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Over a decade of sampling has shown that there are consistent differences in the sizes of 0-group plaice by late
summer comparing 21 nursery sites on the Scottish west coast. However, when young fish were collected
from two sites which produce particularly small and large fish and reared using a common garden design, growth
rates between fish from the two sites were indistinguishable. Either there is little selection for fast or slow growth
up to a few weeks post-settlement, or such effects do not persist sufficiently strongly to influence later growth.
There were also no significant correlations between the time-series of fish size comparing sites, although within

ff,z,vrv;,:f;es platessa some sites there was evidence of inter-annual density-dependent effects. Any influences of offshore regional-
Growth scale factors, such as sea temperature or pelagic primary productivity on growth thus appear to be heavily mod-
Abundance ified by local conditions on the nursery grounds. The field observations combined with the experimental results
Nursery Grounds lead us to conclude that the size 0-group plaice attain in late summer is mainly controlled by post-settlement

Common garden Rearing habitat quality.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license.

1. Introduction

European plaice (Pleuronectes platessa L.) is a commercially impor-
tant flatfish which has been a focus for fishery research for over a centu-
ry. Plaice spawning generally commences early in the year and,
following a period of planktonic drift, metamorphosing larvae settle
into shallow, sandy habitats which are often accessible to researchers
(Gibson, 1999). The commercial importance of plaice and the ready ac-
cessibility of the nursery grounds explains why so many studies have
been undertaken on the post-settlement ecology of plaice, studies
which have significantly contributed to our understanding of recruit-
ment dynamics in marine fish (Ciotti, 2012; Nash and Geffen, 2012).
An important conclusion from these studies is that fish size and mortal-
ity rates are inversely related and that this is generated by predator-
prey interactions (Beverton and Iles, 1992a; Ellis and Gibson, 1995;
Gibson et al.,, 1995). Larval and juvenile flatfish growth rates should
thus be of key importance in determining overall survival (Ciotti,
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2012; Freitas et al,, 2012; Teal et al., 2008; van der Veer et al., 2010). Ex-
cept for the period immediately after settlement (Ciotti et al., 2010,
2013a; Freitas et al., 2012), growth of 0-group plaice appears to be
lower than predicted from laboratory experiments (Freitas et al.,
2012; van der Veer et al., 2010). The commonest explanation for this
is that some form of food limitation is occurring on the nursery grounds.
This could result directly from reductions in the abundance or produc-
tion of prey (Ciotti et al., 2013a), increasing inter-specific competition
or declines in food quality (Ciotti, 2012; Freitas et al., 2012; van der
Veer et al.,, 2010). However, there is little clear empirical support for
any of these hypotheses. The lack of predictive power of current growth
models in relation to field-data (van der Veer et al.,, 2010) suggests that
either some fundamental processes are missing, or that we are not mea-
suring the right factors at appropriate spatial and temporal scales (Ciotti
et al., 2013b, 2013c).

The numbers of plaice larvae reaching individual nurseries depends
on oceanographic connectivity with the spawning grounds (Bolle et al.,
2009; Cushing, 1990; Fox et al., 2006). Plaice spawning on the Scottish
west coast has been confirmed in the Clyde Sea by means of plankton
surveys (Poxton, 1986) whilst Ellis et al. (2010) and Coull et al. (1998)
indicated further spawning grounds to the west of Islay, to the south
of Tiree and Coll and to the eastern side of the Isle of Lewis (Fig. 1).
Steele and Edwards (1970) also reported a small area of localised
spawning between Gairloch and Loch Ewe. Since the prevailing Scottish
Coastal Current runs in a northerly direction (Inall et al., 2009), the more
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Fig. 1. Locations of the 21 nursery grounds sampled between 2001 and 2011. Shaded areas
indicate the locations of plaice spawning grounds reported in the literature.

