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As the mass limits on supersymmetric particles are gradually pushed to higher values due to their contin-
uing non-observation at the CERN LHC, looking for focus point regions in the supersymmetric parameter 
space, which shows considerably reduced fine-tuning, is increasingly more important than ever. We ex-
plore this in the context of gauge mediated supersymmetry breaking with messengers transforming in 
the adjoint representation of the gauge group, namely, octet of color SU(3) and triplet of weak SU(2). 
A distinctive feature of this scenario is that the focus point is achieved by fixing a single combination of 
parameters in the messenger sector, which is invariant under the renormalization group evolution. Be-
cause of this invariance, the focus point behavior is well under control once the relevant parameters are 
fixed by a more fundamental theory. The observed Higgs boson mass is explained with a relatively mild 
fine-tuning � = 60–150. Interestingly, even in the presence of incomplete messenger multiplets of the 
SU(5) GUT group, the gauge couplings still unify perfectly, but at a scale which is one or two orders of 
magnitude above the conventional GUT scale. Because of this larger unification scale, the colored Higgs 
multiplets become too heavy to trigger proton decay at a rate larger than the experimentally allowed 
limit.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Though still elusive, Supersymmetry (SUSY), as a class of mod-
els, continues to be the leading candidate for physics beyond the 
Standard Model (SM). In addition to showing the virtue of gauge 
coupling unification, supersymmetry provides a dynamical origin 
of the negative mass-square of a neutral scalar that triggers elec-
troweak symmetry breaking (EWSB). As we know by now, the ori-
gin of EWSB is completely explained if the scalar top (stop) mass 
is around the weak scale. However, the continuing absence of SUSY 
signals at the CERN Large Hadron Collider (LHC) has pushed up the 
gluino and squark masses to larger than about 1.2–1.6 TeV [1]. Ad-
ditionally, the observed Higgs boson mass around 125 GeV [2] in 
the SUSY framework requires large radiative corrections from the 
stops [3]. This in turn necessitates the average stop mass to be at 
least 3–5 TeV [4], which is significantly larger than the weak scale. 
Consequently, settling the EWSB scale at the correct value requires 
a large fine-tuning of the Higgs potential in general.
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SCOAP3.
Under these circumstances, the focus point SUSY [5] (see also 
[6] for recent discussions) deserves special attention. In this class 
of scenarios, one or more fixed ratios among soft SUSY breaking 
masses are introduced, which lessens the fine-tuning of the Higgs 
potential lending more credibility to the natural explanation of the 
EWSB scale even if the SUSY particles turn out to be very heavy.

Among focus point SUSY scenarios [7–10], the scenarios based 
on gauge mediation [11]1 have the advantage of suppressing the 
FCNC processes.2 In the context of gauge mediation, the issue of 
focus point has been addressed in Ref. [13], where the numbers of 
the weakly and strongly coupled messenger multiplets (N2 and N3, 
respectively) are different from each other. Thanks to sizable can-
cellation between soft mass parameters for particular choices of N2

and N3 during the renormalization group running, the EWSB scale 
is realized with milder fine-tuning. However, owing to the pres-

1 For early attempts, see also Ref. [12].
2 The focus point SUSY models based on gaugino mediation [8] and Higgs-

gaugino mediation [9] also do not suffer from the SUSY FCNC problem. Moreover, 
the latter model can easily explain the muon g − 2 anomaly [10].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ence of these large number of incomplete multiplets of the grand 
unified theory (GUT) group, the gauge couplings do not unify.

The gauge coupling unification may be achieved non-trivially 
in a framework where the messenger particles of gauge mediation 
transform in the adjoint representation of the GUT group. First, in 
Ref. [14], it was shown that the presence of adjoint matter multi-
plets with mass around 1013–1014 GeV can lead to gauge coupling 
unification around the string scale [15], which is one or two orders 
of magnitude above the conventional GUT scale, even if the adjoint 
matters do not form complete GUT multiplets. Subsequently, it was 
noticed that these adjoint multiplets can be employed as mes-
senger superfields [16] for gauge mediation that would generate 
soft SUSY breaking masses. Such adjoint gauge mediation scenar-
ios naturally lead to mass splitting among colored and uncolored 
particles right at the messenger scale [16,17].

