A degree condition implying that every matching is contained in a hamiltonian cycle

Denise Amar ${ }^{\text {a }}$, Evelyne Flandrin ${ }^{\text {b }}$, Grzegorz Gancarzewicz ${ }^{\text {c, }, 1,2}$
${ }^{\text {a }}$ LABRI, Université de Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France
b LRI, UMR 8623, Bâtiment 490, Université de Paris-Sud, 91405 Orsay, France
${ }^{\mathrm{c}}$ AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, Kraków, Poland

Received 1 November 2005; accepted 5 February 2008
Available online 8 April 2008

Abstract

We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We also show that the bound for the degree sum is almost the best possible. (C) 2008 Elsevier B.V. All rights reserved.

Keywords: Cycle; Hamiltonian cycle; Matching

1. Introduction

For a graph $G, \mathrm{~V}(G)$ denotes its vertex set and $\mathrm{E}(G)$ its edge set. For a vertex x of $G, \mathrm{~d}_{G}(x)$, denotes its degree in G, that is the cardinality of $\mathrm{N}_{G}(x)=\{y \in \mathrm{~V}(G): x y \in \mathrm{E}(G)\}$, the neighborhood of x in G. The subscript G is omitted when it is clear from the context.

In 1960, Ore [6] proved the following.
Theorem 1. Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n \tag{1}
\end{equation*}
$$

then G is hamiltonian.
Many Ore-type theorems dealing with degree-sum conditions have been proved since. In particular, Bondy [2] showed the following.

Theorem 2. Let G be a 2-connected graph on $n \geqslant 3$ vertices. If for any independent vertices $x, y, z \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant \frac{3 n-2}{2},
$$

then G is hamiltonian.

[^0]We shall call a set of $k \geqslant 1$ independent edges a k-matching and sometimes simply a matching. The number of edges in a matching M will occasionally be denoted by $|M|$ and the set of all end vertices of the edges in M will occasionally be denoted by $\mathrm{V}(M)$.

Berman [1] proved the conjecture of Häggkvist [4] about cycles through matchings in general graphs.
Theorem 3. Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n+1,
$$

then every matching lies in a cycle.
Theorem 3 has been improved by Jackson and Wormald [5]. Häggkvist [4] also gave a sufficient condition for a general graph to contain any matching in a hamiltonian cycle. We give this theorem below in a slightly improved version obtained by Wojda [8].

Let \mathcal{G}_{n} be the family of graphs $G=\bar{K}_{\frac{n+2}{3}} * H$, where H is any graph of order $\frac{2 n-2}{3}$ containing a perfect matching if $\frac{n+2}{3}$ is an integer, and $\mathcal{G}_{n}=\emptyset$ otherwise ($*$ denotes the join of graphs).

Theorem 4. Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant \frac{4 n-4}{3}
$$

then every matching of G lies in a hamiltonian cycle, unless $G \in \mathcal{G}_{n}$.
Las Vergnas [7] has a similar result, with the bound for the degree-sum independent of the number of edges of the matching M.

Theorem 5. Let G be a graph on $n \geqslant 3$ vertices and let k be an integer $0 \leqslant k \leqslant \frac{n}{2}$. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n+k
$$

then every k-matching of G lies in a hamiltonian cycle.
The purpose of this paper is to give new conditions on the degree-sum of three independent vertices under which every matching in a graph G lies in a hamiltonian cycle. First, we state an extension theorem.

Theorem 6. Let G be a 3-connected graph on $n \geqslant 3$ vertices such that for any independent vertices $x, y, z \in \mathrm{~V}(G)$, we have

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n \tag{2}
\end{equation*}
$$

Let M be a matching in G. If there exists a cycle of G containing M, then there exists a hamiltonian cycle of G containing M.

Theorem 6 shows that if a graph G satisfies (2) and a matching of G lies in a cycle, then this cycle can be extended to a hamiltonian cycle. Using Theorem 6, we prove the following analog of Theorem 2 about hamiltonian cycles through matchings.

Theorem 7. Let G be a 3-connected graph on $n \geqslant 3$ vertices and let M be a matching in G such that for any independent vertices $x, y, z \in \mathrm{~V}(G)$ we have

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n \tag{3}
\end{equation*}
$$

Then there exists a hamiltonian cycle containing every edge of M or G has a minimal odd M-edge cut-set.
A minimal odd M-edge cut-set is a subset of M such that its suppression disconnects the graph G and which has no proper subset being an G-edge cut-set.

