Keller’s Conjecture for Certain p-Groups

Kereszthely Corrádi

Department of Computer Tech., Eötvös Loránd University, H-1088 Budapest, Muzeum krt 6-8

AND

Sándor Szabó

Communicated by Walter Feit

Received May 14, 1987

The algebraic form of Keller’s conjecture will be proved for p-groups having two direct components. © 1988 Academic Press, Inc.

INTRODUCTION

In 1930 O. H. Keller [4] conjectured that if translates of a closed n-dimensional cube tile the n-space, then in this cube system there exist two cubes having a common $(n-1)$-dimensional face.

In 1949 G. Hajós [3] gave the following group theoretical equivalent for this conjecture. If G is a finite additive abelian group and

$$G = H + [g_1, q_1] + \cdots + [g_n, q_n]$$

(1)

is a factorization, then

$$\{q_1 g_1, \ldots, q_n g_n\} \cap (H - H) \neq \emptyset.$$ (2)

Here

$$H - H = \{h - h': h, h' \in H\}$$

and

$$[g_i, q_i] = \{0, g_i, 2g_i, \ldots, (q_i - 1) g_i\}.$$
Finally, we say G is factored by its subsets $A_1, ..., A_n$ if each g in G is uniquely expressible in the form

$$g = a_1 + \cdots + a_n, \quad a_i \in A_i, ..., a_n \in A_n.$$

If G is the direct sum of cyclic groups of orders $m_1, m_2, ..., m_k$ then the k tuple of integers $(m_1, m_2, ..., m_k)$ is called the type of group G.

The generatum of a subset H of G and the order of an element g in G will be denoted by $\langle H \rangle$ and $|g|$, respectively. Keller's conjecture has been proved in the following special cases: when $n < 6$ independently from the structure of G and independently from the value of n when G is one of the types

$$(p^a, q^b), (p^a, p, ..., p), (p^a, q, ..., q),$$

where p and q are different primes. The proofs can be found in order in \cite{L-5, 7, 1, 21}.

The purpose of this paper is to prove Keller's conjecture for groups of type (p^a, p^b). According to \cite{9} it is enough to prove the group theoretical form of Keller's conjecture for p-group. So our result represents the first step toward a complete solution.

RESULT

We need the next two lemmas. The first one enables us to replace a factor by another one in a factorization while the second one enables us to lift a factoring from the homomorph image of a group to the group.

Lemma 1 ([\cite{6}, p. 370]). If

$$G = H + [g, q]$$

is a factorization of finite abelian group G and t is an integer prime to q, then

$$G = H + [tg, q]$$

is a factorization as well.

Lemma 2 ([\cite{8}, p. 545]). Let G be the homomorphism image of abelian group G' at homomorphism f and let

$$G = A + B$$
be a factorization of G. Assume that A' is a subset of G' such that the restriction of f to A' is a bijection between A' and A. Then

$$G' = A' + f^{-1}(B)$$

is a factorization of G'.

Now we are ready to prove our main result.

Theorem. Keller's conjecture holds for groups of type (p^a, p^b).

Proof. Let G be a group of type (p^a, p^b). We should prove that factorization (1) concludes (2). To prove it take a counter example for which $|G|$ is minimal.

As we have already seen in [7] if factorization (1) is a counter example, then it can be replaced by another one in which each q_i is a prime. In addition here we may suppose that $0 \in H$. But after this replacement the number of the factors may be changed.

Thus we will prove that if

$$G = H + [x_1, p] + \cdots + [x_s, p]$$

is a factorization, then

$$\{px_1, ..., px_s\} \cap (H - H) \neq \emptyset.$$

Let us study the structure of H. To do this let

$$K = \langle x_1, x_2, ..., x_s \rangle.$$

The minimality of the counter example and the factorization

$$K = G \cap K = (H \cap K) + [x_1, p] + \cdots + [x_s, p]$$

conclude that $\langle x_1, ..., x_s \rangle = K = G$.

Since the elements $x_1, ..., x_s$ generate G which is generated by two elements there are two elements among $x_1, ..., x_s$, say x_1, x_2, which generate G. From this we can see that $s \geq 2$. Let

$$L = H + [x_3, p] + \cdots + [x_s, p].$$

Then

$$G = L + [x_1, p] + [x_2, p]$$

is a factorization.
Let G' be an abelian group with basis elements x_1' and x_2' of orders $|x_1'|$ and $|x_2'|$, respectively. Consider the homomorphism

$$f: G' \longrightarrow G$$

given by

$$f(a_1 x_1' + a_2 x_2') = a_1 x_1 + a_2 x_2,$$

where a_1 and a_2 are integers.

It is easy to verify that the restriction of f to

$$[x_1', p] + [x_2', p]$$

is a bijection between

$$[x_1', p] + [x_2', p] \quad \text{and} \quad [x_1, p] + [x_2, p].$$

Setting $L' = f^{-1}(L)$ Lemma 2 gives that

$$G' = L' + [x_1', p] + [x_2', p]$$

(3)

is a factorization.

Now we show that

$$L' \subseteq \langle px_1' \rangle + \langle x_2' \rangle \quad \text{or} \quad L' \subseteq \langle x_1' \rangle + \langle px_2' \rangle$$

(4)

Indeed, let l_1' and l_2' be different elements of L' and let $l_2' - l_1' = a_1 x_1' + a_2 x_2'$. Clearly, $(a_1, a_2) \neq (0, 0)$. If $p \nmid a_1$ and $p \nmid a_2$, then

$$l_2' + 0 \cdot x_1' + 0 \cdot x_2' = l_1' + a_1 x_1' + a_2 x_2'$$

violates the factorization

$$G' = L' + [a_1 x_1', p] + [a_2 x_2', p]$$

which arises from (3) by replacing $[x_i', p]$ by $[a_i x_i', p]$. This replacement is possible because a_1 and a_2 are prime to p. Thus $p \mid a_1$ or $p \mid a_2$.

Apply this fact in the case of $l_1' = 0$. Let $l_2' = b_1 x_1' + b_2 x_2'$ be an element of L'. We conclude that $p \mid b_1$ or $p \mid b_2$. Assume that

$$L' \not\subseteq \langle px_1' \rangle + \langle x_2' \rangle \quad \text{and} \quad L' \not\subseteq \langle x_1' \rangle + \langle px_2' \rangle.$$

This means that there are $l_1', l_2' \in L'$ such that

$$l_2' - l_1' = a_1 x_1' + a_2 x_2',$$

where a_1 and a_2 are prime to p. Since this is impossible (4) holds.
For the sake of definiteness suppose that
\[L' \subseteq \langle x'_1 \rangle + \langle px'_2 \rangle. \]

Let
\[M = \langle x'_1 \rangle + \langle px'_2 \rangle. \]

Note that
\[L' \subseteq M, \quad [x'_1, p] \subseteq M, \quad |M| = |L'| \cdot p. \]

So
\[M = L' + [x'_1, p] \]

is a factorization. Apply \(f \) for this factorization. We have
\[f(M) = I + [x_1, p] = H + [x_3, p] + \cdots + [x_s, p] + [x_1, p] \]

is a factorization of a proper subgroup of \(G \). This contradiction completes the proof.

REFERENCES