southern spawning sites may be the source of metamorphosing plaice
settling onto beaches along most of the Scottish west coast. Thus,
given the variable drift distances of different nurseries from these
spawning grounds, there could be potential for growth-rate dependent
selection to occur during the planktonic phase. The onset of metamor-
phosis in flatfish larvae is thought to be related more to size than age
(Chambers and Leggett, 1987; Geffen et al., 2007) and, in addition,
plaice do not appear to be able to delay settlement while searching for
suitable substrates (Gibson and Batty, 1990). Sites further from the
spawning grounds might therefore favour settlement of slower growing
larvae whilst sites closer to spawning grounds might favour faster
growing larvae. If selection for fast- or slow-growing larvae does occur
during the planktonic stages, and these differences persist beyond set-
tlement, this could provide an explanation for why faster or slower
growing fish tend to be found at certain sites. Growth-dependent selec-
tion during the planktonic phase has been demonstrated in anchovy
(Takasuka et al., 2004) and mackerel (Dominique et al., 2007) and has
been shown to persist beyond larval life in tropical damselfish
(Vigliola et al., 2007).

We firstly examined data from surveys conducted each August
between 2001 and 2011 at the same twenty-one beaches where 0-
group plaice growth has also been estimated using an RNA-based meth-
od by Ciotti et al. (2013b). We then tested whether selection for fast or
slow-growing fish during earlier life could provide an explanation for
the differences in sizes reached in late summer by rearing young post-
settlement plaice collected from contrasting sites in a common-garden
experiment.

2. Materials and methods
2.1. Beach sampling for size in August, 2001-2011

Juvenile flatfish were sampled at the sites shown in Fig. 1. Four addi-
tional locations (Dunstaffnage, Kentra, Shallachen and Loch Sween)
were also sampled but were excluded from the data because very low
numbers of plaice (<20) were caught at each of these sites in most
years. Fish were sampled using 1.5 m beam-trawls towed manually at
walking pace for 5 min in water between 0.5 and 1.5 m deep. Three to
five replicate tows were completed at each site within 1 h either side
of low water. The distance covered by each tow was recorded using
hand-held Garmin GPS units. Each trawl had a single spiked tickler
chain and 10 mm mesh net and the same trawls were used throughout.
Fish were sorted from the catches and anaesthetized using benzocaine
or clove oil and then either fixed in 4% formalin or, for years where juve-
nile plaice were also analysed for molecular condition (2005-2007
only), photographed against a calibration rule before being frozen
(Ciotti et al., 2013b). On return to the laboratory, plaice were sorted
from the catches and their total lengths (TL) recorded. For fish which
had been photographed, lengths were calculated from the calibration
rule. Lengths were not adjusted for preservation method as Lockwood
(1973) showed that 0-group plaice only shrink by 2.5% when fixed in
formalin. For a 50 mm fish this would only make a difference of
1 mm. The density of fish at each site by year was estimated as the
total number of fish caught divided by the total swept area. Abundance
data were not corrected for net avoidance or gear efficiency (see
Discussion). Any plaice caught which were >120 mm TL were
assumed to be 1-group survivors from the previous year and were not
included in the data analysis.

