 
-0

.1
0 

-0
.0

6 
0.

09
 

0.
30

 
0.

09
 

0.
09

 
0.

11
 

0.
07

 
0.

29
 

0.
10

 
0.

14
31

 

0.
02

 
0 

-0
.0

3 
0.

05
 

0.
20

 
0.

08
 

0.
06

 
0.

04
 

0.
05

 
0.

09
 

0.
09

 
iG

& 

-0
.1

3 
-0

.1
4 

-0
.1

6 
-0

.2
3 

-0
.2

3 
-0

.3
4 

-0
.1

8 
-0

.0
8 

-0
.1

5 
-0

.1
0 

-0
.0

5 
0 

-0
.0

9 
-0

.1
4 

-0
.1

6 
-0

.2
9 

-0
.1

3 
-0

.0
3 

-0
.1

0 
-0

.0
3 

-0
.0

9 
-0

.1
3 

0.
17

 
-0

.0
3 

0.
04

 
-0

.2
0 

0.
03

 
-0

.0
8 

-0
.1

7 
0.

05
 

-0
.0

2 
0 

0.
10

 
-0

.0
2 

0.
03

 
-0

.1
7 

0.
02

 
-0

.0
3 

-0
.1

2 
0.

02
 

- 
0.

04
 

-0
.0

1 

-0
.1

6 0.
00

 

0.
07

 
-0

.0
2 

-0
.0

3 
-0

.1
4 

0.
09

 
0.

17
 

-0
.0

0 
-0

.0
2 

0.
04

 
-0

.0
1 

-0
.0

2 
-0

.1
2 

0.
06

 
0.

07
 

-0
.0

0 
-0

.0
1 

1 

$,
 

I.:
:’ 

0.
02

0 
0.

01
2 

0.
01

4 
0.

01
1 

0.
00

7 
0.

01
0 

0.
01

0 
0.

01
1 

0.
01

6 

[l 
-0

.0
2 

0.
57

 
0.

60
 

0.
68

 
0.

86
 

0.
70

 
0.

40
 

0.
69

 
0.

31
 

F 
Cl

.6
4 

1.
25

 
0.

82
 

1.
93

 
2.

09
O 

2.
64

” 
6.

01
” 

2.
74

b 
1.

38
 

2.
66

” 
1.

21
 

-0
.1

8 
0.

05
24

 
E s 

-0
.1

7 
iiz

 
fi 

-0
.0

4 
0.

11
83

 
a 

GG
 

E 

-0
.0

4 
s 

-0
.0

1 
0.

08
98

 

i5
2&

 
2.

 
-0

.0
1 

E 

1.
02

5 
2 

0.
00

12
2 

/A
---

 
3 

0.
75

9 

0.
92

9 

3.
4Z

b 

To
ta

l 

a 
Si

g 
at

 
0.

05
 

le
ve

l. 

b 
Si

g 
at

 
0.

01
 

le
ve

l. 



272 BRADLEY EFRON 

In experiment 2 the shrinkage factor comes out negative, and we use 
the plus-rule Si+ to estimate all oli = 0. One biased estimation procedure 
that has been widely used is to run the usual F test for the hypothesis 
“all OIi = 0,” estimating ai by 0 if the test accepts the hypothesis, 
and by Sio if the test rejects the hypothesis. This amounts to estimating 

% bY 

where I(F) equals 1 or 0 as F is less or greater than some conventional 
value, usually the 95th percentile of F under the hypothesis all a$ = 0. 
V+ is a smoother version of this same idea, being expressable as 

a!+ = 2 [ 
1 _ 8.33 1 

-SF +yi 1 (3.10) 

in the case at hand. It is shown in [lo] that S1+ uniformly dominates 
the F-test procedure in terms of sum of squared error risk. The F value 
for each experiment is listed as “Fg,54” (indicating the proper degrees 
of freedom) in Table II. 

Actually the 10 experiments were run under somewhat different 
conditions. The widely varying values of F in Table II suggest that 
the oli themselves may have changed from experiment to experiment. 
The reader may wish to propose an estimate for Dlie, the ith subject 
main effect in experiment e, from the data in Table II. Hint: in each 
row we can shrink the values S:e, e = 1,2,..., 10, toward their mean 
value 01~ . 

The lower numbers in the combined column were obtained by 
applying S1 to the OIi . There isn’t much shrinkage effect because the oli 
are individually quite accurate themselves. 

