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Prediction of Lung Cancer Histological Types by RT-qPCR
Gene Expression in FFPE Specimens
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Lung cancer histologic diagnosis is clinically relevant because there are histology-specific treatment
indications and contraindications. Histologic diagnosis can be challenging owing to tumor character-
istics, and it has been shown to have less-than-ideal agreement among pathologists reviewing the same
specimens. Microarray profiling studies using frozen specimens have shown that histologies exhibit
different gene expression trends; however, frozen specimens are not amenable to routine clinical
application. Herein, we developed a gene expressionebased predictor of lung cancer histology for FFPE
specimens, which are routinely available in clinical settings. Genes predictive of lung cancer histologies
were derived from published cohorts that had been profiled by microarrays. Expression of these genes was
measured by quantitative RT-PCR (RT-qPCR) in a cohort of patients with FFPE lung cancer. A histology
expression predictor (HEP) was developed using RT-qPCR expression data for adenocarcinoma, carcinoid,
small cell carcinoma, and squamous cell carcinoma. In cross-validation, the HEP exhibited mean accuracy
of 84% and k Z 0.77. In separate independent validation sets, the HEP was compared with pathologist
diagnoses on the same tumor block specimens, and the HEP yielded similar accuracy and precision as the
pathologists. The HEP also exhibited good performance in specimens with low tumor cellularity. There-
fore, RT-qPCR gene expression from FFPE specimens can be effectively used to predict lung cancer
histology. (J Mol Diagn 2013, 15: 485e497; http://dx.doi.org/10.1016/j.jmoldx.2013.03.007)
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Lung cancer is the leading cause of cancer death worldwide.1

Classification of lung cancers is critical for standardized and
optimized patient care.2,3 The World Health Organization
classification of lung tumors defines >40 histologic types
based on morphologic features as assessed via light micros-
copy by a pathologist.4 The most common types are squa-
mous cell carcinoma (29%), adenocarcinoma (27%), small
cell carcinoma (13%), large cell (6%), and carcinoid (1%).
(Surveillance, Epidemiology, and End Results Program,
http://www.seer.cancer.gov/data, Limited-Use Data 1973-
2006, National Cancer Institute, Division of Cancer Control
and Population Sciences, Surveillance Research Program,
Cancer Statistics Branch, released April 2009, based on the
November 2008 submission, last accessed July 16, 2009)
stigative Pathology

.

This classification is clinically relevant because the types
have different recommended and contraindicated therapies
(US Food and Drug Administration, Alimta/pemetrexed
label, http://www.accessdata.fda.gov/drugsatfda_docs/
label/2011/021462s029s030s032lbl.pdf, last accessed May
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22, 2013; US Food and Drug Administration, Avastin/bev-
acizumab label, http://www.accessdata.fda.gov/drugsatfda_
docs/label/2004/125085lbl.pdf, last accessed May 22,
2013).3,5 However, consensus histologic diagnoses as
measured by interpathologist agreement can be chal-
lenging.6,7 Although immunohistochemical (IHC) markers
can improve pathologist diagnosis accuracy, panels of
markers have not been standardized into the most accepted
tumor classifications, such as that of the World Health
Organization.4,8 Finally, many patients (21%) receive
a histologic diagnosis of lung cancer not otherwise specified,
which inhibits the use of histology-specific treatment options.
Therefore, improvements to lung cancer histologic diagnosis
could result in better patient care.

Recent studies revealed that the histologic types differ not
only in their morphologic features but also in their genetic
features, such as gene expression, DNA copy number, and
sequencemutations.5,9e12 So far, themost genetic differences
among histologic types have been measured by gene
expression microarrays from fresh frozen specimens.13e17

Gene expression profiling has great potential for improving
the accuracy of the histologic diagnosis; owing to the need for
retrospective validation and routine clinical application, the
assays should be performed using formalin-fixed, paraffin-
embedded (FFPE) tissues, which negates the use of conven-
tional DNA microarrays. Herein, we determined that gene
expression profiling using quantitative RT-PCR (RT-qPCR)
can identify the major histologic types of lung cancer in
clinically available FFPE tissue specimens, which should be
especially useful in confirming the histologic diagnosis in
small and compromised tissue biopsy specimens.

Materials and Methods

Gene Expression Microarrays

Published lung cancer cohorts assayed by Affymetrix
U95v2 gene expression microarrays (Affymetrix Inc., Santa
Clara, CA) from Bhattacharjee et al14 (n Z 254) and
Borczuk et al18 (n Z 62), were processed by the robust
multiarray average algorithm19 to produce gene expression
values for each specimen.

Marker Gene Selection

The cohort of Bhattacharjee et al14 was used to select genes
differentially expressed between histologic classes. The area
under the receiver operating characteristic curve was used to
calculate differentially expressed genes for the following
class comparisons: small cell versus other, carcinoid versus
other, stromal lung versus other, and squamous cell carci-
noma versus adenocarcinoma. Because lung adenocarcinoma
has well-described expression heterogeneity,14,20 differen-
tially expressed genes were also determined among three
adenocarcinoma expression subtypes20 so that all the variants
of adenocarcinoma were represented. For each class
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comparison, the genes with the largest area under the receiver
operating characteristic curve, indicating the largest differ-
ence in expression, were identified. These genes were
manually reviewed for representation in the published lung
cancer literature, and marker genes were further selected such
that at least three genes with high expression in any given
class/subtype were present. To be used for data normaliza-
tion, housekeeping genes were selected in the following
manner from the cohort of Bhattacharjee et al.14 Genes with
high average expression in each histologic class and low
variability as measured by standard deviation across histo-
logic classes were considered good candidates. Candidate
genes were interrogated for the ability to produce a high-
performing primer pair using previously described
criteria.21 Once a suitable set of housekeeping genes was
produced, the set was evaluated for overall performance
using previously described techniques.22

Marker Gene Validation

To verify that the marker genes were capable of discrimi-
nating the lung cancer histologic types, a predictor for
microarray-based histology was built using the cohort of
Bhattacharjee et al14 and the marker genes. Centroids were
calculated as the mean of tumors in a sample class (adeno-
carcinoma, carcinoid, small cell, stromal lung, or squamous
cell). The gene-wise means of the centroids were calculated
and subtracted from the centroids, the cohorts of Bhatta-
charjee et al14 and Borczuk et al.18 The Pearson correlation
was calculated between each tumor sample, and these five
centroids and the histology of the maximally correlated
centroid served as a tumor’s histology prediction. These
predictions were compared with the tumors’ pathologically
defined histologies to determine whether the marker genes
enabled accurate predictions.