2.2. Common garden rearing experiments, 2011-2012

To investigate whether 0-group plaice from different sites have
inherent growth differences we compared the growth of fish which
originated from two sites which have consistently yielded the greatest
differences in late-summer size, namely Tralee (56.493°N 005.418°W)
which tends to produce larger fish and Caolisport (55.918°N
005.595°W), which tends to produce smaller fish (Fig. 1).In 2011, juve-
nile plaice (30-60 mm total length) were collected from Caolisport on
27 June and from Tralee on 29 June using the trawl described above
(rearing Trial I). Sufficient fish were collected for stocking the experi-
ment plus holding a reserve to replace any mortalities. Fish were
transported from the two collection sites to the laboratory in insulated,
aerated containers. After 48 h acclimation, fish >35 mm TL were sub-
dermally tagged (ventral surface) using visible-implant-elastomer
(VIE, Northwest Marine Technology, Washington, USA) with different
colours identifying their site of origin. Using existing data on the typical
standard-deviations in size in mid-August, power analysis was used
(Faul et al., 2007) to estimate that a total sample size of at least 36
would be needed to detect a difference of 10 mm in final sizes between
groups (o probability at 0.95 and (3 probability at 0.2). Twenty-five fish
from each site were therefore assigned to each of three rearing tanks on
1 July ensuring that the initial length distributions of fish from each site
within each tank were as equal as possible. The initial size distributions
were compared with ANOVA to check that there were no significant dif-
ferences. Rearing was conducted in 120 1 fibreglass tanks with continu-
ous aeration and flow-through seawater. The bottom of each tank was
covered with aquarium sand to allow the plaice to undertake their nor-
mal burying behaviour. Tanks were cleaned daily and the fish fed ad
libitum with finely chopped fresh mussel (Mytilus edulis). The quantities
of mussel offered were increased as the fish grew so that a small amount
of uneaten food remained the following morning. Uneaten food was re-
moved using a small hand-net before re-feeding. Water temperature in
the tanks was recorded daily. Room lighting was set on a time-cycle of
16:8 h (light:dark) approximating natural conditions at this time of
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year and latitude. Fish in the reserve stock were reared under similar
conditions. Any fish in the experimental tanks showing signs of disease
were removed and replaced from the reserve stock with similar sized
fish from the same site. At days 25 and 50, the fish were carefully re-
moved from the experimental tanks using a hand-net, tag identities
checked, total lengths measured and the fish returned to cleaned
tanks. At day 70, fish were sacrificed using an anaesthetic overdose
(150 mg 1= ') of MS-222 (Pharmaq, Hampshire, UK) and measured.

In 2012 two further rearing experiments (trials Il and III) were un-
dertaken, the first using fish collected earlier in the settlement season
and the second repeating the experiment later in the season. Plaice set-
tlement at Tralee and Caolisport was monitored by trawling at the sites
every 10 days from mid-April onwards. Towards the end of May it was
judged that sufficient settled plaice were being caught for the experi-
ment. Fish were collected on 21-23 May (29-57 mm total length) and
moved to the laboratory to acclimate. Fish were VIE tagged on 31st
May and groups assigned to rearing tanks on 1st June. The whole proce-
dure was repeated on 22nd-23rd June when collected fish were
between 32 and 45 mm in length. Because there was a requirement to
have more tanks for trials Il and III, tank size had to be reduced to 90 |
but otherwise the rearing protocols described above were followed.

2.3. Data analyses

All statistical analyses were performed using R version 2.15.1
(R Development Core Team, 2012). Exploratory data analysis on
0-group plaice size in August across the 21 annually sampled sites
was undertaken using summary statistics, smoothed density func-
tions (package ‘sm’) and box and scatter-plots. Annual size data fre-
quently departed from normal-distributions, and in some cases data
were multi-modal, so non-parametric methods were used. Between-
site correlations in the time-series of annual median fish size and
density were computed using Kendall's rank correlations with the
critical significance levels adjusted for multiple comparisons using
the Holm-Bonferroni method (‘corr.test’ from package ‘psych’). Be-
tween-site comparisons in median size were performed using the
Kruskall-Wallis test with the post-hoc multiple comparison from R
package ‘pgirmess’. Relationships between average plaice density
and median fish size at each site were investigated graphically
using scatter-plots. Quantile regression was also explored as a
potential method for more formally testing these relationships but
models failed to fit in many cases, probably due to insufficient
degrees-of-freedom.

Fish total lengths from the common garden experiments were firstly
log-transformed to stabilise variances and then analysed using mixed
linear models following Crawley (2007) This approach takes account
of the temporal pseudo-replication within tanks, as it was the same
groups of fish which were being measured repeatedly over time (‘lme’
within R package ‘nmle’). Tanks (1-3) were treated as replicates
within each trial (I-III). This procedure gives improved statistical
power against the alternative approach of applying ANOVA on the
final size data alone. Growth rates were subsequently modelled using
the un-transformed data with generalised least squares (‘gls’ within R
package ‘nmle’) with the option to automatically estimate the vari-
ance:mean function in order to account for heteroscedasticity in the
data.