(iii) The Sunspot Data. Figure 2 is a graph of the log spectrogram 
for the number of sunspots occurring annually from 1947-1924. The 
plotted point at each frequency is an unbiased estimate of the log 
power at the frequency. 3 The successive frequencies plotted are 
separated from each other by approximately 0.0057 cycles/year (0.0057 = 
l/176 years). Assuming the sunspot generating mechanism is stationary 
over time, there are theoretical reasons for believing that the plotted 
estimates will be independent of each other with mean say 13i , the log 

3 Those numbers are obtained as log S, + 0.573 where S, is the Schuster’s spectrogram 
for the sunspot data taken from Table A.3.2 of [l]. Adding 0.573 compensates for the 
bias induced by taking logarithms. 
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l Observed Log Speftrcqmm (t 0.57) 
o Fitted Three-paint Moving ~wqe 

0 """""'J""" 
FrsclusncY 0.04 0.06 0.08 0. IO 0.12 0.14 0.16 0.18 0.20 0.22 
paicd(~eors) 24 20 16 123h II IO v4 9 8 7 '/8 6 '/s 5'/2 5 

FIG. 2. Log Spectrogram for Schuster’s sunspot data. 

power at the ith frequency, and variance u2 = (1 .28)2. The sampling 
distribution is nonnormal (actually being the log of an exponential 
random variable), but this will not affect the analysis which follows. 

We would like to estimate the “spectrum,” that is the Bi values. 
Spectral estimation is one area of statistics where biased estimates 
have traditionally played a preferred role. Smoothing the sample 
spectrogram by some type of moving average process is usually recom- 
mended. If successive 6, are not too different from one another smoothing 
reduces sampling variance while inducing only mild bias, thus reducing 
the expected mean square error. Figure 2 shows the results of a three 
point moving average. If x, is the observed value of the spectrogram 
at frequency i, the smoothed value is defined to be 

pi Ei5 
xi-1 + xi + xi+1 

3 - 
(3.11) 

The residuals 

have variance 

yi 5s xi - pi (3.12) 

D = &2 = 1.09 

and standard deviation /1.09 = 1.05. Looking at Fig. 2 with this in 
mind it is clear that we have oversmoothed the spectrogram, at least 
near the low end of the frequency scale. If we are serious about estimating 
the ~4, rather than just getting an idea of the spectrum’s general 

607/16/3-z 
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appearance, we can use Stein-type ideas to compromise between the 
two extremes of complete smoothing and no smoothing. 

A digression is necessary here. Suppose 8 = (0, ,..., 13,) is a parameter 
vector and y = (yr ,..., yk) an observed vector such that yi has mean Bi 
and variance some known value D. Define 

(3.13) 

It is easy to show that among all estimates of the form 6, = (1 - b)yi , 
the choice of the constant b which minimizes the expected total squared 
error is B s D/(/l + 0). (Th is result does not depend on normality 
or even independence of the yi .) In practice we will not know the value 
of A, so we cannot use the optimum “linear shrinking rule” Si = 
(1 - B)y, . However, Es I/y II2 = k(A + D), so 11 y \l”/rZ is an unbiased 
estimator of A + D. This suggests the estimator B = /&/I] y lj2 for B, 
and therefore the estimation rule 

& = (1 --g&i, 

which should behave like the optimum linear estimator if B is near B. 
Actually the theory is quite forgiving, and it can be shown that using 
even a rough guess of B is quite likely to improve on the unbiased 
estimator, which uses b = 0, [6]. 

The similarity of (3.14) with (2.6) is one of the best arguments for 
robustness of S1 to changes of the underlying assumptions. The choice 
of the constant k - 2 instead of k in (2.6) can be shown to produce 
a uniform improvement, but this is not the case for the plus-rule version 
(2.10), see [6]. We won’t worry about this fine point any more. 

Returning to the sunspot data, let 

(3.15) 

so 

The & are unbiased estimators for the pi , the y$ unbiased estimators 
for the ei. The unbiased, completely unsmoothed, estimator of $i is 
xi = ai + yi , which effectively estimates 4, by y$ . The completely 
smoothed estimator estimates Bi by zero and hence & by fi, . We can 
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use (3.14) to obtain estimates of i& between 0 and yi ; these can then 
be employed to improve the estimates of the & . 