Patient Samples

FFPE specimens (n Z 442) from patients with lung cancer
receiving curative-intent surgery were collected at the
University of North Carolina at Chapel Hill (Chapel Hill,
NC) and at the University of Utah Health Sciences Center
(Salt Lake City, UT). Patients were initially identified in an
unselected manner from the clinical case records of the two
institutions’ multidisciplinary lung cancer programs. A
second patient selection step was completed to increase cases
with the rare variants of carcinoid and surgically resected
small cell carcinoma. All the cases identified from the clinical
record were used for this analysis without exception as long
as the pathology department could provide at least one 10-mm
section. When a case was identified, preference was given
to section the block that was identified in the clinical
pathology report as most representative of the entire surgical
case diagnosis. Although most samples were obtained from
grossly resected tumors, a small number came from biopsies
such as mediastinoscopy or bronchoscopy. Clinical diagnosis
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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was the pathologic diagnosis abstracted from the clinical
pathology report at the time of initial diagnosis and treatment
of the tumor. Clinical diagnosis is based on all information
available to the clinical pathologist who reviewed the case,
including IHC staining. In cases where data were indeter-
minate (such as inconsistent IHC staining), we relied on the
clinical pathologist’s interpretation as the gold standard.

In every case, an H&E-stained section was taken from the
same block immediately adjacent to the section used for
molecular analysis. Slides were scanned using a digital
imaging ScanScope system version 8 (Aperio, Vista, CA)
and were reviewed for tumor cellularity as determined by
tumor nuclei, necrosis, lymphocyte infiltrates, and fibrosis.
No tumor was excluded based on these parameters. A panel
of pathologists diagnosed the histology of a subset of
tumors using the scanned slides as described in Pathologist
Diagnosis. For the purposes of obtaining a set of stromal
lung controls, sections of uninvolved adjacent lung were
obtained from a subset of patients who provided tumors.

IHC Analysis

To document the impact of special stains on the clinical
diagnosis, all the cases were abstracted for the use of adjunct
testing beyond light microscopy, including but not limited
to IHC analysis. Because the consulting clinical pathologists
incorporated special staining in only a few cases, we
augmented the clinical testing with IHC staining for two of
the most widely used lineage markers of lung adenocarci-
noma (TTF-1) and lung squamous cell carcinoma (p63).
Tissue microarrays were constructed from FFPE tumor
blocks. H&E-stained sections of tumors of all the patients
were reviewed by one pathologist (W.K.F.) to confirm the
original diagnosis, and a target area was identified in the
donor block. Tissue microarrays were constructed using
1-mm cores on the manual tissue microarrayer-1 (Beecher
Instruments, Sun Prarie, WI) and were made in triplicate to
account for potential staining heterogeneity and potential
loss of tissue during processing. Sequential 4-mm sections
were cut from each tissue microarray. IHC staining of the
TTF-1 and p63 proteins was performed in the Bond autos-
tainer (Leica Microsystems Inc., Buffalo Grove, IL)
according to the manufacturer’s protocol. Briefly, slides
were dewaxed in Bond dewaxing solution (AR9222) and
were hydrated in Bond wash solution (AR9590) (Leica
Microsystems Inc.). Antigen retrieval for TTF-1 was per-
formed for 20 minutes at 100�C in Bond epitope retrieval
solution 2, pH 9.0 (AR9640; Leica Microsystems Inc.).
Slides were incubated with TTF-1 antibody (thyroid tran-
scription factor-1 clone SPT24, dilution 1:100; Leica
Microsystems Inc.) for 30 minutes. Lung carcinoma tissue
was used as a positive control. Antigen retrieval for p63 was
performed for 20 minutes at 100�C in Bond epitope retrieval
solution 1, pH 6.0 (AR9961; Leica Microsystems Inc.).
Slides were incubated with p63 antibody clone 4A4 (dilu-
tion 1:150; Dako, Carpinteria, CA) for 15 minutes. Prostate
The Journal of Molecular Diagnostics - jmd.amjpathol.org
tissue was used as a positive control. Antibody detection for
TTF-1 and p63 was performed using the Bond polymer refine
detection system (DS9800; Leica Microsystems Inc.). Image
acquisition was performed using ScanScope CS (Aperio).
Samples were scored for percentage of tumor nuclei posi-
tively staining and the intensity on a 3-point scale. H-scores
were defined as the product of intensity � percentage of
cells.23 H-scores of replicate spots were averaged in each case
to standardize diagnostic calls of positive or negative stain-
ing. The selected threshold for p63 H-score positivity was set
at 85 to match published rates of sensitivity of 84% and
specificity of 93%. Likewise, the TTF-1 threshold was
determined to be 75, resulting in 70% sensitivity and 82%
specificity to ensure that the performance of IHC analysis in
this cohort was comparable with published studies.24e26 IHC
data are available in Supplemental Table S1.

Sample Preparation and First-Strand Synthesis for
RT-qPCR

Total RNA was extracted from four 10-mm FFPE tissue
scrolls using the High Pure RNA paraffin kit (Roche
Applied Science, Indianapolis, IN). Contaminating DNA
was removed using Turbo DNase (Ambion, Austin, TX).
The quantity of RNA was assessed using the NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies Inc.,
Rockland, DE). There was no criterion on which to fail a
sample based on the NanoDrop output. Experience suggests
that the small number of samples that fail the housekeeping
genes have a low yield by spectrophotometer (<20 ng/mL).
First-strand cDNA was synthesized from 1.2 mg of total
RNA using a 2-pmol mixture of reverse primers, 100 ng of
random hexamers, and SuperScript III Reverse Transcrip-
tase first-strand kit (Invitrogen, Carlsbad, CA). The reaction
was held at 55�C for 60 minutes, followed by a 15-minute
step at 70�C. The cDNA was washed on a QIAquick
PCR purification column (Qiagen Inc., Valencia, CA) and
was stored at �80�C in 25 mmol/L Tris-Cl, 1 mmol/L
ethylenediamine tetraacetic acid until qPCR analysis.

PCR Primer Evaluation

Primer sets were designed using LightCycler probe design
software, version 2.0 (Roche Applied Science), which
considers sequence alignments, primer stability, hairpins,
primer melting temperatures, and primer-dimer interactions.
Primer setswere selected to have amelting temperature>60�C
and guanine-cytosine content >50% and to generate a PCR
amplicon <100 bp. BLAST (Basic Local Alignment Search
Tool; http://blast.ncbi.nlm.nih.gov/Blast.cgi, last accessed
May 22, 2013) and BLAT (BLAST-Like Alignment Tool;
http://genome.ucsc.edu/cgi-bin/hgBlat?commandZstart, last
accessed May 22, 2013) searches were performed to check for
uniqueness, including the presence of amplifiable pseudo-
genes. Final selection of primer setswas based on the following
criteria: i) target crossing point<30 using 10 ng of cDNA from
487
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a pool of FFPE lung cancers, ii) PCR efficiency >1.7, iii) no
primer-dimers in the presence of template, and iv) no primer-
dimers in negative template control before cycle 38. All the
primer sets are tested using SYBR green I (Roche Applied
Science, Indianapolis, IN) to assess the efficiency of PCR and
the presenceofprimer-dimers.Melting curve analysiswas used
to distinguish primer-dimer formation from specific product.
An average of twoprimer pairsweredesignedper gene target to
obtainonepair that passedpreviouslydescribed criteria.21Each
primer set was tested from a pool of cDNA from different lung
tissue types, and performance was evaluated using previously
described criteria.21