Note that the bound $2 n$ in Theorem 7 is almost best possible. Let $p \geqslant 2$ and consider a complete graph $K_{2 p}$ with a perfect p-matching. We define the graph $G=(p+1) K_{1} * K_{2 p},(*$ denotes the join of graphs). In this graph,
$n=3 p+1$ and G is 3 -connected. For any independent $x, y, z \in \mathrm{~V}(G)$ we have $\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n-2$ and there is no hamiltonian cycle containing the p-matching from $K_{2 p}$. So the bound $2 n$ is almost best possible.

Theorem 7 has the following corollary (recall that the stability number of a graph G, denoted by $\alpha(G)$ is the cardinality of a maximum independent set of vertices of G).

Corollary 8. Let G be a 3 -connected graph on $n \geqslant 6$ vertices and let M be a matching of G. If $\alpha(G)=2$, then there is a hamiltonian cycle of G containing M or G has a minimal odd M-edge cut-set.

2. Notation and preliminary results

Let G be a graph. Let $A \subseteq \mathrm{~V}(G), x \in \mathrm{~V}(G)$, and define $\mathrm{N}_{A}(x)=A \cap \mathrm{~N}_{G}(x)$ to be the set of neighbors of x in A.
A path or a cycle C in G is usually given as a sequence of vertices from c_{0} to c_{l} such that $c_{i} c_{i+1} \in \mathrm{E}(G)$ for $i=0, \ldots, l-1$ (plus the edge $c_{l} c_{0}$ if C is a cycle). This induces an orientation on C, say from c_{0} to c_{l}. Thus it makes sense to speak of a successor c_{i+1} and a predecessor c_{i-1} of a vertex c_{i} (addition modulo $l+1$). Denote the successor of a vertex x by x^{+}and its predecessor by x^{-}. This notation can be extended to $A^{+}=\left\{x^{+}: x \in A\right\}$, and similarly, to A^{-}when $A \subseteq \mathrm{~V}(G)$.

Let $C=c_{0} \ldots c_{l}$ be a cycle in G with an orientation as above. For any pair of vertices $c_{i}, c_{j} \in \mathrm{~V}(C)$ we define four intervals (paths) (addition modulo $l+1$). If C is a path, the intervals that make sense are defined similarly.

- $] c_{i}, c_{j}\left[\right.$ is the path $c_{i}^{+} \cdots c_{j}^{-}$.
- $\left[c_{i}, c_{j}\left[\right.\right.$ is the path $c_{i} c_{i}^{+} \cdots c_{j}^{-}$.
- $\left.] c_{i}, c_{j}\right]$ is the path $c_{i}^{+} \cdots c_{j}^{-} c_{j}$.
- $\left[c_{i}, c_{j}\right]$ is the path $c_{i} c_{i}^{+} \cdots c_{j}^{-} c_{j}$.

It is useful to define $\epsilon:[V(G)]^{2} \longrightarrow\{0,1\}$ by $\epsilon((u, v))=1$ if and only if $u v \in \mathrm{E}(G)$. Of course, we write $\epsilon(u v)$ for $\epsilon((u, v))$ most of the time.

Let W be a property defined for all graphs of order n and let k be a nonnegative integer. The property W is said to be k-stable if whenever $G+x y$ has property W and $\mathrm{d}_{G}(x)+\mathrm{d}_{G}(y) \geqslant k$ then G itself has property W.

Let k, s_{1}, \ldots, s_{l} be positive integers. We call S a path system of length k if the components of S are vertex disjoint paths

$$
\begin{array}{ll}
P_{1}: & x_{0}^{1} x_{1}^{1} \ldots x_{s_{1}}^{1}, \\
\vdots & \\
P_{l}: & x_{0}^{l} x_{1}^{l} \ldots x_{s_{l}}^{l}
\end{array}
$$

and $\sum_{i=1}^{l} s_{i}=k$.
Note that a k-matching is a path system of length k with each path of length one.
Bondy and Chvátal [3] proved the following theorem, which we shall need in the proof.
Theorem 9. Let n and k be positive integers with $k \leqslant n-3$. Then the property of being k-edge-hamiltonian is $(n+k)$-stable.