We note at this point that in the context of SU(5) GUT, work-
ing with adjoint messengers, namely, SU(3) octet and SU(2) triplet, 
which are incomplete multiplets of SU(5), has a certain advantage 
over using messengers of complete multiplets, e.g. SU(3) triplet 
and SU(2) doublet. In the latter case, the requirement of precise 
gauge coupling unification demands that some colored Higgs mul-
tiplets weigh around 1015–1016 GeV [18], which would prompt 
unacceptably large proton decay. On the other hand, gauge cou-
pling unification with adjoint messengers would necessitate the 
colored Higgs multiplets to hover around 1017–1018 GeV due to 
the larger unification scale, which is consistent with proton life-
time [19,20].

In this Letter, we exhibit how the fine-tuning of the EWSB can 
be reduced by utilizing the mass splitting of the adjoint represen-
tation messengers, more specifically, between the SU(3) octet and 
SU(2) triplet messengers. The focus point behavior is controlled 
by fixing one single combination of the superpotential parameters. 
Remarkably, this combination is invariant under the renormaliza-
tion group evolution, i.e. it is stable against radiative corrections. 
Thus the focus point behavior in adjoint messenger gauge media-
tion model is more robust (assuming that the value of this com-
bination is fixed by some more fundamental physics) than other 
SUSY breaking scenarios in the general class of minimal supersym-
metric standard model (MSSM). In the latter scenarios, to reach 
the focus point region, various relations among soft SUSY breaking 
and/or preserving (like μ) parameters need to be assumed which 
are neither invariant under renormalization group evolution nor 
independent of the SUSY breaking scale. This lends a substantial 
credibility to the attainment of focus point in adjoint messenger 
gauge mediation models.

2. Adjoint messenger gauge mediation (AMGMSB)

In the present scenario SUSY breaking is accomplished by gauge 
mediation with messengers transforming in the adjoint representa-
tion of the gauge group [16,17,21]. These messengers transform as 
(8,1) and (1,3) under SU(3)C ×SU(2)L gauge group, and may have 
originated from the non-Goldstone modes of the 24 dimensional 
Higgs multiplet in the SU(5) GUT gauge group. The resultant soft 
masses of weakly and strongly interacting supersymmetric parti-
cles, which are significantly different from those in minimal GMSB, 
allow for a significant reduction of fine-tuning [21]. The superpo-
tential in the messenger sector is:

Wmess = (M8 + λ8 Z)Tr(�2
8) + (M3 + λ3 Z)Tr(�2

3) , (1)

where Z is a spurion field whose F -term vacuum expectation 
value (VEV) F Z breaks supersymmetry, whose effects are transmit-
ted to the observable sector via messenger loops.

Even though the messenger multiplets in our model are in-
complete SU(5) multiplets, the gauge coupling unification is still 
Fig. 1. Unification of the three gauge couplings at the two-loop level with SU(3)C

octet and SU(2)L triplet messengers with their masses around 1013 GeV. Here, 
αs(M Z ) = 0.1185 and mSUSY = 3 TeV.

achieved for M3 ∼ M8 ∼ 1013–1014 GeV at a scale somewhat 
higher than the conventional MGUT � 1016 GeV [14], being around 
Mstr ≈ 5 · 1017 GeV, which we call the string scale [15]. It is ex-
pected that at this scale the gauge and gravitational couplings are 
unified.

For illustration of gauge unification, we display the one-loop 
beta-functions of the gauge couplings. The gauge couplings at Mstr
are given by

α−1
1 (Mstr) = α−1

1 (mSUSY) − b1

2π
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mSUSY
,

α−1
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mSUSY
+ 3

2π
ln
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,

where bi = (33/5, 1, −3) is the coefficient of one-loop beta-
function for the gauge coupling gi , and mSUSY is the typical mass 
scale of strongly interacting SUSY particles, defined here more 
specifically as the stop mass scale mSUSY ≡ (mQ 3mŪ3

)1/2. It turns 
out that α−1

1,2,3 � (57, 31, 13) at mSUSY = 3 TeV.
From Eq. (2), we can write (following the discussion in Ref. [22])

(5α−1
1 − 3α−1

2 − 2α−1
3 )(mSUSY) = 6

π
ln

[(
Mmess

mSUSY

)(
Mstr

mSUSY

)2
]
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2 + 2α−1
3 )(mSUSY) = − 6

5π
ln

(
Mstr

mSUSY

)
+ 3

π
ln

M3

M8
.