3. Results
3.1. Plaice sizes at field sites in August

After adjustment for multiple comparisons, there were no statistical-
ly significant between-site correlations for any of the time-series of me-
dian fish size in August including geographically adjacent comparisons.
However, non-parametric smoothed density estimators of the annual
median fish size within sites tended to follow reasonably similar,
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Fig. 2. Distribution of medians of 0-group plaice lengths in August across years
(2001-2011). Thickened bar indicates the median; boxes indicate inter-quartile range,
dashed lines indicate approximate 95% confidence intervals, circles indicate extreme
values. Upper horizontal lines indicate sites where median sizes were statistically different
(p < 0.05) using the Kruskall-Wallis post-hoc multiple comparison test — tick above indi-
cates which site to compare with others (ticks below).

symmetrical modal distributions (Fig. 2) justifying use of the Kruskall-
Wallis test for inter-site comparisons. Median sizes in August (pooled
across years) varied significantly between sites (K-W chi-squared =
80.05, df = 20, p-value = 3.9e-09) and were statistically different
(p < 0.05) when comparing Caolisport and Gruinard with a number of
other sites including Tralee and Girvan (Fig. 2). The spread of median
sizes over time at each site was least variable at Torridon and Caolisport
and most variable at Kilmory and Glenuig. Higher inter-quartile values
in Fig. 3 indicate wider size distributions across years whilst a larger
spread of values about the median indicates greater variability in the
spread of the size distributions over time. Underlying size distributions
were thus least variable at Ardtoe and Tralee and most variable at
Tayinloan and Glenuig. Statistically significant relationships between
median size and inter-quartile range within sites were only found at 5
out of the 21 locations, namely Tayinloan (tau-a = 0.51, p = 0.047),
Chil Mhalieu (tau-b = 0.60, p = 0.01); Glenuig (tau-a = 0.82,
p = 0.0001); Firemore (tau-a = 0.67, p = 0.0003) and Mellon Charles
(tau-b = 0.71, p = 0.003). These results suggest that sizes of 0-group
plaice were consistently small in August at Caolisport while fish at
Tralee were amongst the largest. Although fish at Girvan tended to be
slightly larger than at Tralee, there was much more inter-annual vari-
ability in median size at the former site.

3.2. Plaice densities in August

Median plaice densities were statistically different comparing sites
(K-W chi-sq = 48.8, df = 20, p = 0.0033) with densities at Ayr
being significantly higher than Davaar, Gairloch, Firemore and Gruinard
(Fig. 4). Densities at Tralee tended to be amongst the highest observed
but were quite variable across years resulting in a lack of statistical dif-
ference from any of the other sites (Fig. 4). At many sites (amongst
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Fig. 3. Distribution of inter-quartile ranges of 0-group plaice lengths in August across years
(2001-2011). Thickened bar indicates the median; boxes indicate inter-quartile range,
dashed lines indicate approximate 95% confidence intervals, circles indicate extreme
values. Site ordering is as in Fig. 2.

years) there were apparent inverse relationships between median size
of fish and plaice density (Fig. 5).

3.3. Common garden rearing experiments

In each rearing trial, growth was reasonably linear although the var-
iance increased (Fig. 6). Residuals from fitting mixed linear models to
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the log-transformed length data were well behaved and model testing
indicated that growth in length only varied significantly amongst trials
(Table 1). There was no evidence that fish from Caolisport and Tralee
had different inherent growth potentials, nor were interactions be-
tween rearing tank and origin of the fish significant (Fig. 6 and
Table 1). These conclusions held regardless of whether the experimen-
tal fish had been collected earlier or later in the season. Linear growth
rates (Table 2) were higher in Trial I (0.50 mm day~') than in Trial II
(0.38 mm day ') or Trial Il (0.43 mm day~'). In the 2011 rearing ex-
periment water temperatures rose from around 13.3 °C to 14.5 °C by
the end of the experiment whilst in 2012, temperatures in Trial II
were initially slightly lower (around 12.8 °C) but reached just over
14 °C at the end. In Trial Ill, temperatures started around 13.3 °C and in-
creased to 15.5 °C (Fig. 7). Post-tagging mortalities during Trial [ were
low at 3% over the 70 days but in 2012 mortalities were higher (21%
in Trial I and 15% in Trial III). This was possibly related to using smaller
tank sizes in the 2012 experiments.

