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1. Introduction

A symmetric association scheme of class d is a pair X = (X, {Ri}d
i=0), where X is a finite set and each

Ri is a nonempty subset of X × X satisfying the following:

(1) R0 = {(x, x) | x ∈ X},
(2) X × X = ⋃d

i=0 Ri and Ri ∩ R j is empty if i �= j,
(3) t Ri = Ri for any i ∈ {0,1, . . . ,d}, where t Ri = {(y, x) | (x, y) ∈ Ri},
(4) for all i, j,k ∈ {0,1, . . . ,d}, there exist integers pk

i j such that for all x, y ∈ X with (x, y) ∈ Rk ,

pk
i j = ∣∣{z ∈ X

∣∣ (x, z) ∈ Ri, (z, y) ∈ R j
}∣∣.

The integers pk
i j are called the intersection numbers.

Let X be a symmetric association scheme. The i-th adjacency matrix Ai of X is the matrix with
rows and columns indexed by X such that the (x, y)-entry is 1 if (x, y) ∈ Ri or 0 otherwise. The
Bose–Mesner algebra of X is the algebra generated by the adjacency matrices {Ai}d

i=0 over the complex
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field C. Then {Ai}d
i=0 is a natural basis of the Bose–Mesner algebra. By [2, p. 59], the Bose–Mesner

algebra has a second basis {Ei}d
i=0 such that

(1) E0 = |X |−1 J , where J is the all-ones matrix,
(2) I = ∑d

i=0 Ei , where I is the identity matrix,
(3) Ei E j = δi j Ei , where δi j = 1 if i = j and δi j = 0 if i �= j.

The basis {Ei}d
i=0 is called the primitive idempotents of X. We have the following equations:

Ai =
d∑

j=0

pi( j)E j, (1.1)

Ei = 1

|X |
d∑

j=0

qi( j)A j, (1.2)

Ai A j =
d∑

k=0

pk
i j Ak, (1.3)

Ei ◦ E j = 1

|X |
d∑

k=0

qk
i j Ek, (1.4)

where ◦ denotes the Hadamard product, that is, the entry-wise matrix product. The matrices P =
(p j(i))d

i, j=0 and Q = (q j(i))d
i, j=0 are called the first and second eigenmatrices, respectively. The num-

bers qk
i j are called the Krein parameters. The Krein parameters are non-negative real numbers (the

Krein condition) [10], [2, p. 69].
A symmetric association scheme is called a P -polynomial scheme (or a metric scheme) with re-

spect to the ordering {Ai}d
i=0 if for each i ∈ {0,1, . . . ,d}, there exists a polynomial vi of degree i

such that pi( j) = vi(p1( j)) for any j ∈ {0,1, . . . ,d}. We say a symmetric association scheme is a
P -polynomial scheme with respect to A1 if it has the P -polynomial property with respect to some
ordering A0, A1, Ai2 , Ai3 , . . . , Aid . Dually a symmetric association scheme is called a Q -polynomial
scheme (or a cometric scheme) with respect to the ordering {Ei}d

i=0 if for each i ∈ {0,1, . . . ,d}, there
exists a polynomial v∗

i of degree i such that qi( j) = v∗
i (q1( j)) for any j ∈ {0,1, . . . ,d}. Moreover

a symmetric association scheme is called a Q -polynomial scheme with respect to E1 if it has the
Q -polynomial property with respect to some ordering E0, E1, Ei2 , Ei3 , . . . , Eid . Note that both {vi}d

i=0
and {v∗

i }d
i=0 form systems of orthogonal polynomials.

Throughout this paper, we use the notation mi = qi(0) and θ∗
i = q1(i) for 0 � i � d. If an asso-

ciation scheme is Q -polynomial, then {θ∗
i }d

i=0 are mutually distinct because the second eigenmatrix
Q = (v∗

i (θ
∗
j ))

d
j,i=0 is non-singular. For a univariate polynomial f and a matrix M , we denote by f (M◦)

the matrix obtained by substituting M into f with multiplication the Hadamard product. We intro-
duce known equivalent conditions of the Q -polynomial property of symmetric association schemes
[2, p. 193]. The following are equivalent:

(1) X is a Q -polynomial scheme with respect to the ordering {Ei}d
i=0.