RT-qPCR

Each 5-mL PCR included twofold concentrated LightCycler
480 SYBR green I master mix (Roche Applied Science) and
2.5 ng (1.25 ng/mL) of cDNA. Liquid handling for loading
384-well plates was performed using the Evolution P3
precision pipetting platform (PerkinElmer Ltd, Shelton,
CT). Each run contained an internal 10-ng calibrator refer-
ence using cDNA made from human reference total RNA
(catalog No. 750500; Stratagene, La Jolla, CA) and two
small cell lung cultures. PCR amplification was performed
in the LightCycler 480 (Roche Applied Science) using an
initial denaturation step (95�C for 8 minutes) followed by 45
cycles of denaturation (95�C for 4 seconds), annealing
(56�C for 6 seconds with a 2.5�C per second transition), and
extension (72�C for 6 seconds with a 2�C per second tran-
sition). Fluorescence (530 nm) from the SYBR green I
double-stranded DNA dye assay (Roche Applied Science)
was acquired for each cycle after the extension step. The
specificity of the PCR was determined by postamplification
melting curve analysis. Reactions were automatically cooled
to 65�C and were slowly heated at 2�C per second to 99�C
while continuously monitoring fluorescence (10 acquisitions
per 1�C). RT-qPCR assays were run in the laboratory of
P.S.B. RT-qPCR analysis was performed in the laboratory
of D.N.H.

RT-qPCR Data Processing

Gene expression was calculated using LC480 software,
version 1.2.0.169 (Roche Applied Science). Relative gene
expressions were calculated from an external standard curve
made from a serial 10-fold dilution of glyceraldehyde-3-
phosphate dehydrogenase (efficiency, 1.8) and correcting to
the expression of the 10-ng calibrator. To control for vari-
ation in RNA quality, the expression of each gene was
further normalized to the geometric mean of the house-
keeping genes. Samples were processed in two batches; so,
to remove differences between the batches, a batch correc-
tion procedure was applied that used adenocarcinomas
because they were present in large numbers in both batches.
The correction consisted of taking the adenocarcinoma
mean expression of all genes from each batch, calculating
488
the gene median differences between the batches, and sub-
tracting these differences from all the samples in the second
batch.

Training and Validation Design for the Histology
Expression Predictor

A histology expression predictor (HEP) was developed from
a training set and then was validated on three independent
test sets (Supplemental Figure S1). Test specimens were
partitioned into one of six exclusive groups. High tumor
content specimens (minimum 50% tumor cellularity) were
used to train the HEP (classifier development set) and to
independently validate the HEP. The first independent
validation set (single-block set) consisted of tumors that
were reviewed by a panel of up to seven external patholo-
gists. These separate reviews provided an estimate of
histology diagnosis accuracy based on single-slide light
microscopy review that could be compared with the accu-
racy of the HEP. The second independent validation set
(dual-block set) included patients for which two separate
blocks were available. For these cases, H&E sections from
both blocks were reviewed by three external pathologists
(nonoverlapping with pathologists reviewing the single-
block set) who were blinded to the clinical histology diag-
nosis and to the cases from which blocks were derived.
These blinded pathology reviews provided an estimate of
the histology diagnosis precision in a case using single-slide
microscopy review that could be compared with the HEP.
These reviews were not intended to measure the routine
clinical performance of pathologists because further mate-
rials (eg, a series of case slides, clinical history, and IHC
analysis findings) were not provided to pathologists. Rather,
these pathologist reviews enabled reference points for
gauging the performance of the HEP. A third validation set
(low tumor content) consisted of tumor specimens with
infiltrating stromal cells composing >50% of the nuclei on
the H&E section, consistent with quality control thresholds
of large-scale genomic analysis projects.27 Assays with
>10% missing expression data were set aside as failed
assays. Specimens with a histologic type outside of the HEP
scheme were set aside as the outside scheme set. Stromal
specimens were set aside as the stromal set.

Histology Expression Predictor

The HEP was developed using tumors in the classifier de-
velopment set. Tumors were randomly partitioned into
a training set and a test set using a two-thirds to one-third split,
respectively. Samples were selected so that each histologic
type was distributed the same between the sets. A nearest-
centroid predictor was developed from the training set by
taking the median expression of each gene in each histologic
type, resulting in four training centroids.28 Then, the mean
expression of each gene across the training centroids was
calculated (centroid gene means). The centroids and test set
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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tumors were normalized by subtracting the centroid gene
means. Pearson correlations were calculated between each
tumor in the test set to the training centroids. Tumors in the test
set were assigned a histology prediction corresponding to the
maximally correlated training centroid. Correct predictions
were defined as HEP calls matching the tumor’s clinical
histology diagnosis. Accuracy was defined as the number of
correct predictions divided by the number of all predictions.
Agreement between the clinical diagnosis and the HEP was
calculated by Fleiss’ k. A minimum k of 0.7 was used as
a reference threshold for clinical utility.29 This process was
repeated 1000 times to determine a Monte Carlo cross-
validation error rate.30 Confidence intervals (CIs) for cross-
validation were determined from the distribution of these
iterations. After error rate calculation, this process was
repeated a final time using all classifier development set
tumors to build predictor centroids and calculate a total
training error rate. Other CIswere calculated by bootstrapping
(1000 iterations). The HEP centroids and accompanying data
are available in Supplemental Tables S2, S3, S4, and S5.

Prediction Confidence

Prediction confidence was defined as a centroid silhouette
width, (bi�ai)/max(bi,ai), where a is the 1 � Pearson
correlation to a sample’s predicted histology centroid and
b is the 1 � Pearson correlation to the histology centroid
with the second greatest correlation. Prediction confidence
values have a range of �1 to 1, with increasing values
corresponding to increasing confidence.

Stromal Score

To determine whether a tumor’s expression is more similar to
its predicted histology or to stromal lung, an expression
contrast between each histology class and normal lung was
built. A stromal lung centroid was calculated by taking gene
expression means. The contrasts consisted of pairing each
prenormalized histology centroid with the stromal centroid,
determining the gene means of each pair, and subtracting
these means from the stromal centroid to produce a stromal
contrast centroid and gene means. After histology prediction,
a tumor’s original expression was normalized by subtracting
its corresponding stromal contrast genemeans and calculating
the Pearson correlation to its corresponding stromal contrast
centroid to serve as its stromal score. Increasing stromal
scores indicate an increasing stromal component in the tumor.

Pathologist Diagnosis

Board-certified pathologists were given digital images of
H&E-stained slides of cases blinded to their clinical histology
diagnosis. Using a previously described Internet-based form,7

pathologists diagnosed each case with a histology using the
44-class World Health Organization histologic type defini-
tion. To make the 44-class scheme comparable with the four
The Journal of Molecular Diagnostics - jmd.amjpathol.org
histologies used by the HEP, the 44 types were mapped to
adenocarcinoma, carcinoid, small cell, squamous cell, or
other. Pathologist diagnoses were compared with the clinical
diagnosis to determine accuracy. The pathologist histology
scheme had a total of five types compared with the HEP
scheme, which had four types, the difference being the other
type. Under a five-class scheme, a random diagnosis is ex-
pected to have 20% accuracy, and under a four-class scheme,
it is expected to be 25%. To make the pathologist scheme
comparable with the four-class scheme, adjusted pathologist
accuracy was calculated by adding 5% to the pathologist
accuracy, which is the difference in random agreement
between the schemes.