4. Discussion

Plaice nursery sites along the Scottish west coast had a consistent
rank order in terms of the size 0-group fish attained by late summer
over the 11 years sampled. In particular, Caolisport and Gruinard tended
to produce small fish, whilst Tralee and Girvan produced larger fish. Al-
though density-dependence played a role in controlling inter-annual
differences in fish size within some sites, it did not explain the differ-
ences in fish size between these extreme sites. We were also unable to
detect any significant correlations comparing the time-series of August
o-group plaice size for sites with each other. Each site thus appears to be
behaving largely independently, and we interpret this as evidence that
size achieved by late summer is controlled by the underlying habitat
quality of each nursery ground. These conclusions are broadly in accord
with Ciotti et al. (2013b) who detected high variability in RNA-
predicted recent growth rates at the 25 km scale. Recent growth was
also significantly related to plaice density but also to regional-scale
physical factors such as wave exposure and tidal range (Ciotti et al.
2013b). There are a number of reasons why long-term patterns in size
between sites in August (this study) might not correspond with spatial
patterns in RNA-predicted recent growth including differences in the
lengths of the time-series used (11 years compared with 3), disconnect
between late summer recent growth rates and late summer achieved
size or differences in the statistical methods applied. A useful next
step would be to perform further mixed modelling to investigate
whether spatial patterns of cumulative seasonal growth (present
study) correspond with recent growth estimates in late summer mea-
sured across the same sites (Ciotti et al., 2013b).

In our common garden rearing experiments, 0-group plaice collect-
ed from Tralee and Caolisport failed to show any statistical differences in
growth. The number of fish used in the each trial along with the amount
of replication (3 replicates by 3 trials including fish collected at different
times through the settlement season) should have delivered a statistical
power of at least 0.8. However, we were unable to fully separate pre-
and post-settlement phases as the fish used to populate our experi-
ments would have been up to several weeks post-settlement (based
on their size and expected growth rates in the field). Unfortunately in
a pilot study we found that VIE tagging plaice <35 mm TL led to signif-
icant post-tagging mortality. We cannot therefore categorically rule out
the possibility that batches of larvae selected for fast- or slow growth
during the planktonic phase are delivered to specific nurseries, or that
growth rate selection does occur during settlement, but the evidence
suggests that either this does not occur, or that the effects of any such
selection do not persist beyond a few weeks of growth on the nursery
grounds. Had our common garden rearing revealed significant site
effects on growth it would have been worth repeating the
experiments using smaller fish closer to settlement size in order to try
and pin-point the stage at which such effects appear. Such small fish
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Table 1
Results of mixed modelling of the common garden rearing results - only fixed effects
reported - site nested within tank nested within trial.

Fixed effect Value Std. error DF t-value p-value
(intercept) 1.64 0.0062 1746 266.62 <0.001
Trial —0.024 0.0044 1746 —539 <0.001
trial:tank —0.0086 0.0018 1746 —047 0.64
trial:tank:site 0.00038 0.00087 1746 0.44 0.66

would have to be tagged using an alternate approach, for example im-
mersion in a seawater solution of fluorescent-dye which becomes incor-
porated into the otoliths (Liu et al., 2009). We chose not to use this
method for two reasons. Firstly the fish from the two sites would not re-
ceive identical marking treatments — one group would need to be
immersion-marked whilst the other would not and it is known that im-
mersion marking can lead to short-term reductions in growth. Perhaps
more importantly distinguishing otolith-marked from un-marked fish
can only be achieved by removing the otoliths after the fish are killed
and then examining them using ultra-violet epifluorescence microsco-
py. This would mean that fish sizes recorded during the rearing experi-
ments could not be assigned to the origin sites so that the statistical
analysis would reduce to an ANOVA on final sizes - a less powerful ap-
proach than the repeated-measures design used.