Table III shows the data and the calculations. We are attempting to 
estimate & for the 28 frequencies shown in column 2, beginning with 
0.0417 and ending with 0.2051. Column 4 gives the value of x, for 
these 28 values, plus the two end values necessary to calculate pi and 

TABLE III 

Compromise Estimates of the Log Power Spectrum, Sunspot Data 

i Freq. Period xi Pi Y*=h &=(l--B)yi &pi+& 

0.0417 
1 0.0455 
2 0.0500 
3 0.0556 
4 0.0625 
5 0.0667 
6 0.0727 
7 0.0784 
8 0.0843 
9 0.0909 

10 0.0976 
11 0.1053 
12 0.1111 
13 0.1176 
14 0.1250 
15 0.1333 
16 0.1403 
17 0.1455 
18 0.1509 
19 0.1568 
20 0.1633 
21 0.1686 
22 0.1739 
23 0.1818 
24 0.1860 
25 0.1905 
26 0.1951 
27 0.2000 
28 0.2051 

0.2105 

24 4.4 
22 5.3 5.3 0 
20 6.3 4.8 1.5 
18 2.8 5.1 -2.3 
16 6.2 5.2 1.0 
15 6.6 6.6 0 
134 6.9 5.7 1.2 
122 3.6 6.2 -2.6 
ll$ 8.1 6.7 1.4 
11 8.5 8.3 0.2 
103 8.2 8.2 0 

93 7.8 7.4 0.4 
9 6.4 7.1 -0.7 
S+ 7.2 6.4 0.8 
8 5.7 6.3 -0.6 
7.5 6.1 5.8 0.3 
7& 5.6 5.1 0.5 
69 3.5 4.5 -1.0 
69 4.5 3.3 0.8 
68 2.5 3.6 -1.1 
6+ 3.7 3.6 0.1 
5.93 4.6 4.8 -0.2 
52 6.0 5.5 0.5 
54 6.0 5.8 0.2 
5; 5.4 4.9 0.5 
5& 3.3 4.2 -0.9 
53 4.0 3.5 0.5 
5 3.1 4.1 -1.0 
4; 5.1 4.5 0.6 
4% 5.2 t t 

P*=(xf-x+%+x*+,)/3 yt=xi-Pt 

0 
0.4 

-0.7 
0.3 
0 
0.3 

-0.8 
0.4 
0.1 
0 
0.1 

-0.2 
0.2 

-0.2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

t 

~=WllYll~ 

5.3 
5.2 
4.4 
5.5 
6.6 
6.0 
5.4 
7.1 
8.4 
8.2 
7.5 
6.9 
6.6 
6.1 
5.8 
5.1 
4.5 
3.3 
3.6 
3.6 
4.8 
5.5 
5.8 
4.9 
4.2 
3.5 
4.1 
4.5 

t 

Compromise 
Estimate 
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pzs . The values of pi and yd are given in columns 5 and 6. The Bi have 
been estimated from the yi by the rule (3.14). This has been done 
separately for the first fourteen coordinates, i = 1, 2,..., 14, and for 
the last fourteen coordinates, i = 15, 16,..., 28. The first 14 coordinates 
give B = 0.71, hence & = 0.29y, . The second 14 coordinates give an 
estimate & greater than 1. This would lead to a rule which shrinks 
past the origin, so as before we replace this by 8, = 0. These values 
are listed in column 7 as & . Finally, column 8 gives & = pi + & , 
our presumably improved estimates of the di . 

In this case we have no way of checking whether they really are 
improvements. Almost certainly they improve on the unbiased estimates 
xi, but in this case they are so similar to the completely smoothed 
estimates it is doubtful whether they are much better than them, except 
on the obviously badly fitted coordinates i = 3 and i = 7. (For these 
two the limited translation rule should also be invoked.) 

Writing C& as Bi + pi illustrates a technique for extending the usefull- 
ness of the James-Stein estimator. The usual unbiased estimators 
are used on part of the problem, the pi here, and then S1 is used to 
mop up what is left over, the Bi here. The hope is that the Bi, being 
residuals from a smooth model, will be small in magnitude and hence 
estimated very efficiently by P. 

It is usually unwise to pool too many estimation problems together. 
In [7] we recommend lo-12 as the best value for K. Here we have 
split the 28 coordinates into 2 groups of 14 in the most obvious way, 
but more subtle and potentially more advantageous methods of separating 
and recombining estimation problems are possible, see [5] and [7]. 
Overpooling relates to objection (ii) of Section 2, the combination of 
unrelated problems. The usual penalty for doing so is to reduce 6l to 
5O, S getting so large it nullifies the (k - 2)D/S term in (2.6). 
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