Statistical Tests

Spearman rank correlation tests evaluated the association of
prediction accuracy with stromal scores and prediction
confidence over all cross-validation training sets. Kruskal-
Wallis tests were used to evaluate differences in stromal
scores and prediction confidence among tumor sets.

Results

Marker Gene Selection

To obtain lung histologic class marker genes, we data-mined
a previously published cohort (Bhattacharjee et al14) to
identify differentially expressed genes capable of discrimi-
nating four lung cancer histologic types (adenocarcinoma,
carcinoid, small cell, and squamous cell) and stromal lung.
Six genes were identified that differentiated each of the
following pairs: carcinoid versus other, small cell versus
other, and stromal lung versus other (Supplemental Figure S2,
AeC), giving a total of 18 genes. Sixteen genes were also
selected that differentiated squamous cell carcinoma versus
adenocarcinoma (Supplemental Figure S2D). Eighteen genes
were identified that differentiated among the three adeno-
carcinoma expression subtypes (Supplemental Figure S2E).
Last, five housekeeping genes were identified and used for
normalization. In all, 57 genes were selected (Table 1). To test
that these marker genes were capable of discriminating the
histologic classes, a microarray-based HEP using the 52
marker genes was created using the Bhattacharjee et al14

microarray data set. Bhattacharjee et al14 specimens were
classified using this predictor of 52 marker genes, and
the resulting predictions had 85% accuracy (95% CI 81%
to 89%) and a k of 0.71 (95%CI 0.62 to 0.79) when testing for
five classes (adenocarcinoma, carcinoid, small cell, stromal
lung, and squamous cell), which represents training accuracy
because the marker genes were selected using these same
specimens. As an independent validation of themarker genes,
the microarray-based predictor was applied to an independent
cohort, Borczuk et al,18 and specimen predictions had an
accuracy of 81% (95% CI 66% to 89%) and a k of 0.71 (95%
CI 0.53 to 0.84). Therefore, the marker genes were deemed
489
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Table 1 Marker Genes and Probes
Symbol Gene name Forward primer Reverse primer

Marker genes

ABCC5 ATP-binding cassette, subfamily C (CFTR/MRP), member 5 50-CAAGTTCAGGAGAACTCGAC-30 50-GGCATCAAGAGAGAGGC-30

ACVR1 Activin A receptor, type I 50-ACTGGTGTAACAGGAACAT-30 50-AACCTCCAAGTGGAAATTCT-30

ALDH3B1 Aldehyde dehydrogenase 3 family, member B1 50-GGCTGTGGTTATGCGATAG-30 50-GATAAAGAGTTACAAGCTCCTCTG-30

ANTXR1 Anthrax toxin receptor 1 50-ACCCGAGGAACAACCTTA-30 50-TCTAGGCCTTGACGGAT-30

BMP7 Bone morphogenetic protein 7 (osteogenic protein 1) 50-CCCTCTCCATTCCCTACA-30 50-TTTGGGCAAACCTCGGTAA-30

CACNB1 Calcium channel, voltage-dependent, beta 1 subunit 50-CAGAGCGCCAGGCATTA-30 50-GCACAGCAAATGCCACT-30

CAPG Capping protein (actin filament), gelsolin-like 50-GGGACAGCTTCAACACT-30 50-GTTCCAGGATGTTGGACTTTC-30

CBX1 Chromobox homolog 1 (HP1 beta homolog Drosophila) 50-CCACTGGCTGAGGTGTTA-30 50-CTTGTCTTTCCCTACTGTCTTAC-30

CDH5 Cadherin 5, type 2, VE-cadherin (vascular epithelium) 50-AAGAGAGATTGGATTTGGAACC-30 50-TTCTTGCGACTCACGCT-30

CDKN2C Cyclin-dependent kinase inhibitor 2C (p18, inhibits

CDK4)
50-TTTGGAAGGACTGCGCT-30 50-TCGGTCTTTCAAATCGGGATTA-30

CHGA Chromogranin A (parathyroid secretory protein 1) 50-CCTGTGAACAGCCCTATG-30 50-GGAAAGTGTGTCGGAGAT-30

CIB1 Calcium and integrin binding 1 (calmyrin) 50-CACGTCATCTCCCGTTC-30 50-CTGCTGTCACAGGACAAT-30

CLEC3B C-type lectin domain family 3, member B 50-CCAGAAGCCCAAGAAGATTGTA-30 50-GCTCCTCAAACATCTTTGTGTTCA-30

CYB5B Cytochrome b5 type B (outer mitochondrial membrane) 50-TGGGCGAGTCTACGATG-30 50-CTTGTTCCAGCAGAACCT-30

DOK1 Docking protein 1, 62 kDa (downstream of tyrosine

kinase 1)
50-CTTTCTGCCCTGGAGATG-30 50-CAGTCCTCTGCACCGTTA-30

DSC3 Desmocollin 3 50-GCGCCATTTGCTAGAGATA-30 50-CATCCAGATCCCTCACAT-30

FEN1 Flap structureespecific endonuclease 1 50-AGAGAAGATGGGCAGAAAG-30 50-CCAAGACACAGCCAGTAAT-30

FOXH1 Forkhead box H1 50-GCCCAGATCATCCGTCA-30 50-TTTCCAGCCCTCGTAGTC-30

GJB5 Gap junction protein, beta 5 (connexin 31.1) 50-ACCACAAGGACTTCGAC-30 50-GGGACACAGGGAAGAAC-30

HOXD1 Homeobox D1 50-GCTCCGCTGCTATCTTT-30 50-GTCTGCCACTCTGCAAC-30

HPN Hepsin (transmembrane protease, serine 1) 50-AGCGGCCAGGTGGATTA-30 50-GTCGGCTGACGCTTTGA-30

HYAL2 Hyaluronoglucosaminidase 2 50-ATGGGCTTTGGGAGCATA-30 50-GAACAAGTCAGTCTAGGGAATAC-30

ICA1 Islet cell autoantigen 1, 69 kDa 50-GACCTGGATGCCAAGCTA-30 50-TGCTTTCGATAAGTCCAGACA-30

ICAM5 Intercellular adhesion molecule 5, telencephalin 50-CCGGCTCTTGGAAGTTG-30 50-CCTCTGAGGCTGGAAACA-30

INSM1 Insulinoma-associated 1 50-ATTGAACTTCCCACACGA-30 50-AAGGTAAAGCCAGACTCCA-30

ITGA6 Integrin, alpha 6 50-ACGCGGATCGAGTTTGATAA-30 50-ATCCACTGATCTTCCTTGC-30

LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) 50-TTCTGGGCACGGTGAAG-30 50-AGGCAACATCATTCCCTC-30

LIPE Lipase, hormone-sensitive 50-CGCAAGTCCCAGAAGAT-30 50-CAGTGCTGCTTCAGACACA-30

LRP10 Low-density lipoprotein receptorerelated protein 10 50-GGAACAGACTGTCACCAT-30 50-GGGAGCGTAGGGTTAAG-30