3. Proof of Theorem 6

Let $k=|M|$ and let C be a longest cycle of G containing every edge of M. We assume that C is not hamiltonian. Let $R=\mathrm{V}(G) \backslash \mathrm{V}(C)$ be the set of vertices of G not on C. Let $u \in R$. Since G is 3-connected, we have $P_{1}[u, a]$, $P_{2}[u, b], P_{3}[u, c]$ three internally disjoint paths from u to C, for any distinct $a, b, c \in \mathrm{~V}(C)$. Since two consecutive edges of C cannot be in M, there is an orientation of C such that at least at least two edges among $a a^{+}, b b^{+}, c c^{+}$ are not in M. Without loss of generality we may assume that $a a^{+} \notin M, b b^{+} \notin M$. The three vertices u, a^{+}, b^{+}are independent (since C is the longest cycles containing M), so by the assumption (2) we have

$$
\begin{equation*}
\mathrm{d}(u)+\mathrm{d}\left(a^{+}\right)+\mathrm{d}\left(b^{+}\right) \geqslant 2 n . \tag{4}
\end{equation*}
$$

From now on the orientation of C is fixed and the vertices on the cycle are implicitly numbered x_{0}, \ldots, x_{l} from some arbitrary vertex x_{0}. This also fixes the intervals on C.

3.1. Neighbors of u, a^{+}, b^{+}in R and C

Since C is the longest cycle, no vertex of R can be adjacent to more than one of a^{+}, b^{+}. Thus, since the three vertices are independent, $\mathrm{d}_{R}\left(a^{+}\right)+\mathrm{d}_{R}\left(b^{+}\right)+\mathrm{d}_{R}(u) \leqslant|\mathrm{V}(R)|-1$.

If a^{-}is adjacent to $u, a^{-} a \in M$, otherwise C can be extended, and similarly for b^{-}. Hence

$$
\left(\mathrm{N}_{C}(u)\right)^{+} \cap\left[\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right] \subset\left\{\alpha \in \mathrm{V}(C), \alpha^{-} \alpha \in M\right\}
$$

and

$$
\left|\left(\mathrm{N}_{C}(u)\right)^{+} \cap\left[\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right]\right| \leqslant k .
$$

As $\left|\mathrm{N}_{C}(u)^{+} \cup \mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right| \leqslant|\mathrm{V}(C)|$, we have

$$
\left|\mathrm{N}_{C}(u)\right|+\left|\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right| \leqslant|\mathrm{V}(C)|+k
$$

Moreover

$$
\left|\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right|=\left|\mathrm{N}_{C}\left(a^{+}\right)\right|+\left|\mathrm{N}_{C}\left(b^{+}\right)\right|-\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right| .
$$

To find an upper bound for $\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right|$we shall study vertices of $\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.
Let $C_{1}=C[a, b]$ and $C_{2}=C[b, a]$ be the two intervals on the cycle C with endvertices a and b. Note that for any vertex x from the cycle C we have $x x^{+} \notin M$ or $x^{-} x \notin M$.

Let $x \in C_{1} \cap \mathrm{~N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$. If $x x^{+} \notin M$ and $x^{+} \in \mathrm{N}_{C}\left(a^{+}\right)$, then the cycle

$$
P_{1}[u, a] a^{-} \cdots b^{+} x x^{-} \cdots a^{+} x^{+} \ldots b^{-} P_{2}[b, u]
$$

is a cycle containing M longer than C, a contradiction.
Hence $x^{+} \notin \mathrm{N}_{C}\left(a^{+}\right)$and $x^{+} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$. Similarly if $x^{-} x \notin M$, then $x^{-} \notin \mathrm{N}_{C}\left(b^{+}\right)$and $x^{-} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.

Using similar arguments for a vertex $x \in C_{2} \cap \mathrm{~N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$, we can show that if $x x^{+} \notin M$, then $x^{+} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$and if $x^{-} x \notin M$, then $x^{-} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.

By removing the edges of the matching M from the cycle C we obtain a sequence of paths P_{j} such that $\mathrm{V}(C)=\bigcup_{j} \mathrm{~V}\left(P_{j}\right)$.

