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Abstract An analytical investigation is applied for unsteady motion of a rigid spherical particle in

a quiescent shear-thinning power-law fluid. The results were compared with those obtained from

Collocation Method (CM) and the established Numerical Method (Fourth order Runge–Kutta)

scheme. It was shown that CM gave accurate results. Collocation Method (CM) and Numerical

Method are used to solve the present problem. We obtained that the CM which was used to solve

such nonlinear differential equation with fractional power is simpler and more accurate than series

method such as HPM which was used in some previous works by others but the new method named

Akbari-Ganji’s Method (AGM) is an accurate and simple method which is slower than CM for

solving such problems. The terminal settling velocity––that is the velocity at which the net forces

on a falling particle eliminate––for three different spherical particles (made of plastic, glass and

steel) and three flow behavior index n, in three sets of power-law non-Newtonian fluids was inves-

tigated, based on polynomial solution (CM). Analytical results obtained indicated that the time of

reaching the terminal velocity in a falling procedure is significantly increased with growing of the

particle size that validated with Numerical Method. Further, with approaching flow behavior to

Newtonian behavior from shear-thinning properties of flow (n fi 1), the transient time to achieving

the terminal settling velocity is decreased.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

An important natural phenomenon that occurs in many indus-
trial processes is the sedimentation and falling of solid particles
in gases and liquids. Primarily, sedimentation results from a
tendency of suspended particles in fluids to settle and come

to rest, due to the forces acting on them through the fluid
[1]. Common examples include separation of liquid–solid mix-
tures, sprays and atomization, sediment transportation and
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Nomenclature

m particle mass

u particle velocity
g gravity acceleration
D particle diameter
CD drag coefficient

t time
Re Reynolds number
n flow behavior index

V0 velocity at t= 0
k consistency coefficient
X(n) deviation factor

j number of polynomial statements

um terminal settling velocity

tm time of terminal settling velocity
CM Collocation Method
HPM Homotopy Perturbation Method
HAM Homotopy Analysis Method

VIM Variational Iteration Method
NuM Numerical Method

Greek symbols

q fluid density
qs particle density
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deposition in pipe lines [2,3], alluvial channels [4,5], and chem-
ical and powder processing.

In many processes it is often essential to obtain the route of
particles that accelerates in the fluid region for designing or
improving the processes. The majority of previous studies have

considered the steady-state conditions and where the particles
achieved their terminal velocity. Also, several works have been
done to study the unsteady motion of particles in Newtonian

fluids [6–13] due to its applications in classification, centrifugal
collection and separation (some of the unit operations which
require the trajectories of particles accelerating in fluid). Fur-
ther, the distance required to reach the terminal velocity is nec-

essary for viscosity measurements of fluid with the falling ball
experiment.

Along with the same proposition, many researchers realized

the physical significance of some analytical methods such as
the Homotopy Perturbation Method (HPM) [14], Variational
Iteration Method (VIM) [15,16] and Homotopy Analysis

Method (HAM) [17] and its compatibility with the physical
problems as the unsteady motion of spherical particles in New-
tonian fluids. Hatami and Ganji introduced the equation of the
motion for variable-mass particle for the first time and solved

by Padé approximation of Differential Transformation
Method (DTM-Padé) and numerical Runge–Kutta method
[18].

These methods were originally proposed by He [19,20] to
achieve the series solution of strongly nonlinear differential
equations. Jalaal et al. [21] used HPM to study the unsteady

motion of a spherical particle falling in a Newtonian fluid
for a range of Reynolds number to obtain a solution for non-
linear equations of a falling spherical with drag coefficient.

Then, Jalaal et al. [22] used a series-based method called
Homotopy Analysis Method (HAM) in order to solve nonlin-
ear particle equation of motion whose results are very accurate
and reliable. Meanwhile, an unsteady rolling motion of spheres

in inclined tubes filled with incompressible Newtonian fluids
was conducted by Jalaal et al. [22]. Later, Hamidi et al. [23]
applied the HPM-Padé to solve the coupled equations of a

spherical solid particle’s motion in Couette flow. Hatami
et al. solved coupled equations of particle’s motion in Couette
fluid flow by Multi-step Differential Transformation Method