In our rearing trials the mean growth rates (0.38 to 0.50 mm day ™~ !)
were lower than those reported by Fonds et al. (1992) at similar tem-
peratures and diet (0.64 mm day~!). These differences could be due
to the smaller tanks used in the present study which may have in-
creased competition between fish resulting in slower growth for some
individuals. Despite the lower average growth, the final sizes of the
fish in our rearing experiments were at least as large as those found in
August at the field sites (Fig. 2).

We did see evidence for density-dependent effects on August fish
size at some, but not all, of the field sites. Negative relationships be-
tween the size of 0-group plaice and their abundance in late summer
have been reported from a number of nursery grounds (Geffen et al.,
2011; Nash et al., 2007; Rauck and Zijstra, 1978; Zijlstra and Witte,
1982; Zijlstra et al., 1982). The obvious explanation for such relation-
ships is that growth becomes food-limited when plaice densities are
high (intraspecific competition). However, Kuipers (1977) working in
the Wadden Sea, demonstrated that because of high production to con-
sumption ratios, food limitation at that site was unlikely. Zijlstra and
Witte (1982) further showed that juvenile plaice growth rates at that
location were consistent with a simple temperature-dependent model
based on ad libitum feeding experiments. They re-interpreted the
field-data as indicating that the size-abundance effect actually arose as
a consequence of sea temperatures during the planktonic phase. Low
temperatures would both encourage larger year-classes and lead to
later settlement, and thus smaller sizes during the summer (van der
Veer, 1986). However, this explanation appears somewhat unlikely
when comparing proximate sites along the Scottish west coast since
the fish should have experienced similar sea temperatures during

Table 2

Results of linear models fit to the common garden rearing data pooled by trial. Reported
var. func. is the power relationship to the mean which has been estimated to deal with
the heteroscedasticity in the data.

Trial Value Std. error t-value p-value
I var. func. 138
(intercept) 41.98 0.49 85.70 <0.001
slope 0.50 0.02 31.08 <0.001
Il var. func. 1.84
(intercept) 38.11 0.52 72.85 <0.001
slope 0.38 0.02 21.14 <0.001
il var. func. 2.08
(intercept) 37.63 0.33 11241 <0.001
slope 043 0.01 33.07 <0.001

Temperature (°C)

140 160 180 200 220 240
Day of year

Fig. 7. Daily water temperatures during the acclimation periods and rearing experiments.
In 2011 there was a single experiment covering the whole period shown (dashed line). For
2012 the light grey bars indicate the duration of Trials II and III.

their planktonic phase. The studies cited, including the present results,
show that density-dependent growth is a feasible but by no means uni-
versal (Haynes et al., 2012) phenomenon on plaice nursery grounds.
Whether it occurs at a particular site is presumably the result of the
range of settlement intensity experienced (Nash et al., 2007) interacting
with the local carrying capacity.

The lack of any significant correlations between the time-series of
0-group plaice densities in August comparing sites is somewhat sur-
prising. It is known that at larger regional-scales, time-series of plaice
recruitment (measured at age 1) are correlated and that this appears
to be driven by sea temperatures experienced during the previous
Feb-June (Fox et al.,, 2000). Since strong plaice year-classes are thought
to be generated during the planktonic phase, one might expect year-
class variability to be apparent on the nursery grounds, and to show a
degree of regional coherence. However, in Loch Ewe (Scotland), Steele
and Edwards (1970) reported that the abundance ranking across
years at settlement had changed by late summer and similar conclu-
sions were reached for the Irish Sea by Nash and Geffen (2000). In the
North Sea, the abundance of 0-group plaice in the English nurseries
did not reflect subsequent year-class strength at all (Whiting, 1983) al-
though the abundance in the Wadden Sea, which is thought to contrib-
ute the majority of recruits to the southern North Sea stock, did (Rauck
and Zijstra, 1978). This spatially fine-scaled variability was captured by
Beverton and Iles (1992b) in the concept of a parental stock being
linked to a large number of ‘mini-nurseries’, each with differing func-
tional attributes. Both settlement intensity and late summer densities
may thus be substantially modified by local conditions (Haynes et al.,
2012; Wennhage et al.,, 2007) and links between 0-group plaice abun-
dance and subsequent recruitment to adult stocks may not be apparent
at many individual nursery grounds.