We have shown that on any path P_{j} there are no two consecutive vertices from the set $\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$and thus

$$
\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right) \cap \mathrm{V}\left(P_{j}\right)\right| \leqslant\left\lceil\frac{\left|\mathrm{V}\left(P_{j}\right)\right|}{2}\right\rceil .
$$

3.2. Relations on degrees of a^{+}, b^{+}, u

Recall that P_{j} are the paths obtained from C by removing the edges of M. For $i \geqslant 2$, let n_{i} be the number of paths P_{j} of length $i-1$. The following relations must be satisfied:

$$
\begin{aligned}
& k=\sum_{i \geqslant 2} n_{i} \\
& |\mathrm{~V}(C)|=\sum_{i \geqslant 2} i n_{i} \\
& \left|\mathrm{~N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right| \leqslant \sum_{i \geqslant 2}\left\lceil\frac{i}{2}\right\rceil n_{i} .
\end{aligned}
$$

As

$$
\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant|\mathrm{V}(C)|+k+\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right|
$$

we have

$$
\begin{aligned}
\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant & \sum_{j \geqslant 1}\left(2 j n_{2 j}+(2 j+1) n_{2 j+1}\right) \\
& +\sum_{j \geqslant 1}\left(n_{2 j}+n_{2 j+1}\right)+\sum_{j \geqslant 1}\left(j n_{2 j}+(j+1) n_{2 j+1}\right) \\
\leqslant & \sum_{j \geqslant 1}(3 j+1) n_{2 j}+\sum_{j \geqslant 1}(3 j+3) n_{2 j+1} \\
\leqslant & \sum_{j \geqslant 1} 4 j n_{2 j}+\sum_{j \geqslant 1}(4 j+2) n_{2 j+1} .
\end{aligned}
$$

Hence

$$
\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant 2|\mathrm{~V}(C)|
$$

and

$$
\mathrm{d}\left(a^{+}\right)+\mathrm{d}\left(b^{+}\right)+\mathrm{d}(u) \leqslant 2|\mathrm{~V}(C)|+|\mathrm{V}(R)|-1 \leqslant 2(|\mathrm{~V}(C)|+|\mathrm{V}(R)|)-|\mathrm{V}(R)|-1=2 n-|\mathrm{V}(R)|-1,
$$ a contradiction with (4).

This contradiction ends the proof of Theorem 6.

4. Proof of Theorem 7

Let $k=|M|$.

4.1. Preliminary remarks

Remark 1. For two independent vertices $x, y \in \mathrm{~V}(G)$ two cases can occur:
(1) If there exists a vertex z such that x, y, z are independent, then $\mathrm{d}(x)+\mathrm{d}(y) \geqslant 2 n-\mathrm{d}(z) \geqslant n+3$.
(2) If there is no vertex in G independent with x and y, then $\mathrm{N}(x) \cup \mathrm{N}(y) \cup\{x, y\}$ covers $\mathrm{V}(G)$ and $\mathrm{d}(x)+\mathrm{d}(y) \geqslant n-2$.

Remark 2. If x and y are independent vertices satisfying $\mathrm{d}(x)+\mathrm{d}(y)=n-2+\epsilon$, with $0 \leqslant \epsilon \leqslant 3$, then we can assume that $\mathrm{N}(x) \backslash \mathrm{N}(y)$ is a complete graph.

Remark 1 follows from (3).
Proof of Remark 2. Since x and y are independent and $\mathrm{d}(x)+\mathrm{d}(y)=n-2+\epsilon$, with $0 \leqslant \epsilon \leqslant 3$, there is no vertex in G independent with x and y. We may assume $\mathrm{d}(y) \leqslant \mathrm{d}(x)$. Note that in this case $\mathrm{d}(y) \leqslant \frac{n-2+\epsilon}{2}$ and if u_{1} and u_{2} are independent vertices in $\mathrm{N}(x) \backslash \mathrm{N}(y)$, then $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant 2 n-\mathrm{d}(y) \geqslant \frac{3 n-1}{2}=n+\frac{n-1}{2}$. If n is even, then $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant n+\frac{n}{2} \geqslant n+k$. If n is odd, then any matching of G has at most $\frac{n-1}{2}$ edges, then we have again $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant n+k$. In any case $u_{1} u_{2}$ is in the $(n+k)$-closure of G. From Theorem 9 we can assume that $\mathrm{N}(x) \backslash \mathrm{N}(y)$ is a complete graph.

We will need the following notion introduced by Berman [1].
Definition 1. A θ-graph through a matching M is the union of two cycles C_{1} and C_{2} whose intersection is a path of length at least one and such that $M \subset \mathrm{E}\left(C_{1}\right) \cup \mathrm{E}\left(C_{2}\right)$ and every edge of M incident with a vertex of $C_{1} \cap C_{2}$ lies in $C_{1} \cap C_{2}$.