(3)

Using the above it is straightforward to obtain M2
str Mmess � M3

GUT, 
where Mmess ≡ (M3M8)

1/2. Requiring Mstr � 1018 GeV, it follows 
that Mmess � 1012 GeV. From the second equation of Eq. (3), we 
see that the larger Mstr, or equivalently smaller Mmess, requires a 
larger ratio of M3/M8 for the gauge coupling unification. For in-
stance, for Mstr = 1017 (1018) GeV, one requires M3/M8 � 7(18)

at the one-loop level. We, however, employ two-loop renormaliza-
tion group equations (RGE) for the running of the gauge couplings, 
which is displayed in Fig. 1.

It is appropriate at this stage to highlight an advantage of using 
adjoint messengers for gauge mediation in GUT framework, more 
specifically, with SU(5) as the GUT group. The high scale spectra 
invariably contain colored Higgs multiplets, namely, HC and H̄C , 
which belong to 5H (= (Hu, HC )) and 5̄H (= (Hd, H̄C )) of SU(5), 
where Hu (Hd) denotes the up-type (down-type) weak doublet 
Higgs multiplets. The mass of the colored Higgs multiplet MHC is 
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predicted to be around the unification scale.3 Adjoint messenger 
gauge mediation has the distinct advantage of pushing the unifi-
cation scale beyond the conventional GUT scale to Mstr(∼ MHC ) =
1017–1018 GeV, which can easily accommodate the experimental 
constraints from the proton lifetime [20]. This is because the pro-
ton decay rate (p → K +ν̄) is suppressed by 1/M2

HC
[19].

On the contrary, if the messengers are complete multiplets 
of SU(5), the unification scale is MGUT ∼ 1016 GeV (the conven-
tional scale), and then MHC ∼ MGUT. Moreover, the precise gauge 
coupling unification requires MHC to be 1015–1016 GeV. This ne-
cessitates inclusion of threshold corrections to the gauge cou-
plings, namely, −(1/5π) ln

(
MGUT/MHc

)
to α−1

1 and −(1/2π)×
ln

(
MGUT/MHc

)
to α−1

3 . Then the proton decay rate would over-
shoot the experimental limit for (sub-)TeV scale SUSY [18].

With these messenger multiplets, the gaugino masses from the 
messenger loops at the scale Mmess are

MB̃ � 0 , MW̃ � g2
2

16π2
(2�3) , Mg̃ � g2

3

16π2
(3�8) , (4)

where �3 ≡ λ3 〈F Z 〉/M3 and �8 ≡ λ8 〈F Z 〉/M8, provided that 
λ3 〈Z〉 and λ8 〈Z〉 are much smaller than M3 and M8, respectively. 
The sfermion masses at Mmess are given by

m2
Q � 2

(16π2)2

[
4

3
g4

3(3�2
8) + 3

4
g4

2(2�2
3)

]
,

m2
D̄

= m2
Ũ

� 2

(16π2)2

4

3
g4

3(3�2
8),

m2
L = m2

Hu
= m2

Hd
� 2

(16π2)2

3

4
g4

2(2�2
3) , m2

Ē
� 0. (5)

One can see that the bino and right-handed sleptons are mass-
less, since there is no messenger field charged under the U(1)Y

gauge group. In order to give masses to the right-handed sleptons, 
we consider the minimal Kähler for the MSSM matter multiplets 
and the spurion Z . Then the MSSM matter fields receive a common 
mass m0 from the supergravity scalar potential, which is equal to 
the gravitino mass m3/2 = 〈F Z 〉/(

√
3M P ).

In this setup, the gluino mass at the soft SUSY breaking mass 
scale (∼ TeV) is

Mg̃(mSUSY) = α3(mSUSY)

4π
(3�8)

� 4.0 TeV ·
(

λ8

0.001

)( m3/2

500 GeV

)(
M8

1013 GeV

)−1

.