(2) (q j
1,i)

d
i, j=0 is an irreducible tridiagonal matrix.

(3) For each i ∈ {0,1, . . . ,d}, there exists a polynomial f i of degree i such that Ei = f i(E◦
1).

In the present paper, we prove a new necessary and sufficient condition for a symmetric asso-
ciation scheme to be Q -polynomial. Since the Q -polynomial property of a symmetric association
scheme of class 1 is trivial, we assume that d is greater than 1.
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Theorem 1.1. Let X be a symmetric association scheme of class d � 2. Suppose that {θ∗
j }d

j=0 are mutually
distinct. Then the following are equivalent:

(1) X is a Q -polynomial scheme with respect to E1 .
(2) There exists l ∈ {2,3, . . . ,d} such that for any i ∈ {1,2, . . . ,d},

d∏
j=1
j �=i

θ∗
0 − θ∗

j

θ∗
i − θ∗

j

= −pi(l).

Moreover if (2) holds, then l = id .

Remark 1.2. We call a finite set X in Rm a d-distance set if the number of the Euclidean distances
between distinct two points in X is equal to d. Larman, Rogers and Seidel [6] proved that if the size
of a two-distance set with the distances a, b (a < b) is greater than 2m+3, then there exists a positive
integer k such that a2/b2 = (k − 1)/k, i.e. k = b2/(b2 −a2). Bannai and Bannai [1] proved that the ratio
k of the spherical embedding of a primitive association scheme of class 2 coincides with −pi(2).
The research of the present paper is motivated by [1]. For a symmetric association scheme satisfying
that {θ∗

j }d
j=0 are mutually distinct, the values Ki := ∏d

j=1, j �=i(θ
∗
0 − θ∗

j )(θ
∗
i − θ∗

j )
−1 (1 � i � d) are the

generalized Larman–Rogers–Seidel’s ratios [9] of the spherical embedding of this association scheme
with respect to E1. Theorem 1.1 is an extension of Bannai–Bannai’s result to Q -polynomial schemes
of any class. Furthermore Theorem 1.1 is a new characterization of the Q -polynomial property on the
spherical embedding of a symmetric association scheme.

At the end of this paper, we give some sufficient conditions for the integrality of Ki .

2. Proof of Theorem 1.1

First we give several lemmas that will be needed to prove Theorem 1.1.

Lemma 2.1. For mutually distinct β1, β2, . . . , βs , the following formal identity holds:

s∑
i=1

β
j

i

s∏
k=1
k �=i

x − βk

βi − βk
= x j

for all j ∈ {0,1, . . . , s − 1}.

Proof. For each j ∈ {0,1, . . . , s − 1}, the polynomial

L j(x) :=
s∑

i=1

β
j

i

s∏
k=1
k �=i

x − βk

βi − βk

of degree at most s − 1 is known as the interpolation polynomial in the Lagrange form (see [3]).
Namely, the property L j(βi) = β

j
i holds for any i ∈ {1,2, . . . , s}. Therefore L j(x) = x j , and the lemma

follows. �
We say E j is a component of an element M of the Bose–Mesner algebra if E j M �= 0. Let Nh denote

the set of indices j such that E j is a component of E◦h
1 but not of E◦l

1 (0 � l � h − 1). Note that
N0 = {0} and N1 = {1}.
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Lemma 2.2. Suppose X is a symmetric association scheme of class d � 2. Then the following are equivalent:

(1) X is a Q -polynomial scheme with respect to E1 .
(2) The cardinality of Nd is equal to 1.
(3) Nd is nonempty.

Proof. (2) ⇒ (3): Clear.
(1) ⇒ (2): Without loss of generality, we assume that X is a Q -polynomial scheme with respect

to {Ei}d
i=0. By noting that {θ∗

i }d
i=0 are mutually distinct, {E◦i

1 }d
i=0 are linearly independent, and a basis

of the Bose–Mesner algebra. We have

Ei = f i
(

E◦
1

) =
i∑

j=0

αi, j E◦ j
1 ,

where αi, j ∈ R are the coefficients of a polynomial f i of degree i. The upper triangular matrix
(αi, j)

d
i, j=0 is non-singular because αi,i �= 0 for each i. Since the inverse matrix (α′

i, j)
d
i, j=0 of (αi, j)

d
i, j=0

is also an upper triangular matrix with α′
i,i �= 0 for each i, we can express

E◦i
1 =

i∑
j=0

α′
i, j E j .