We will prove the theorem by contradiction. We assume that for a matching M there is no hamiltonian cycle containing M and consider a cycle C in G which satisfies the following conditions.
(1) $|\mathrm{E}(C) \cap M|$ is maximum.
(2) Up to condition (1) the length of C is maximum, so by Theorem $6, C$ is a hamiltonian cycle.

Let $M^{\prime}=\mathrm{E}(C) \cap M$. By assumption $M^{\prime} \neq M$ and then there exists an edge $e=x y \in M, e \notin \mathrm{E}(C)$. The edge $e=x y$ is a chord of the hamiltonian cycle. Let $C_{1}=x x^{+} \ldots y x$ and $C_{2}=x x^{-} \ldots y x$. Note that $\left(C_{1} \cup C_{2}\right)$ satisfies the definition of a θ-graph through $M^{\prime} \cup\{e\}$.

Let $\Gamma\left(C_{1}, C_{2}\right)$ be a θ-graph through $M^{\prime} \cup\{e\}$ satisfying moreover:
(1) The intersection $C_{1} \cap C_{2}$ is maximum.
(2) Under condition (1) $\left|\mathrm{V}\left(\Gamma\left(C_{1}, C_{2}\right)\right)\right|$ is maximum.

Define in $\Gamma\left(C_{1}, C_{2}\right), R^{\prime}=C_{1} \cap C_{2}=x r_{1} r_{2} \ldots r_{\gamma} y, R=r_{1} r_{2} \ldots r_{\gamma}, P=C_{1} \backslash C_{2}=p_{1} p_{2} \ldots p_{\alpha}$ with $x p_{1} \in \mathrm{E}\left(C_{1}\right), Q=C_{2} \backslash C_{1}=q_{1} q_{2} \ldots q_{\beta}$ with $x q_{1} \in \mathrm{E}\left(C_{2}\right)$. Sometimes we will write Γ instead of $\Gamma\left(C_{1}, C_{2}\right)$.

Remark 3. From the definition of a θ-graph, the edges $x p_{1}, x q_{1}, y p_{\alpha}, y q_{\beta}$ are not in M. Hence vertices p_{1} and q_{β} are independent and also q_{1} and p_{α} are independent.
Proof of Remark 3. Suppose that $p_{1} q_{\beta} \in \mathrm{E}(G)$, then the cycle $p_{1} q_{\beta} q_{\beta-1} \ldots q_{1} x r_{1} r_{2} \ldots r_{\gamma} y p_{\alpha} p_{\alpha-1} \ldots p_{1}$ is a cycle through $M \cap \mathrm{E}(\Gamma)$, a contradiction. The proof for q_{1} and p_{α} is similar.

Remark 4. We can use the same arguments as Berman [1] (see inequalities (4)-(12) in [1]) and we have the following inequality:

$$
\begin{equation*}
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{\beta}\right) \leqslant 2 n . \tag{5}
\end{equation*}
$$

Since the graph G satisfies the condition (3) (i.e. for any independent vertices $w_{1}, w_{2}, w_{3} \in \mathrm{~V}(G)$ we have $\left.\mathrm{d}\left(w_{1}\right)+\mathrm{d}\left(w_{2}\right)+\mathrm{d}\left(w_{3}\right) \geqslant 2 n\right)$ and by Remark 1 we have the following inequalities.

$$
\begin{aligned}
& \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant n-2, \\
& \mathrm{~d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right) \geqslant n-2 .
\end{aligned}
$$

Hence, from (5) we have

$$
\begin{aligned}
& \mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right) \leqslant n+2, \\
& \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \leqslant n+2
\end{aligned}
$$

and from Remark 1 there is no vertex independent of p_{1} and q_{β} and no vertex independent of q_{1} and p_{α}.
Remark 5. From (5), without loss of generality, we may assume that $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \leqslant n, \mathrm{~d}\left(q_{\beta}\right) \leqslant \frac{n}{2}$ and so, by Remark 2, $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ is a complete graph.