MAPRE3 Microtubule-associated protein, RP/EB family, member 3 50-GGCCAAACTAGAGCACGAATA-30 50-GTCAACACCCATCTTCTTGAAA-30

ME3 Malic enzyme 3, NADP(þ)-dependent, mitochondrial 50-CGCGGATACGATGTCAC-30 50-CCTTTCTTCAAGGGTAAAGGC-30

MGRN1 Mahogunin, ring finger 1 50-GAACTCGGCCTATCGCT-30 50-TCGAATTTCTCTCCTCCCAT-30

MYBPH Myosin binding protein H 50-TCTGACCTCATCATCGGCAA-30 50-CTGAGTCCACACAGGTTT-30

MYO7A Myosin VIIA 50-GAGGTGAAGCAAACTACGGA-30 50-CCCATACTTGTTGATGGCAATTA-30

NFIL3 Nuclear factor, interleukin 3 regulated 50-ACTCTCCACAAAGCTCG-30 50-TCCTGCGTGTGTTCTACT-30

PAICS Phosphoribosylaminoimidazole carboxylase,

phosphoribosylaminoimidazole succinocarboxamide
synthetase

50-AATCCTGGTGTCAAGGAAG-30 50-GACCACTGTGGGTCATTATT-30

PAK1 p21/Cdc42/Rac1-activated kinase 1 (STE20 homolog,

yeast)
50-GGACCGATTTTACCGATCC-30 50-GAAATCTCTGGCCGCTC-30

PECAM1 Platelet/endothelial cell adhesion molecule (CD31

antigen)
50-ACAGTCCAGATAGTCGTATGT-30 50-ACTGGGCATCATAAGAAATCC-30

PIK3C2A Phosphoinositide-3-kinase, class 2, alpha polypeptide 50-GGATTTCAGCTACCAGTTACTT-30 50-AGTCATCATGTACCCAGCA-30

PLEKHA6 Pleckstrin homology domain containing, family A

member 6
50-TTCGTCCTGGTGGATCG-30 50-CCCAGGATACTCTCTTCCTT-30

PSMD14 Proteasome (prosome, macropain) 26S subunit,

non-ATPase, 14
50-AGTGATTGATGTGTTTGCTATG-30 50-CACTGGATCAACTGCCTC-30

SCD5 Stearoyl-CoA desaturase 5 50-CAAAGCCAAGCCACTCACTC-30 50-CAGCTGTCACACCCAGAGC-30

SFN Stratifin 50-TCAGCAAGAAGGAGATGCC-30 50-CGTAGTGGAAGACGGAAA-30

SIAH2 Seven in absentia homolog 2 (Drosophila) 50-CTCGGCAGTCCTGTTTC-30 50-CGTATGGTGCAGGGTCA-30

SNAP91 Synaptosomal-associated protein, 91-kDa homolog

(mouse)
50-GTGCTCCCTCTCCATTAAGTA-30 50-CTGGTGTAGAATTAGGAGACGTA-30

STMN1 Stathmin 1/oncoprotein 18 50-TCAGAGTGTGGTCAGGC-30 50-CAGTGTATTCTGCACAATCAAC-30

TCF2 Transcription factor 2, hepatic; LF-B3; variant hepatic

nuclear factor
50-ACACCTGGTACGTCAGAA-30 50-TCTGGACTGTCTGGTTGAAT-30

TCP1 T-complex 1 50-ATGCCCAAGAGAATCGTAAA-30 50-CCTGTACACCAAGCTTCAT-30

TFAP2A Transcription factor AP-2 alpha (activating enhancer

binding protein 2 alpha)
50-GTCTCCGCCATCCCTAT-30 50-ACTGAACAGAAGACTTCGT-30

TITF1 Thyroid transcription factor 1 50-ATGAGTCCAAAGCACACGA-30 50-CCATGCCCACTTTCTTGTA-30

(table continues)
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Table 1 (continued )

Symbol Gene name Forward primer Reverse primer

TRIM29 Tripartite motifecontaining 29 50-TGAGATTGAGGATGAAGCTGAG-30 50-CATTGGTGGTGAAGCTCTTG-30

TUBA1 Tubulin, alpha 1 50-CCGACTCAACGTGAGAC-30 50-CGTGGACTGAGATGCATT-30

Housekeeping genes

CFL1 Cofilin 1 (nonmuscle) 50-GTGCCCTCTCCTTTTCG-30 50-TTCATGTCGTTGAACACCTTG-30

EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 50-CGTTCTTTTTCGCAACGG-30 50-CATTTTGGCTTTTAGGGGTAG-30

RPL10 Ribosomal protein L10 50-GGTGTGCCACTGAAGAT-30 50-GGCAGAAGCGAGACTTT-30

RPL28 Ribosomal protein L28 50-GTGTCGTGGTGGTCATT-30 50-GCACATAGGAGGTGGCA-30

RPL37A Ribosomal protein L37a 50-GCATGAAGACAGTGGCT-30 50-GCGGACTTTACCGTGAC-30

Lung Cancer Histology Prediction
capable of discriminating the lung specimen classes and were
pursued further via translation into an RT-qPCR format that is
compatible with RNA extracted from FFPE materials.

Paraffin Sample Set

A surgical incident cohort was collected from historical lung
cancer paraffin specimens at the University of North Carolina
at Chapel Hill and the University of Utah for a total of 442
specimens (Table 2). Patient clinical characteristics were
highly similar between the two institutions, with no major
differences except in tumor cellularity, which was greater in
tumors from the University of North Carolina at Chapel Hill.
The four predictor histologic types composed most cases. A
small proportion (9%) had other histologic types.

Probes were designed for the 57 genes (Table 1). RT-
qPCR gene expression of nearly all the genes was detected
across samples, with the median gene having detectable
values for 97% of specimens (Table 2 and Supplemental
Figure S3). Expression of BMP7 was not detected in 41%
of samples and was removed from further analysis. Within
samples, a high rate of detectable expression was achieved,
with the median sample having 98% of genes detected.
Fourteen specimens with >15 genes having no detectable
expression were removed from analysis (failed assay). Gene
detectability was not associated with histology or tumor
characteristics, including tumor cellularity, necrosis, fibrosis,
or the age of the sample. Therefore, the RT-qPCR assay
could robustly detect gene expression in lung tumor speci-
mens of variable quality and age.