Therefore (2) follows.
(3) ⇒ (1): First we prove that if Ni is empty for some i ∈ {1,2, . . . ,d − 1}, then Ni+1 is also empty.

Let I = ⋃i−1
j=0 N j . We consider the expression

∑i−1
j=0 E◦ j

1 = ∑
j∈I β j E j . Note that β j > 0 for any j ∈ I

by the Krein condition. Then we have

E1 ◦
(

i−1∑
h=0

E◦h
1

)
=

∑
j∈I

β j

d∑
k=0

qk
1, j Ek =

d∑
k=0

∑
j∈I

β jq
k
1, j Ek.

If Ni is empty, then

qk
1, j = 0 for any j ∈ I and any k /∈ I (2.1)

because β j > 0 holds for any j ∈ I . We can express E◦i
1 = ∑

j∈I β ′
j E j , where β ′

j are non-negative
integers for any j ∈ I . By (2.1) and the equalities

E◦(i+1)
1 = E1 ◦ E◦i

1 = E1 ◦
∑
j∈I

β ′
j E j =

d∑
k=0

∑
j∈I

β ′
jq

k
1, j Ek,

we obtain
∑

j∈I β ′
jq

k
1, j = 0 for k /∈ I . Hence Ni+1 is also empty. This means that if Nd is not

empty, then the cardinalities of Nh is equal to 1 for any h ∈ {0,1, . . . ,d}. Put Nh = {ih} and order
E0, E1, Ei2 , Ei3 , . . . , Eid . Then we can construct polynomials fh of degree h such that fh(E◦

1) = Eih for
any h ∈ {0,1, . . . ,d}. Hence (1) follows. �

Now we prove Theorem 1.1.

Proof of Theorem 1.1. (1) ⇒ (2): Without loss of generality, we assume that X is a Q -polynomial
scheme with respect to {Ei}d

i=0. For each i ∈ {1,2, . . . ,d}, we define the polynomial

Fi(t) :=
d∏

j=1
j �=i

|X |t − θ∗
j

θ∗
i − θ∗

j
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of degree d − 1. Set Mi = Fi(E◦
1). Then |X |E1 = ∑d

j=0 θ∗
j A j yields that the (x, y)-entries of Mi are

Mi(x, y) =
⎧⎨
⎩

Ki if (x, y) ∈ R0,

1 if (x, y) ∈ Ri,

0 otherwise,

where Ki := ∏d
j=1, j �=i(θ

∗
0 − θ∗

j )(θ
∗
i − θ∗

j )
−1. Since Fi is a polynomial of degree d − 1, the matrix Mi is

a linear combination of {Ei}d−1
i=0 . This means that Mi Ed = 0. By (1.1),

0 = Mi Ed = (Ki I + Ai)Ed = (
Ki + pi(d)

)
Ed

for any i ∈ {1,2, . . . ,d}. Therefore the desired result follows.
(2) ⇒ (1): From the equation Ai = ∑d

j=0 pi( j)E j and our assumptions, we have

Ai El = pi(l)El = −Ki El.

By Lemma 2.1,

(|X |E1
)◦ j

El =
((

θ∗
0

) j
I +

d∑
i=1

(
θ∗

i

) j
Ai

)
El =

((
θ∗

0

) j −
d∑

i=1

(
θ∗

i

) j
Ki

)
El = 0

for any j � d − 1. This means that l is not an element of N j for any j � d − 1. Note that the following
equality holds:

d∏
j=1

|X |E1 − θ∗
j J

θ∗
0 − θ∗

j

= I,

where the multiplication is the Hadamard product. Obviously, I has El as a component. Since l /∈ Ni
for any i ∈ {0,1, . . . ,d − 1}, we have l ∈ Nd . By Lemma 2.2, the desired result follows. �
3. Integrality of Ki

In this section, we consider when Ki = −pi(d) is an integer for each i ∈ {1,2, . . . ,d} for a Q -poly-
nomial scheme. The following theorem is important in this section.