(Ms-DTM) considering the rotation and shear effects on lift
force and neglecting gravity [24]. Hatami and Ganji investi-
gated coupled equations of the motion of a particle in a fluid
forced vortex the differential transformation method (DTM)
with the Padé approximation and the differential quadrature

method (DQM) [25]. Hatami and Ganji introduced the equa-
tion of a particle’s motion on a rotating parabolic surface
through Lagrange equations and solved by Multi-step Differ-

ential Transformation Method (Ms-DTM) [26].
Majority of the above mentioned studies have described the

motion of solid particles in Newtonian suspensions only, how-

ever, many slurries and concentrated suspensions, which are

treated in the materials processing industry, behave as non-

Newtonian liquids and proper consideration has to be made

[27–32]. The numerical solution of Bagchi and Chhabra [33]

is one of the studies in this field. They reported the distance

traveled by accelerating spherical particles in downward verti-

cal motion of particles in power law liquids. Malvandi et al.

[34] have studied analytically with HPM and VIM scheme

on present problem and their results had very good agreement

with the older researches. Therefore, Collocation Method

[35,36] was used to find efficient, reliable and precise polyno-

mial solutions. In order to consider the non-Newtonian fluid

flow, the power-law model was employed. Furthermore, the

terminal settling velocity for three rigid spherical particles

namely plastic, glass and steel, vertically falling in the quies-

cent power-law fluids was determined. In terms of obtaining

the best accuracy of the analytical results, a comparison was

made by a numerical solution via forth order Runge–Kutta

Numerical Method.

2. Problem formulations

In Fig. 1 it is shown the consideration on one-dimensional

accelerated motion of a rigid spherical particle vertically falling

to an infinite extent of a power-law shear-thinning fluid. The

forces acting on a falling body are usually gravity, buoyancy,

inertia, Basset history force, virtual mass and drag force. From

the Lagrangian viewpoint, the dynamic of particles submerged

in a fluid could be obtained by integrating the forces balanced

on them. According to the studies of Renganathan et al. [37]

and Bagchi and Chhabra [33], the Basset force can be assumed

to be negligible when the density of the spherical particle is

much larger than that of the liquid. Under this condition,

the equation of motion describing the falling motion of the

particle can be written as [22],



Figure 1 Geometry of physical model.
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m
du

dt
¼ mg 1� q

qs

� �
� pD2qCD

8
u2 � pD3q

12

du

dt
ð1Þ

where D, m, qs and CD are the particle diameter, particle mass,

particle density and drag coefficient, respectively. From left to
right, the terms represent inertia, gravity–buoyancy, drag and
virtual mass (added mass effect due to acceleration of fluid
around the particle). The complexity of the above equation

arises from the strong non-linear nature of the drag coefficient.
The proper formulation of the drag coefficient has routinely
been obtained by numerical or experimental results. It is well

known today that the drag coefficient for a sphere in a
power-law fluid could be expressed as follows:

CD ¼ fðRe; nÞ ð2Þ

For a creeping flow region (Re > 1), the drag coefficient

could be obtained from Stokes law in the following form:

CD ¼
24

Re
XðnÞ ð3Þ

where Re ¼ qu2 � nDn
K

is the Reynolds number. n and K are the
flow behavior index and consistency coefficient, respectively.

X(n), a deviation factor, was obtained by researchers via
numerical or experimental results. Here, a well-correlated
equation of Renaud et al. [38] was used as follows:

XðnÞ ¼ 6
n�1
2

3

n2 þ nþ 1

� �nþ1

ð4Þ

The correlated equation is valid for both shear-thinning
(n< 1) and shear-thickening (n> 1) fluid behaviors. By

substituting Eqs. (3) and (4) into Eq. (1) and by rearranging
the parameters one could give:

a
du

dt
þ bðnÞun � d ¼ 0; uð0Þ ¼ v0 ð5Þ

In which

a ¼ mþ 1

12
pD3q; bðnÞ ¼ 3pKXðnÞD2�n;

d ¼ mg 1� q
qs

� �
ð6Þ

Eq. (5) is classified as an IVP (initial value problem) differ-

ential equation, which could be solved with suitable Numerical
Methods such as the finite difference scheme. The numerical
solution of the problem is not within the scope of this paper,
but the analytical solution is described in the following section.

3. Mathematical methods

Before presenting the results, it is necessary to provide some
background knowledge about the mathematical methods

employed. Therefore, in this section, some basic relationships
and theories concerning Collocation Method (CM) and fourth
order Runge–Kutta Numerical Method are presented.