Predictor Development

The classifier development specimen set (Supplemental
Figure S1) was used to develop an RT-qPCR HEP and to
evaluate its performance by Monte Carlo cross-validation.
The predictor exhibited a mean 84% (95% CI 75% to
93%) test set accuracy and surpassed the objective target for
clinically useful diagnostic reproducibility of k> 0.7,
achieving a mean k of 0.77 (95% CI 0.64 to 90) over 1000
test set iterations. All histologic types were predicted with
high accuracy, although the accuracy was highest for
carcinoid and small cell carcinoma, although relatively
fewer of these histologic types were assessed (Figure 1A).
Among the cross-validation iterations, prediction confidence
The Journal of Molecular Diagnostics - jmd.amjpathol.org
was significantly and positively correlated with prediction
accuracy (Spearman rank correlation on tertiles of confi-
dence and accuracy, rho Z 0.85, P < 0.001) (Figure 1A).
Also, stromal score was significantly negatively correlated
with prediction accuracy (Spearman rank correlation on
tertiles of stromal score and accuracy, rho Z �0.81, P <
0.001) (Figure 1A). The confidence and stromal scores
provide information about the overall quality of the sample
that would be useful for clinical application.

After predictor performance was estimated, all the training
set tumors were used to make a final predictor. This predictor
was then applied to the entire classifier set to estimate training
performance (Figure 1B). Training prediction accuracy (87%;
95% CI 81% to 92%) and kscore (0.81; 95% CI 0.72 to 0.89)
were similar to the accuracy estimated by cross-validation.
When there were discrepancies between predicted tumor
histology and the clinical diagnosis, these were generally
associated with lower prediction confidence, higher stromal
scores, or both. These results suggested that estimates of
prediction confidence and stromal scores could be factored
into the interpretation of a predicted class. In some cases, the
predicted histology differed from the clinical diagnosis but
was associated with high confidence in the divergent predic-
tion. In summary, genes selected from microarrays enabled
accurate prediction of histologic types by RT-qPCR in paraffin
specimens that was highly concordant with clinical diagnosis.

Independent Validation

The HEP was then applied to two independent validation sets
so that HEP performance could be evaluated on separate sets
of tumors and could be compared with pathologist histology
diagnosis on the same tumor specimens. In the single-block
validation set, tumor specimens were given histology clas-
sifications by a pathologist panel to compare the diagnostic
performance of the HEP with multiple independent light
microscopy reviews (Figure 2A). This experiment is an
estimate of interobserver reproducibility of histology for
these tumors viewed as single slides rather than as an entire
clinical case. The mean accuracy (relative to the clinical
diagnosis) of the pathologists was 68% (95% CI 56% to
76%), consistent with large historical morphology experi-
ments on interobserver variability of this type.8 The adjusted
pathologist accuracy for a four-category diagnosis was 73%
(95% CI 61% to 81%). The HEP exhibited a similar accuracy
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Table 2 Clinical Characteristics of the FFPE Cohort

Characteristic
University of
North Carolina

University
of Utah Total

Total No. of specimens 350 92 442
Gene detection rate (10th, 50th, and 90th percentiles) 83, 97, 100 93, 98, 100 85, 97, 100
Within sample gene detection rate (10th, 50th, and 90th percentiles) 83, 97, 99 91, 99, 100 85, 98, 99
Tumor specimen histology

Adenocarcinoma 144 28 172
Carcinoid 28 11 39
Small cell carcinoma 18 0 18
Squamous cell carcinoma 94 13 107
Other types 25 8 33

Tumor necrosis (median %) 15 15 15
Tumor fibrosis (median %) 10 15 10
Tumor cellularity (median %) 80 65 80
Normal specimens matched tumor histology

Adenocarcinoma 17 20 37
Carcinoid 5 0 5
Small cell carcinoma 1 0 1
Squamous cell carcinoma 13 9 22
Other types 5 3 8

Tissue type
Gross resection 335 92 427
Small-volume biopsy 6 0 6
Lymph node 9 0 9

Special IHC stains used in clinical diagnosis 70 0 70
Sex

Female 132 35 167
Male 177 22 199

Stage
I 153 34 187
II 58 6 64
III 38 13 51
IV 4 1 5

Grade
Poor 88 24 112
Moderate 131 16 147
Well 19 2 21

Smoking
Nonsmoker 25 2 27
Smoker 235 45 280

Values are specimen counts except for those labeled as percentiles or median values. For the cases that provided matched normal specimens, the distri-
bution of the tumor histologies is presented. The number of cases in which IHC analysis was used in the clinical diagnosis is presented, and this is a subset of
the number of tumor cases. Some clinical data were missing, so not all clinical features sum to the total.

Wilkerson et al
of 78% (95%CI 69% to 88%). As before, high stromal scores
or low prediction confidence values corresponded to lower
accuracy. For most cases in which the HEP disagreed with
the clinical diagnosis, at least one of the pathologists was
concordant with the HEP. In one case, all the study pathol-
ogists and the HEP were in agreement but in disagreement
with the clinical diagnosis (Figure 2A). Conversely, there
was only one case in which the clinical diagnosis and the
HEP disagreed and the pathologists exhibited no disagree-
ment with the clinical diagnosis. In summary, the HEP
compared favorably with pathologists in a test of interob-
server reproducibility of histology diagnosis.
492
In the dual-block validation set, tumor specimens were
histologically diagnosed by three pathologists and the HEP
(Figure 2B). This experiment estimates intraobserver reli-
ability of histologic diagnosis for the HEP across a block pair
in the same tumor. The experiment is standardized for the
difficulty of each paired sample by obtaining multiple reviews
by light microscopy from pathologists blinded to the paired
nature of the samples. Precision was defined as the percentage
of cases in which a classifier (either HEP or a pathologist)
reported the same histology for both tumor blocks in a case.
The pathologists had 68%, 68%, and 44% case precision,
yielding a mean precision of 60% (95% CI 44% to 68%). The
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Figure 1 HEP performance. A: Performance of the cross-validation iterations (nZ 1000). Prediction confidence and stromal score tertiles were assigned in
each cross-validation iteration. Tertile accuracies over all the iterations are displayed. Data are shown as means (95% CIs). B: Total training performance for
the final predictor applied to the predictor development tumor set. Each column represents one tumor specimen. NA, not assessed.
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pathologist case precision adjusted for the four-class scheme
was 65% (95% CI 49% to 73%). The HEP had a precision of
92% (95% CI 80% to 100%), indicating that it made highly
consistent calls among blocks from the same tumor.

Impact of Sample Quality on Prediction Accuracy

To assess the impact of specimen quality, specifically low
tumor cellular content, the HEPwas applied to the independent
set of samples with low tumor content (cellularity, <50%)
(Figure 3). Prediction accuracy remained almost as high as in
samples deemed to be of high quality (accuracy, 81%; 95% CI
73% to 89%; kZ 0.70, 95% CI 0.56 to 0.82). Consistent with
the low tumor content set’s definition of <50% tumor cellu-
larity, stromal scores were found to be significantly greater in
the low tumor content set (mean, �0.42) compared with
the high-quality classifier development set (mean, �0.25)
(Kruskal-Wallis P < 0.001). A reduction in prediction
confidence was also found in the low tumor content set
(mean, 0.32) compared with the high-quality classifier
  Single block independent validation set

Clinical Diagnosis
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Pathologist calls 100%
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Figure 2 HEP comparedwith pathologist diagnosis.A: Single-block independent
diagnoses of these same specimens are indicated by the bar graph in which the height
having a histology of corresponding color. In one case (marked with an asterisk), all t
the clinical diagnosis. B: Dual-block independent validation set results. Tumor replic
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development sets (mean, 0.40) (Kruskal-Wallis P < 0.01),
although this difference in confidence is not as large as the
difference in stromal scores. As in classifier development,
inaccurate predictions exhibited lower prediction confi-
dence than did accurate predictions. Therefore, these data
support that the lower limit of tumor cellularity for confi-
dent RT-qPCR histology prediction is <50% and that
prediction confidence can be effectively used in interpret-
ing predictions.