(6)

The bino can get a mass from the gauge kinetic function:

L � 1

4g2
1

∫
d2θ

(
1 − 2kZ

M P

)
W 1

αW α 1 + h.c. (7)

Then,

MB̃(Mstr) = k 〈F Z 〉
M P

= √
3km3/2. (8)

Alternatively, one can consider the sequestered form of the 
Kähler potential, which ensures the absence of FCNC. In this case, 
the right-handed slepton masses are generated by the bino loop,
which is nothing but the gaugino mediation mechanism. Another 

3 The contributions of these colored Higgs states to gauge coupling evolution can-
not be ignored if MHC is smaller than Mstr . To account for their contributions, 
one must add −(1/5π) ln (

Mstr/MHc

)
to α−1

1 and −(1/2π) ln (
Mstr/MHc

)
to α−1

3
in Eq. (2).
option is to introduce a pair of 5 and 5̄ messengers to generate 
the bino and right-handed slepton masses, which would also con-
tribute to other masses. In this Letter, for simplicity, we work with 
only SU(3) octet and SU(2) triplet adjoint messengers and stick to 
the case of the minimal Kähler potential, as mentioned above.

3. Focus point in the AMGMSB

We consider the fine-tuning of the EWSB scale with soft masses 
generated from these adjoint messengers. The EWSB conditions are 
given by

g2
1 + g2

2

4
v2 =

[
−μ2 − (m2

Hu
+ 1

2vu

∂�V
∂vu

) tan2 β

tan2 β − 1

+ m2
Hd

+ 1
2vd

∂�V
∂vd

tan2 β − 1

]
mSUSY

,

tan2 β + 1

tanβ
=

[ 1

Bμ

(
m2

Hu
+ 1

2vu

∂�V

∂vu
+ m2

Hd

+ 1

2vd

∂�V

∂vd
+ 2μ2

)]
mSUSY

, (9)

where �V denotes a one-loop correction to the Higgs potential, 
and m2

Hu
and m2

Hd
are the soft masses for the up-type and down-

type Higgs, respectively. The Higgsino mass parameter is denoted 
by μ, and Bμ is a soft SUSY breaking parameter of the Higgs bi-
linear term. The above equations tell us that the EWSB scale is 
determined dominantly by μ2 and [m2

Hu
+ 1/(2vu)(∂�V /∂vu)] for 

large tan β (≡ 〈
H0

u

〉
/ 
〈
H0

d

〉
).

Now we consider renormalization group running of m2
Hu

from 
the high scale to weak scale. To understand the behavior of this 
running intuitively, we first demonstrate it using approximate an-
alytic solutions of RGEs. The Higgs soft masses receive negative 
contributions from stop and gluino loops and positive contribu-
tions from the wino loop. The dominant negative contributions 
induced by the top-Yukawa coupling yt are4

(m2
Hu

(Q r))neg � k − 1

2

[
m2

Q 3
(Mmess) + m2

Ū3
(Mmess)

]
− kg̃ M2

g̃(Mmess), (11)

where Q r is the renormalization scale taken to be the stop mass 
scale and

k = exp

⎡
⎣ t∫

0

(
3y2

t (t′)
4π2

)
dt′

⎤
⎦ , with t = ln(Q r/Mmess),

kg̃ =
t∫

0

dt′ y2
t (t′)g2

3(Mmess)

2π4
t′

[
1 − η3t′/2

(1 − η3t′)2

]

−
t∫

0

dt′ y2
t (t′)g4

3(Mmess)

6π6

t′ 2

(1 − η3t′)2
, with

4 The difference of the coefficients in front of m2
Q and m2

Ū
between Eq. (11) and 

Eq. (15) arises from U(1)Y contributions:

(16π2)
dm2

Hu

dt
� 3

5
g2

1[Tr(m2
Q − 2m2

Ū
) + . . .]. (10)

However, the above U(1)Y contributions are eventually canceled out in the most 
of the gauge mediation models when their effects on each individual soft masses 
are summed up.
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Fig. 2. Contours of � (solid) and mh/GeV (dashed). In the gray region, the EWSB does not occur. The messenger scale is taken as Mmess = 1013 GeV. Here, tanβ = 15, 
mt (pole) = 173.34 GeV and αs(M Z ) = 0.1185.
η3 = −3
g2

3(Mmess)

8π2
. (12)

In addition to the above negative contributions, there are positive 
contributions arising from the wino loop and tree-level Higgs soft 
mass:

(m2
Hu

(Q r))pos � k + 1

2
m2

Hu
(Mmess) + kW̃ M2

W̃
(Mmess), (13)

where we show the only dominant contributions and

kW̃ = −3g2
2(Mmess)