There are some simple and accurate approximation
techniques for solving differential equations called the
Weighted Residuals Methods (WRMs). Collocation (CM),
Galerkin (GM) and Least Square (LSM) are examples of the

WRMs. Collocation Methods (CMs) were firstly introduced
by Ozisik [39] for solving differential equations in heat transfer
problems. Stern and Rasmussen [40] used Collocation Method

for solving a third order linear differential equation. Vaferi
et al. [41] studied the feasibility of applying of Orthogonal Col-
location Method to solve diffusivity equation in the radial

transient flow system.
Many advantages of CM compared to other analytical

make it more valuable and motivate researchers to use it for

solving problems. Some of these advantages are listed below
[42]:

(a) WRMs solve the equations directly and no simplifica-

tions are needed.
(b) They do not need any perturbation, linearization or

small parameter versus Homotopy Perturbation Method

(HPM) and Parameter Perturbation Method (PPM).
(c) They are simple and powerful compared to Numerical

Methods and achieve final results faster than numerical

procedures while their results are acceptable and have
excellent agreement with numerical outcomes, further-
more their accuracy can be increased by increasing the
statements of the trial functions.

(d) They do not need to determine the auxiliary parameter
and auxiliary function versus Homotopy Analysis
Method (HAM).

(e) They are faster in solving such problems by a bit lower
accuracy than new method which is named Akbari-
Ganji’s Method (AGM).
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3.1. Collocation Method (CM)

For conception of the main idea of this method, suppose a dif-

ferential operator D is acted on a function u to produce a func-
tion p [43]:

DðuðxÞÞ ¼ pðxÞ ð7Þ

We wish to approximate u by a function ~u, which is a linear

combination of basic functions chosen from a linearly indepen-
dent set. That is,

u ffi ~u ¼
Xn
i¼1

ciui ð8Þ

Now, when substituted into the differential operator, D, the
result of the operations is not p(x). Hence an error or residual
will exist:

EðxÞ ¼ RðxÞ ¼ Dð~uðxÞÞ � pðxÞ – 0 ð9Þ

The notion in the Collocation is to force the residual to zero
in some average sense over the domain. That is [22],Z

RðxÞWiðxÞdx ¼ 0 i ¼ 0; 1; 2; . . . ; n ð10Þ

where the number of weight functions Wi is exactly equal to
the number of unknown constants ci in ~u . The result is a set
of n algebraic equations for the unknown constants ci. For
Collocation Method, the weighting functions are taken from

the family of Dirac d functions in the domain. That is,
WiðxÞ ¼ dðx� xiÞ. The Dirac d function has the property of
[43–45]

dðx� xiÞ ¼
1 if x ¼ xi

0 otherwise

�
ð11Þ

And residual function in Eq. (9) must be forced to be zero
at specific point.

3.2. Fourth order Runge–Kutta Method (NUM)

It is obvious that the type of the current problem is initial value

problem (IVP) and the appropriate method needs to be cho-
sen. The available sub-methods in the Maple 17.0 are a combi-
nation of the base schemes; trapezoid or midpoint method.
There are two major considerations when choosing a method

for a problem. The trapezoid method is generally efficient
for typical problems, but the midpoint method is so capable
of handling harmless end-point singularities that the trapezoid
Table 1 Physical properties and corresponding coefficients of Eq. (

Particle type D (mm) qs m(gr)

Plastic 0.2 1150 4.817 * 10�6

0.5 1150 7.526 * 10�5

1 1150 6.021 * 10�4

Glass 0.2 2500 1.047 * 10�5

0.5 2500 1.636 * 10�4

1 2500 1.309 * 10�3

Steel 0.2 7780 3.259 * 10�5

0.5 7780 5.092 * 10�4

1 7780 4.074 * 10�3
method cannot. The midpoint method, also known as the
fourth-order Runge–Kutta–Fehlberg method, improves the
Euler method by adding a midpoint in the step which increases

the accuracy by one order. Thus, the midpoint method is used
as a suitable numerical technique in present study [46].

4. Results and discussion

The applicability of the presented methods for the nonlinear
equation of motion of settling particles will be illustrated in

the following section. In order to measure the accuracy of
the results, NUM has been used here for the derived non-linear
ODE, given in Eq. (5), where the Fourth order Runge–Kutta is

employed for deriving du
dt
. A Maple code was used to find the

numerical solution of the present initial value problem (IVP).
The adopted values of the density and consistency coefficient

of the non-Newtonian fluid were q = 1050 kg/m3 and
K= 0.5, respectively [38]. In addition, the physical properties
of particles and corresponding coefficients of Eq. (5) have been
tabulated in Table 1.