Theorem 3.1. (See Suzuki [11].) Let X with m1 > 2 be a Q -polynomial scheme with respect to the ordering
{Ei}d

i=0 . Suppose X is Q -polynomial with respect to another ordering. Then the new ordering is one of the
following:

(1) E0, E2, E4, E6, . . . , E5, E3, E1 ,
(2) E0, Ed, E1, Ed−1, E2, Ed−2, E3, Ed−3, . . . ,
(3) E0, Ed, E2, Ed−2, E4, Ed−4, . . . , Ed−5, E5, Ed−3, E3, Ed−1, E1 ,
(4) E0, Ed−1, E2, Ed−3, E4, Ed−5, . . . , E5, Ed−4, E3, Ed−2, E1, Ed, or
(5) d = 5 and E0, E5, E3, E2, E4, E1 .

Note that Q -polynomial schemes with m1 = 2 are the ordinary n-gons as distance-regular graphs.

Proposition 3.2. Let X with m1 > 2 be a Q -polynomial association scheme with respect to the ordering
{Ei}d

i=0 . If there exists t such that t � d/2, t ≡ 1 (mod 2) and mt �= md−t+1 , then K j is an integer for any j.

Proof. Let F be the splitting field of the scheme, generated by the entries of the first eigenmatrix P .
Then F is a Galois extension of the rational field. Let G be the Galois group Gal(F/Q). We consider
the action of G on the primitive idempotents Ei , where elements of G are applied entry-wise. Then
the action of G on {Ei}d

i=0 is faithful and |G| � 2 [8].
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Suppose K j is not an integer for some j. Since −K j = p j(d) is an eigenvalue of A j , K j is an
algebraic integer. By the basic number theory, K j is irrational. Therefore |G| �= 1 and hence |G| = 2.
Let σ be the non-identity element of G . From the definition of K j , E1 must have an irrational entry,
and Eσ

1 �= E1. Therefore {Eσ
i }d

i=0 is another Q -polynomial ordering with the same polynomials f i .
Hence {Eσ

i }d
i=0 coincides with one of (1)–(5) in Theorem 3.1.

For d = 2, it is known that Ki is an integer for each i = 1,2 if m1 �= m2 [1]. For (1) and (2)
with d > 2, (Eσ

1 )σ �= E1, this contradicts that σ 2 is the identity. Since p j(d) is irrational and A j Ed =
p j(d)Ed , Ed has an irrational entry. Therefore Eσ

d �= Ed . For (4), σ fixes Ed , a contradiction. Therefore
the ordering {Eσ

i }d
i=0 coincides with (3) or (5).

Suppose that there exists t such that t � d/2, t ≡ 1 (mod 2) and mt �= md−t+1. Since Et ◦ I =
(mt/|X |)I , we have Eσ

t ◦ Iσ = (mt/|X |)Iσ and hence Eσ
t ◦ I = (mt/|X |)I �= (md−t+1/|X |)I . Therefore

Eσ
t �= Ed−t+1. Thus, the ordering {Eσ

i }d
i=0 does not coincide with (3) for d � 2. If d = 5, then m1 �= m5

and hence Eσ
1 �= E5. Therefore {Eσ

i }5
i=0 does not coincide with (5). Thus the proposition follows. �

Remark that the known Q -polynomial schemes with some irrational Ki and d > 2 are the ordinary
n-gons and the association scheme obtained from the icosahedron [4,7]. We can give a similar equiv-
alent condition of the P -polynomial property of symmetric association schemes [5]. Let θi = p1(i) for
0 � i � d.

Theorem 3.3. Let X be a symmetric association scheme of class d � 2. Suppose {θ j}d
j=0 are mutually distinct.

Then the following are equivalent:

(1) X is a P -polynomial association scheme with respect to A1 .
(2) There exists l ∈ {2,3, . . . ,d} such that for any i ∈ {1,2, . . . ,d},

d∏
j=1
j �=i

θ0 − θ j

θi − θ j
= −qi(l).

Moreover if (2) holds, then l = id .
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