8π2
t

[
1 − η2t/2

(1 − η2t)2

]

−
t∫

0

dt′ 9y2
t (t′)g2

2(Mmess)

32π4
t′

[
1 − η2t′/2

(1 − η2t′)2

]
, with

η2 = g2
2(Mmess)

8π2
. (14)

The sizes of the coefficients are k ∼ 0.4, kg̃ ∼ 0.7 and kW̃ ∼ 0.2. 
Therefore in the case of the minimal GMSB with 5 and 5̄ mes-
sengers, the negative contributions substantially dominate over the 
positive contributions, leading to only a small cancellation. One 
thus needs larger MW̃ (Mmess) and/or m2

Hu
(Mmess) to obtain a siz-

able cancellation leading to small m2
Hu

at the soft mass scale. We 
will see below how it is achieved in our scenario.

Now we evaluate the value of m2
Hu

at mSUSY more precisely 
by numerically solving two-loop RGEs [23]. By taking Mmess =
1013 GeV, tan β = 15, mt(pole) = 173.34 GeV and αs(mZ ) =
0.1185, we obtain

m2
Hu

(3 TeV) = 0.704m2
Hu

+ 0.019m2
Hd

− 0.336m2
Q − 0.167m2

Ū
− 0.056m2

Ē

+ 0.055m2
L − 0.054m2

D̄

+ 0.011M2
B̃

+ 0.192M2
W̃

− 0.727M2
g̃

− 0.003MB̃ MW̃ − 0.062MW̃ Mg̃

− 0.010MB̃ Mg̃, (15)

where soft SUSY breaking mass parameters in the right-hand side 
of Eq. (15) are defined at Mmess. By using Eqs. (4) and (5), we 
obtain (r3 ≡ �3/�8)

m2
H (3 TeV) � [0.165 r2

3 − 0.035 r3 − 1.222]M2 . (16)

u g̃
Note that m2
Hu

(3 TeV) nearly vanishes for r3 � 2.8, −2.6, i.e. we 
reach a focus point region. Here, we have neglected the contri-
bution from the universal scalar mass. In fact, this contribution is 
rather small as m2

Hu
(3 TeV) � 0.164m2

0. Here we make a crucial ob-
servation that the ratio r3 � λ3M8/(λ8M3) is RGE invariant:

λ(3,8)(t) = λ(3,8)(t0)exp

⎡
⎣ t∫

t0

dt′(γZ + 2γ�(3,8)
)

⎤
⎦ ,

M(3,8)(t) = M(3,8)(t0)exp

⎡
⎣ t∫

t0

dt′(2γ�(3,8)
)

⎤
⎦ , (17)

where γi is the anomalous dimension of the field i. It immediately 
follows that

λ3(t)M8(t)

λ8(t)M3(t)
= λ3(t0)M8(t0)

λ8(t0)M3(t0)
. (18)

Once the ratio r3 is fixed by some fundamental physics, it is stable 
against radiative corrections, i.e. invariant under RGE running. This 
unique property lends significant reliability and robustness to our 
scenario over other competitive focus point SUSY models.

Now, we estimate the fine-tuning of the EWSB scale using the 
following measure [24]:

� = max{|�a|},
�a =

[
∂ ln v

∂ ln |F Z | ,
∂ ln v

∂ lnμ
,

∂ ln v

∂ ln B0
,

∂ ln v

∂ ln M1
,

∂ ln v

∂ lnm0

]
v=vobs

, (19)

where vobs � 174.1 GeV and B0 is the scalar potential B-term at 
the messenger scale, which may, for example, be generated by the 
Giudice–Masiero mechanism [25] or from a constant term in the 
superpotential.

In Fig. 2, we show the contours of � and mh . The Higgs bo-
son mass is calculated using FeynHiggs 2.10.3 [26], and � is 
evaluated utilizing SOFTSUSY 3.6.1 [27]. To avoid the tachyonic 
stau, we take the universal scalar masses at Mmess as5

m0(Mmess) =
(

�8

180 TeV

)
500 GeV. (20)

Also, the bino mass is regarded as an input parameter at Mmess, 
and taken as MB̃ (Mmess) = 250 GeV. The sign of the μ-parameter 
is taken to be positive. In the gray region with large |r3|, the 

5 Strictly speaking, the universal scalar masses should be taken at Mstr . However, 
it makes only a small difference.
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Table 1
Sample mass spectra. We take Mmess = 1013 GeV.