In the present study, 0-group plaice were sampled each August
using beam-trawls, towed parallel to the shore in shallow water
(<1.5 m depth). This method was used for logistical reasons as several
sites often had to be sampled in one day. This approach could have bi-
assed the resulting fish length data by failing to capture larger O-group
fish which had already moved into deeper water (Geffen et al., 2011;
Gibson et al., 1996). However, Lockwood (1974) found that larger plaice
(>40 mm) only start to move out of the shallows at the end of August
and at Tralee, Gibson et al. (2002) showed that the median depth for
0-group plaice is usually 1 m until mid-September. Sampling was also
undertaken around low water when fish should be concentrated in
the shallows. However, growth- or size-related emigration has not
been studied at sites other than Tralee on the Scottish west coast so dif-
ferences between sites, or changes in emigration patterns over time,
could have contributed to observed differences in fish size. Long-term
changes in the patterns of emigration of juvenile plaice have been


image of Fig.�7

CJ. Fox et al. / Journal of Sea Research 88 (2014) 59-66 65

noted in the southern North Sea and are thought to be related to in-
creasing summer water temperatures (van Keeken et al., 2007). Howev-
er, summer temperatures in the inshore waters to the west of Scotland
have not increased during the years of our study, although this did fol-
low a period of increase between 1980 and 2000 (Fox and Howe,
2011; Inall et al., 2009). Estimates of fish population abundance and
size can also be biased by changes in catch efficiencies. Edwards and
Steele (1968) showed that the Riley type 2 m beam trawl had a fixed ef-
ficiency of around 32% for plaice from 25 to 80 mm in length. However,
using enclosure experiments, Kuipers (1975) showed that the efficiency
of the Dutch 2 m beam trawl declines from around 100%, when juvenile
plaice are 50 mm length, to around 35% by the time fish reach 125 mm.
We did not attempt to correct our catch-at-size data using size-variable
factors (Kuipers et al.,, 1992) because the corrections depend on such a
large number of interacting factors including trawl design and rigging,
towing speed, seabed type, sea-state and time of day. Although this ap-
proach is in line with other studies on 0-group plaice (Burrows et al.,
2001; Ciotti et al., 2013c), further experiments on the catch efficiency
of the 1.5 m beam trawl would be useful.

Plaice typically arrive at nursery grounds over a period of several
weeks and in some cases settlement of distinct cohorts has been ob-
served (Al-Hossaini et al., 1989; Geffen et al., 2011). Variable timing in
settlement is recognised as a complicating factor when comparing size
distributions between sites later in the year. Although this might have
contributed to the differences we observed, Ciotti et al. (2010) also
showed that recent individual growth rates (estimated using an RNA-
based method) were significantly lower at Caolisport, compared with
Tralee, from as early as mid-July. Individual growth rates at Caolisport
were low throughout the summer, but at Tralee growth only dropped
to a similar low level at the end of August (Ciotti et al., 2010). Such in
situ measurements of recent growth support the conclusions based on
sizes reached in August presented here.

Our field results, along with those presented in Ciotti et al. (2010,
2013a, 2013b, 2013c), suggest that the sizes attained by 0-group plaice
in late summer on the Scottish west coast are the result of differences in
local nursery ground quality. Results from the common garden rearing
experiments suggest that either there is no selection for growth-traits
at earlier stages (when plaice are <40 mm TL), or if such selection
does occur, that the effects do not persist sufficiently to affect the
growth potential of the fish during the spring and summer. Further
research is required at selected sites to elucidate the mechanisms con-
trolling juvenile plaice growth bearing in mind that differences in the
timing of settlement might also be important. Physical factors, such as
tidal range and wave exposure, appear to be significant (Ciotti et al.,
2013b) and could be acting via effects on individual fish behaviour, for
example by limiting the spatial scope for foraging. At present links
between individual behaviour and realised growth are difficult to inves-
tigate because the movements of individual fish within nursery grounds
cannot be tracked over long periods of time (Burrows et al., 1994).
Advances in readable tag technology which might achieve this should
be investigated further.
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