4.1. Approximate solution with CM

In present study, the fluid is considered non-Newtonian fluid

and governing equations for unsteady motion of a rigid spher-
ical particle in a quiescent shear-thinning power-law fluid
(non-Newtonian) are solved by CM and NUM. For solving

Eq. (5) by WRMs, because trial function must satisfy the ini-
tial condition in Eq. (5), so each statement in u(t) should con-
tain t to satisfy initial condition in t= 0. In this study, one
statement is considered for velocity profile and as explained

in above WRMs advantages, accuracy of results can be
increased by increasing the number of statements (ci), so

uðtÞ ¼ c1tþ c2t
2 þ c3t

3 þ � � � þ cjt
j ð12Þ

Which satisfies the initial condition in Eq. (5) and by setting

it into Eq. (5), residual functions, Ri(c1 � c6, t), will be found.
On the other hand, the residual functions must be close to
zero.

Also we can choose the trial function as the below

statement:

uðtÞ ¼ c1ðt� t2Þ þ c2ðt2 � t3Þ þ . . .þ cjðtj � tjþ1Þ ð12-aÞ

By comparison between Eqs. (12) and (12-a) it is clear that
Eq. (12) is simpler and more logical to be used so we decided
that it is better to use the Eq. (12) as trial function.
5) for n= 0.5.

a b(n) d

7.016 * 10�9 1.911 * 10�5 4.109 * 10�9

1.096 * 10�7 7.552 * 10�5 6.421 * 10�8

8.770 * 10�7 2.136 * 10�4 5.137 * 10�7

1.265 * 10�8 1.911 * 10�5 5.958 * 10�8

1.980 * 10�7 7.552 * 10�5 9.310 * 10�7

1.584 * 10�6 2.136 * 10�4 7.448 * 10�6

3.479 * 10�8 1.911 * 10�5 2.765 * 10�7

5.436 * 10�7 7.552 * 10�5 4.321 * 10�6

4.348 * 10�6 2.136 * 10�4 3.457 * 10�5



Figure 2 CM solution for different values of j and comparing with numerical results. for (a) n= 0.85 (b) n= 0.65 (c) n= 0.5.
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For reaching to this aim, six specific points in the domain

t 2 [0, tm] should be chosen. These points are:

Riðc1 � cj; tÞ ¼
i:tm
j

ð13Þ

Finally by substituting these points into the residual func-
tions, a set of jth equations with jth unknown coefficients will
be obtained. After solving these unknown parameters, the

velocity concentration equation will be determined. Using
Collocation Method, for example when the particle be plastic
with D = 1 mm for n= 0.85 leads to:

j= 6:

uðtÞ ¼ �2:155553255 � 1013t6 þ 2:373788034 � 1011t5

� 1:106742700 � 109t4 þ 2:854511380 � 106t3

� 4420:787693t2 þ 4:030708825t ð14Þ
j = 5:

uðtÞ ¼ 4:810853970 � 1010t5 � 4:581824359 � 108t4

þ 1:767438683 � 106t3 � 3522:987025t2 þ 3:733654742t

ð15Þ

j = 4:

uðtÞ ¼ �1:007673681 � 108t4 þ 7:989310560 � 105t3

� 2384:949638t2 þ 3:239977945t ð16Þ

j = 3:

uðtÞ ¼ 1:927676068 � 105t3 � 1210:692269t2 þ 2:506207614t

ð17Þ
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Settling velocity of a 1 mm-diameter Glass particle with
power-law fluids of n= 0.85 and a 0.5 mm-diameter plastic
particle with power-law fluids of n = 0.65 and also a

0.2 mm-diameter Steel particle with power-law fluids of
n= 0.5 versus time has been depicted in Fig. 2a, b and c,
respectively. In all the figures, the velocity is scaled with termi-

nal velocity uterminal. As it is obvious, the particle velocity
increases until it reaches the terminal velocity where the net
force on the particle eliminates. The figures also show that

increasing the value of j can enhance the region of convergence
and improve the accuracy of the polynomial solution obtained
by CM. Thus, most accurate results can be obtained by
increasing the value of j in CM.