Finally, the predictor was applied to two other tumor
sets relevant in clinical settings: specimens with high rates
of failed gene amplification (failed assay) and specimens
that are outside the scope of the HEP (outside scheme),
such as metastatic tumors or large cell carcinomas
(Supplemental Figure S4). Prediction accuracy and confi-
dence were low for the failed assay set, indicating that
failed assays should be viewed with caution. Outside
scheme tumors also had low confidence, further supporting
that prediction confidence is helpful in identifying mis-
predicted specimens.
ical Diagnosis

tology Expression Predictor

omal Score
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validation set results. Columns represent the same tumor specimen. Pathologist
of each colored bar represents the portion that the specimen was diagnosed as
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ate specimens (blocks) are indicated by black vertical bars.
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Low tumor content independent validation

Clinical Diagnosis

Histology Expression Predictor

Prediction Confidence

Stromal Score

Adenocarcinoma
Small Cell Carcinoma
Squamous Cell Carcinoma
Carcinoid
Other

Histological Type
0.7
0.43
0.14
-0.14
-0.42
-0.71

Prediction Confidence
High confidence

Low confidence

Stromal score
High stromal

Low stromal

Figure 3 Prediction in specimens with low tumor content. The results
for the low tumor content independent validation set are displayed. Each
column represents one tumor specimen.
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Comparison with Special Stains

Consistent with what has long been considered good clinical
practice, the most recent consensus recommendations for
the classification of lung adenocarcinomas recommend that
“[i]f the tumor cannot be classified based on light micros-
copy alone, special studies such as immunohistochemistry
and/or mucin stains should be applied to classify the tumor
further.”24, p245 To investigate cases that were considered
diagnostically uncertain by light microscopy alone, we ab-
stracted data on the use of IHC staining as reported by the
clinical pathology reports of patients in the present study. In
approximately 22% of all cases, there was a report of at least
one special stain in the clinical pathology report. We are
unaware of other published data on the rates of special stain
use in a clinical cases series such as this one; however, use
in this range would be consistent with previous published
rates at which pathologists reported low confidence in
a diagnosis based on findings from light microscopy of
grossly resected tumors.7,24 As expected, given the lack of
consensus recommendation, a wide range of markers and
standards were used (33 individual stains and markers). The
most commonly reported consideration when a marker was
used was to support a suspected diagnosis of nonesmall cell
lung cancer (NSCLC) or NSCLC variant, such as lung
adenocarcinoma or lung squamous cell carcinoma (50%).
Other common uses were to evaluate a suspected metastasis
of extrathoracic primary tumor (22%), neuroendocrine
tumor (22%), infectious etiology (17%), or other specifically
mentioned diagnoses (14%). It was not always possible to
decipher the diagnostic intent of every case. Some reports
considered multiple markers.

To standardize the use of special stains in this cohort, we
had tumors scored for TTF-1 and p63, two popular markers
for the detection of adenocarcinoma and squamous cell
carcinoma, respectively, which are the most prevalent
histologies of NSCLC. Of the 64 cases from the single-block
validation data set with a clinical diagnosis of adenocarci-
noma or squamous cell carcinoma, 8 (13%) failed to stain for
either of the diagnostic markers TTF-1 or p63 (Figure 2A).
Nine additional cases (14%) were evaluable for only one
marker. Two additional tumors (3%) stained positively for
both. In brief, limited staining or a failed staining pattern was
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observed in 31% of cases, consistent with previous technical
reports. Ambiguous staining is not entirely uninterruptable
for clinical use because many of these would be expected to
be lung adenocarcinomas.26 However, limitations in tech-
nical performance illustrate the ongoing need for high-
performance gold standard reagents inclusive of the full
heterogeneity of NSCLC. However, for the sake of discrete
comparison in the present example, we compare the HEP
only with those 45 cases that are positive for either TTF-1 or
p63 but not both. Compared with the clinical diagnosis, IHC
analysis findings agreed in 93% of cases (95% CI 87% to
100%) and the HEP agreed in 91% of cases (95% CI 82% to
98%), suggesting outstanding agreement in the most unam-
biguous cases.
Discussion

In this study, we sought to predict the histologic diagnosis
(adenocarcinoma, carcinoid, small cell, or squamous cell) of
patient tumors by gene expression in clinically relevant
specimens. These classes are each of particular importance
in the clinical management of lung cancer as they have
specific implications for patient therapeutic decisions. We
were able to accomplish this goal of developing a robust
HEP that uses routinely collected paraffin samples rather
than research-grade frozen material. Using specimens with
high tumor cellularity (>50%), we developed a predictor
that exhibited high accuracy (84%) in cross-validation.
Because specimen quality is a common concern in cancer
studies14 and in developing cancer assays, we evaluated the
predictor on an independent set of tumors with low tumor
cellularity (<50%). The prediction performance (81%
accuracy) was not a substantial reduction from the high
tumor content set. Therefore, RT-qPCR gene expression can
be used to accurately predict lung histology in specimens of
low tumor cellularity without a significant reduction in
performance. The implication of this result is that a greater
number of patients can be eligible for RT-qPCR histology
prediction because not all patient tumor specimens have
high tumor cellularity. Such results warrant further evalua-
tion in even more marginal specimens that are routinely
collected in clinical practice, such as needle, endoscopic-
guided, and other small-volume biopsies.
Because not only diagnosis but diagnostic confidence is

important in clinical practice, we designed the predictor to
also calculate a prediction confidence and a stromal score.
These quality metrics reflect different properties of a tumor
specimen’s expression: how well a specimen is predicted to
be its histology versus another histology and how much of
a stromal lung component is present in a tumor. Prediction
accuracy was significantly and positively correlated with
prediction confidence, which to our knowledge is the first
demonstration of this relationship in cancer gene expression
studies and could be used in setting cutoff points as to when
to accept the result of an assay for patient use. Such objective
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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confidence thresholds are generally lacking in current prac-
tice. Although stromal scores demonstrated slight negative
trends with prediction accuracy, this was much less of
a concern than might have been expected. This is encour-
aging as attempts to offer molecular diagnostics to patients
whose tumors fail to meet the most rigorous standards of
tissue purity. This histologic confidence estimation and
stromal estimates could, in future studies, be shown to have
clinical benefit and could suggest when to pursue additional
tissue or other diagnostic modalities before offering defini-
tive therapy based on a specific tumor histology.