The following lemmas involve the neighbors of the vertices p_{1}, q_{1}, p_{α}, and q_{β} on the paths R, P, Q.
Lemma 1. (1) If $u v$ is an edge of R not in M, then two cases can occur.
(a) Vertices p_{1} and q_{1} are both adjacent to u and v, and vertices p_{α} and q_{β} are independent of u and v, and there is no path internally disjoint with Γ, from u and v to p_{α} and q_{β}.
(b) Vertices p_{α} and q_{β} are both adjacent to u and v, and vertices p_{1} and q_{1} are independent of u and v, and even there is no path internally disjoint with Γ, from u or v to p_{1} or q_{1}.
(2) Consequently for any $r \in \mathrm{~V}(R)$ we have two possibilities.
(a) Vertices p_{1} and q_{1} are both adjacent to r, and vertices p_{α} and q_{β} are independent of r.
(b) Vertices p_{α} and q_{β} are both adjacent to r, and vertices p_{1} and q_{1} are independent of r.
(3) If $x r_{1} \notin M$, then $r_{1} p_{1}, r_{1} q_{1} \in \mathrm{E}(G)$ and $r_{1} p_{\alpha}, r_{1} q_{\beta} \notin \mathrm{E}(G)$, and if $y r_{\gamma} \notin M$, then $r_{\gamma} p_{\alpha}, r_{\gamma} q_{\beta} \in \mathrm{E}(G)$ and $r_{\gamma} p_{1}, r_{\gamma} q_{1} \notin \mathrm{E}(G)$.
Proof of Lemma 1. We shall prove first 1. As $\mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right)=\mathrm{V}(G) \backslash\left\{p_{1}, q_{\beta}\right\}$ and $\mathrm{N}\left(q_{1}\right) \cup \mathrm{N}\left(p_{\alpha}\right)=\mathrm{V}(G) \backslash\left\{q_{1}, p_{\alpha}\right\}$, the vertex u is adjacent to at least one of the vertices p_{1} or q_{β}. Recall that we prove Theorem 7 and we have supposed that there is no cycle containing every edge of $M \cap \mathrm{E}(\Gamma)$. Suppose that $u p_{1} \in \mathrm{E}(G)$. Then since there is no cycle through $M \cap \mathrm{E}(\Gamma)$, we have $p_{\alpha} v \notin \mathrm{E}(G)$ and $q_{\beta} v \notin \mathrm{E}(G)$. That implies $q_{1} v \in \mathrm{E}(G)$ and $p_{1} v \in \mathrm{E}(G)$. Hence $q_{\beta} u \notin \mathrm{E}(G)$ and $p_{\alpha} v \notin \mathrm{E}(G)$, that implies $q_{1} v \in \mathrm{E}(G)$. Suppose now that $u p_{1} \notin \mathrm{E}(G)$. In this case $q_{\beta} u \in \mathrm{E}(G)$. That implies $q_{1} v \notin \mathrm{E}(G)$ and then $p_{\alpha} v \in \mathrm{E}(G)$. Hence $q_{1} u \notin \mathrm{E}(G)$ and $p_{\alpha} u \in \mathrm{E}(G)$. From the above $p_{1} v \notin \mathrm{E}(G)$
and $q_{\beta} v \in \mathrm{E}(G)$. Moreover we can replace the condition $w t \notin \mathrm{E}(G)$ by "there is no path from w to t, internally disjoint of Γ, where w may be u or v, and t may be $p_{1}, p_{\alpha}, q_{1}, q_{\beta}$ ".

Using similar arguments we can show 2 and 3.
Note that from Lemma 1, we have $\mathrm{d}_{R}\left(p_{1}\right)=\mathrm{d}_{R}\left(q_{1}\right)$ and similarly $\mathrm{d}_{R}\left(p_{\alpha}\right)=\mathrm{d}_{R}\left(q_{\beta}\right)$.
Lemma 2. If $p_{i} p_{i+1}$ is an edge from $\mathrm{E}(P) \backslash M$, then $q_{\beta} p_{i+1}, q_{1} p_{i}, q_{\beta} p_{i}, q_{1} p_{i+1} \notin \mathrm{E}(G)$ and $p_{1} p_{i}, p_{1} p_{i+1}, p_{\alpha} p_{i}$, $p_{\alpha} p_{i+1}$ are edges of G. Similarly, if $q_{i} q_{i+1}$ is an edge from $\mathrm{E}(Q) \backslash M$, then $p_{1} q_{i}, p_{\alpha} q_{i+1}, p_{1} q_{i+1}, p_{\alpha} q_{i} \notin \mathrm{E}(G)$ and $q_{1} q_{i}, q_{1} q_{i+1}, q_{\beta} q_{i}, q_{\beta} q_{i+1}$ are edges of G.
Proof of Lemma 2. We will give a detailed proof showing that if $p_{i} p_{i+1} \in \mathrm{E}(P)$, then $q_{\beta} p_{i} \notin \mathrm{E}(G)$ and $p_{1} p_{i} \in \mathrm{E}(G)$. The proofs for the other vertices are similar.