Table 2 shows the effects of different types of particles and
power-law fluids on terminal velocity. To show the best accu-
racy, the numerical results have been added. Because of the

highest density of the steel particle, it has the highest terminal
velocity, whereas the plastic particle, with the lowest density,
achieves the lowest terminal velocity. In addition, terminal

velocity has a dramatic upward trend when particle diameter
and power-law index parameter increase moderately (because
of increasing in the mass of the particle, see Eq. (1).
Table 2 Terminal settling velocity (· 10�7 m/s) for different diame

Particle type D (mm) CM results n

0.5 0.65 0.85

Plastic 0.2 1.772 6.781 22.625

0.5 28.795 69.589 164.932

1 229.736 404.505 747.348

Glass 0.2 389.187 418.997 521.890

0.5 6091.018 4286.642 3859.04

1 48617.179 24946.056 17106.8

Steel 0.2 8328.664 4444.075 3197.79

0.5 131345.961 45465.803 23441.2

1 1049239.494 26568.143 105560.

Figure 3 Effects of the flow behavior index (n) with constant diame
4.2. Transient motion

Physical quantities of interest, the velocity–time and accelera-
tion–time for different particles, particle diameters, and the
flow behavior indexes are shown in Figs. 3–6. Fig. 3a and b

shows the effects of flow behavior index n on the velocity
and time. Regarding Fig. 3a and b, it is obvious That in a con-
stant time the amount of terminal velocity in a falling proce-
dure for both of glass and steel in constant particle diameter

is increased with growing the flow behavior index n. With
approaching flow behavior to Newtonian behavior from
shear-thinning properties of flow (n fi 1), the time of transient

to achieving the terminal velocity is decreased as indicated in
Fig. 3a and b. The effects of three different particles namely:
plastic, glass, and steel on the falling procedure are shown in

Fig. 4a–c. The figures indicate the lowest time of reaching
the terminal velocity of plastic particles due to their lower den-
sity. As a consequence, the larger the particle density. Regard-

ing Fig. 5, it is obvious that the time of reaching the terminal
velocity in a falling procedure is significantly increased with the
growing of the particle size. In fig. 6a, b and c, it can be
realized that the acceleration of particles is higher for larger
ters of particles and several fluids.

Numerical results n Error%

0.5 0.65 0.85 n= 0.5

1.733 6.753 22.544 2.25

28.914 69.756 165.281 0.41

231.047 405.366 745.285 0.57

387.877 417.369 522.887 0.34

6 6065.463 4270.318 3842.110 0.42

62 48346.550 24831.984 17348.164 0.56

4 8327.324 4426.284 3183.089 0.02

11 130731.743 45293.424 23355.788 0.47

900 1045030.464 263262.304 105295.159 0.4

ter on the velocity variation of (a) glass particle (b) steel particle.



Figure 4 Effects of the particle type on the velocity variation: (a) n= 0.65, D = 1 mm, (b) n= 0.85, D= 1 mm, and (c) n= 0.5,

D = 1 mm.

Figure 5 Effects of the particle diameter on the velocity variation of plastic particle.
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Figure 7 Effects of the particle type on the acceleration variation (n= 0.85, D= 1 mm).

Figure 6 Effects of the particle diameter on the velocity variation.
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particles. Fig. 7 indicates that initial acceleration time required
to reach zero-acceleration state increases by increasing the
particle density for a constant particle diameter (D) and flow

behavior index (n).
5. Conclusions

The achievement of this work is to apply the CM and NUM in
order to study the strongly nonlinear differential equation with
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fractional power that governed from the unsteady motion of
vertically falling spherical particles in a power-law non-Newto-
nian fluid. The current method was applied without any

discretization, restrictive assumptions, or transformation.
Also, this method can be used to develop valid solutions even
to problems that are highly nonlinear and may be considered

as an important and significant refinement of the formerly
developed methods. As the results are compared with Numer-
ical Method, it is clear that CM has a good agreement with

NUM and provides highly accurate analytical solutions for
nonlinear problems and markedly reducing the extent of calcu-
lations required. There is a new method named Akbari-Ganji’s
Method (AGM) that can powerfully solve such complex prob-

lem so easily and more accurate but CM is a faster method in
order to solve such equations. Moreover, the effects of various
materials, sizes and flow behavior indexes on the transient

time, terminal velocity and acceleration have been investigated
in detail. Analytical results obtained indicated that increasing
the particle size and flow behavior index significantly increases

the time of reaching the terminal velocity in a falling proce-
dure. However, raising the particle density has the same result
in acceleration of the particle. Also by increasing the size and

density of the particle it is clear that the time of reaching
terminal acceleration in a falling procedure increases.
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