P1

�8 180 TeV
r3 2.8
tanβ 15
M1(Mmess) 250 GeV
m0(Mmess) 450 GeV

mh 123.1 GeV
� 69
|�μ| 61
μ 538 GeV

mgluino 3.6 TeV
msquark 3.4–4.5 TeV
mstop 2.2, 4.1 TeV
mẽL

(mμ̃L ) 3.1 TeV
mẽR

(mμ̃R ) 473 GeV
mτ̃1 221 GeV
mχ0

1
128 GeV

mχ±
1

550 GeV

mχ±
2

2.6 TeV

P2

�8 280 TeV
r3 8/3
tanβ 15
M1(Mmess) 250 GeV
m0(Mmess) 700 GeV

mh 125.1 GeV
� 156
|�μ| 156
μ 850 GeV

mgluino 5.4 TeV
msquark 5.1–6.7 TeV
mstop 3.4, 6.2 TeV
mẽL

(mμ̃L ) 4.5 TeV
mẽR

(mμ̃R ) 727 GeV
mτ̃1 399 GeV
mχ0

1
124 GeV

mχ±
1

870 GeV

mχ±
2

3.8 TeV

P3

�8 230 TeV
r3 −2.55
tanβ 15
M1(Mmess) 250 GeV
m0(Mmess) 600 GeV

mh 123.0 GeV
� 91
|�μ| 91
μ 652 GeV

mgluino 4.5 TeV
msquark 4.2–5.5 TeV
mstop 3.1, 5.1 TeV
mẽL

(mμ̃L ) 3.6 TeV
mẽR

(mμ̃R ) 618 GeV
mτ̃1 394 GeV
mχ0

1
131 GeV

mχ±
1

670 GeV

mχ±
2

3.1 TeV
Fig. 3. Contours of � (solid) and mh/GeV (dashed) in minimal GMSB (i.e. with 5
and 5̄ messengers of SU(5) GUT). We set tanβ = 25 and N5 = 3. Other parameters 
are same as in Fig. 2.

EWSB does not occur. One can see the observed Higgs boson mass 
is explained with � = 60–150 for r3 ∼ 2.8 (Fig. 2, left panel). 
When r3 is negative (Fig. 2, right-panel), the required fine-tuning 
to reach the correct Higgs boson mass is slightly larger than the 
positive r3 case. These results can be compared to the minimal 
GMSB case (with only 5 and 5̄ messengers), shown in Fig. 3. De-
manding mh > 123 GeV, the required � is around 750–1500 for 
Mmess � 109 GeV. For this plot we have taken the number of 5
and 5̄ pairs to be N5 = 3, though the required � does not signif-
icantly depend on this choice. Comparing Fig. 3 with Fig. 2 it is 
clear that our adjoint messenger model in the focus point region 
for r3 ∼ 2.8 is significantly less tuned than minimal GMSB.

Finally we show some sample spectrum in Table 1. One can 
see that the stau can be light as 200–400 GeV, which may be 
testable at the LHC depending on the bino and Higgsino masses. 
Admittedly, the bino-like lightest neutralino may give rise to too 
large relic density causing over-closure of the universe. This can be 
avoided by tuning on a tiny amount of R-parity violation. In this 
case, axion could become a potential dark matter candidate.

4. Conclusions

We have considered a gauge mediated SUSY breaking scenario 
with messengers transforming in the adjoint representation of the 
gauge group as color octet and weak triplet. We have shown 
that focus point exists in this framework. The fine-tuning of the 
EWSB scale is considerably reduced in the focus point region: � =
60–150, while explaining the observed Higgs boson mass around 
125 GeV. In fact, the fine-tuning is considerably reduced in our 
scenario compared to that in minimal gauge mediation. Two dis-
tinctive features attribute a substantial credibility to our scenario: 
(i) a single combination of messenger sector parameters, which is 
RGE invariant, controls the focus point. This means that the focus 
point behavior is stable once a more fundamental theory fixes that 
combination; (ii) the special feature of color octet and weak triplet 
adjoint messengers triggering late gauge unification renders con-
sistency of the scenario with colored Higgs mediated proton decay 
constraints.
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