Lung cancer histologic classification is officially based on
pathologist light microscopy review of multiple sections of
tumor.4 Recently, IHC protein stains have been proposed
that correlate with the histologic classification24e26 and are
sometimes used clinically; however, they are not part of the
official histologic classification.4 To serve as an estimate of
the diagnostic standard, we had pathologists classify one
representative H&E slide from each case. The HEP was run
using RNA extracted from the same tissue block as the
representative slide to control for possible within-tumor
variation. In the single-block validation set, HEP predicted
the clinical histologic diagnosis at least as well as a panel of
pathologists. In the dual-block validation set in which the
precision of diagnoses were compared between two separate
blocks from the same case, the HEP exhibited greater
precision. Pathologists often have multiple slides from
a case, and their performance might have improved with
more slides. The present work is performed in an experi-
mental setting and suggests favorable test characteristics.
However, it remains to be seen how reproducible the
approach is in a prospective clinical setting.

In the present study, we pursued an unbiased search for
transcriptional markers of the morphologic classes of lung
cancer, as described in Materials and Methods. In many
cases, the list of candidates was in the thousands, with
hundreds of excellent markers to choose from. In some
cases, the unbiased search yielded markers that are among
the most well characterized for the tumor types, such as the
gene TTF-1 (otherwise known as TITF-1 or NKX2-1). In
other cases, well-characterized markers, such as p63 for
squamous cell carcinoma and CD56 for small cell carci-
noma, did not rise to the absolute top of the unbiased search
and they were not considered, although we anticipate that
they might have been reasonable additions.

The present study was performed by profiling many
samples for the same gene across several PCR plates
(research settings) rather than profiling a single sample
across many genes on the same plate, which would be done
clinically. Because not all the samples were assayed at the
same time, we observed a small but measureable batch
effect by PCR plate such that technical performance
improved slightly with batch correction. In clinical practice,
a reference is included for each gene on the plate to correct
for batch effect.31 In addition, future use of the HEP versus
IHC panels must consider multiple factors, such as the
The Journal of Molecular Diagnostics - jmd.amjpathol.org
ability of tissue and cost. Although reagent costs for the
HEP are low (<$1 per gene), the actual cost to a commercial
laboratory would likely be on the scale of other multigene
molecular assays. It would be vital to determine the utility of
such a test versus the added cost.

In the United States, it is estimated that up to 70% of
patients are diagnosed as having NSCLC based on small-
volume biopsy samples.24 Although such biopsies are
proved to be useful for the purposes of distinguishing small
cell lung cancer from NSCLC, they are limiting in the
number and nature of special studies that can be performed.
Accurate morphologic diagnosis, mutational assessment,
and special stains are frequently difficult or impossible.24

Any assay that can address the use of small-volume
biopsy specimens would, therefore, have the potential for
immediate impact. A nucleic acidebased test such as the
HEP offers an opportunity to use small-volume biopsy
samples. In the setting of small-volume biopsy samples, it
is important that the HEP compliment the need for muta-
tional testing rather than compete for tissue. In fact, this is
an advantage of the technology because it is possible to
isolate DNA and RNA from the same specimen such that
both assays can be performed from samples currently used
for DNA testing only. In other words, the HEP does not
increase the tissue requirement beyond what is already
required for mutation testing. In fact, the net result may be
a decrease in tissue requirements because tissue for special
stains might not be required. The present study was
designed with tissue requirements based on significant
previous experience with a similar protocol in breast
cancer.22,31,32 This experience suggested that 1 to 2 � 10-
mm sections of a paraffin block from a grossly resected
surgical case were nearly always sufficient to produce
sufficient RNA to perform 100 PCRs on the LightCycler
480. The present study requested 4 � 10 mm of FFPE tissue
scrolls from anatomical pathology based on previous
experience primarily in breast cancer studies. However, in
practice, sections from a single 10-mm section of lung
cancer ranged from 200 to 1000 mm of RNA, an amount
that was sufficient for RNA profiling. In no case was >2 �
10 mm of tissue used. The present study was not designed
to primarily evaluate small biopsy samples. However,
approximately 3% of the samples were from mediastinos-
copies and endobronchial biopsies, and these samples were
processed in an identical manner to the grossly resected
tumors with overall similar results. The present experiment
in lung cancer validates those input requirements, and
initial experiments from smaller sections showed no
degradation in performance. Rigorous evaluation of
minimum input requirements in terms of cell number or
RNA quantity was not a component of the present study.
Future studies will focus on evaluating small-volume
biopsy samples and randomized clinical trials to provide
additional validation for possible clinical use.

In the present study, we compared the accuracy of a novel
PCR-based assay to categorize lung cancer histologic subtypes
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with the standard of the clinical diagnosis. Comparison of
molecular diagnostic with routine diagnosis, as we have done
herein, is a widely used study design.24,26,33 By this measure,
the HEP performs favorably compared with existing bio-
markers and shows potential to advance clinical lung cancer
care. The clearest promise would be if the assay performs well
in future studies of small input material where routine
biomarkers such as IHC are limiting. Unlike most studies,
however, the present work includes multiple independent
pathologist reviews of the histology from the case. The value
of supplemental reviews relative to that obtained from the
clinical pathology report is limited because the study pathol-
ogist lacks the complete case, clinical history, and special
stains. Nonetheless, review of the data suggests that there may
be insights gained by including additional pathologist reviews
as we have done. For example, the approximately 15% to 20%
of cases in which the HEP is discordant with the clinical
diagnosis are highly overlapping with the most discordant
independent reviews by lightmicroscopy aswell as discordant
and uninformative cases by IHC analysis. In our experience,
further characterization of such cases often fails to produce
a consensus diagnosis. Similar rates of challenging cases have
been observed in other large NSCLC data sets. For example,
after careful screening by clinical diagnosis, a tumor bank
pathologist, and central pathology review, the NIH-sponsored
NSCLC tumor profiling projects have routinely seen the final
expert pathology review reject 15% of tumors as belonging to
the wrong histologic group.34 Recognition that NSCLC has
a significant fraction of cases that are challenging to classify is
important because the rate of correct classification is the
outcome of studies such as we report in this article. Recog-
nizing that some clinical cases are likely to be misclassified
suggests that other outcome measures should be considered
because classification by definition will underestimate the
performance of the assay. One approach is to emphasize assay
performancemeasures, such as reproducibility, as we do in the
present study.

Accurate classification of lung cancer histology is vital
to making correct treatment decisions for patients with this
disease as there are indications for specific groups (ie,
pemetrexed for adenocarcinomas) and indications against
other groups (ie, no bevacizumab for squamous cell
carcinomas). In direct contrast to its importance, there are
few molecular tools to augment the clinical pathologist’s
ability to make a diagnosis. This is particularly problematic
given the challenges facing lung cancer pathologists,
including heterogeneous samples that are frequently small
and indeterminate in morphology. Herein, we presented
a near-term potential tool that is a multigene predictor of
histology based on a large body of preexisting data to make
a reliable multiclass diagnostic prediction in clinically
relevant patient specimens. We evaluated this technology
in multiple independent patient cohorts totaling nearly 450
samples, providing a large amount of objective data on the
HEP’s performance as a function of sample quality and
assay quality.
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