The hypothesis of maximality of $C_{1} \cap C_{2}$ implies that the edges $q_{1} p_{i}, q_{\beta} p_{i+1}, p_{1} q_{i}, p_{\alpha} q_{i+1}$ are not in $\mathrm{E}(G)$. As $\mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right) \cup\left\{p_{1}, q_{\beta}\right\}$ or $\mathrm{N}\left(q_{1}\right) \cup \mathrm{N}\left(p_{\alpha}\right) \cup\left\{q_{1}, p_{\alpha}\right\}$ cover $\mathrm{V}(G)$ and the edges $p_{1} p_{i+1}, p_{\alpha} p_{i}, q_{1} q_{i+1}, q_{\beta} q_{i}$ are in $\mathrm{E}(G)$. If $p_{1} p_{i+1} \in \mathrm{E}(G)$, then $q_{\beta} p_{i} \notin \mathrm{E}(G)$ since elsewhere

$$
x r_{1} \cdots r_{\gamma} y p_{\alpha} \cdots p_{i+1} p_{1} p_{2} \cdots p_{i} q_{\beta} \cdots q_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. Hence $p_{1} p_{i} \in \mathrm{E}(G)$.
With the preliminary remarks and definitions out of the way, we can proceed with the proof of Theorem 7. We will first study the case where $\alpha=\beta=2$ and obtain the existence of a minimal odd M-edge cut-set. Then we will assume that $\alpha \geqslant 3$ or $\beta \geqslant 3$ and use the structure of the neighborhood of the vertices $p_{1}, q_{1}, p_{\alpha}, q_{\beta}$ to obtain a contradiction.

4.2. Proof of Theorem 7 for $\alpha=\beta=2$

We prove a series of claims. Let $S=G \backslash \Gamma$.
Claim 1. The vertex p_{1} has no neighbor in S.
Proof of Claim 1. Suppose that $w \in \mathrm{~V}(S)$ is adjacent to p_{1}. Since G is 3-connected, we have a vertex $t \in \mathrm{~V}(\Gamma) \backslash\left\{p_{1}\right\}$ and a path $\pi[w, t]$ from w to Γ internally disjoint from Γ. Note that $t \neq q_{2}$, since elsewhere we obtain a cycle through $M^{\prime} \cup\{e\}$. Because of the maximality of $|\mathrm{V}(\Gamma)|, t \neq x$. For the same reason, $w q_{2} \notin \mathrm{E}(G)$ and $w x \notin \mathrm{E}(G)$. If $t=q_{1}$, then $x q_{2} \notin \mathrm{E}(G)$ and thus $x, w \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$. From the above, $w x \in \mathrm{E}(G)$, a contradiction. Note that also $w q_{1} \notin \mathrm{E}(G)$, and by Remark $4, w p_{2} \in \mathrm{E}(G)$. By the maximality of $|\mathrm{V}(\Gamma)|, t \neq y$. It is possible that $t=p_{2}$, but in this case, since G is 3-connected, there exists a path, say $\pi[w, r]$ from w to Γ to $r \in \mathrm{~V}(R)$, other than the edges $w p_{1}$ and $w p_{2}$. At least one of the edges $r r^{+}$and $r^{-} r$ is not in M and either r^{+}in the first case or r^{-}in the second case is adjacent to one of p_{1} or p_{2}. These edges allow us to construct a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Claim 2. The edge $p_{2} q_{2}$ is in $\mathrm{E}(G)$.
Proof of Claim 2. Case 1: $p_{1} q_{1} \in \mathrm{E}(G)$ or there exists a path $\pi\left[p_{1}, q_{1}\right]$ internally disjoint with Γ.
Then $x p_{2}, x q_{2} \notin \mathrm{E}(G)$ elsewhere we obtain a cycle through $M^{\prime} \cup\{e\}$. The conditions $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right), x p_{2} \notin$ $\mathrm{E}(G)$ imply $p_{2} \in \mathrm{~N}\left(q_{2}\right)$ i.e. $p_{2} q_{2} \in \mathrm{E}(G)$.
Case 2: $p_{1} q_{1} \notin \mathrm{E}(G)$ and there exists no path $\pi\left[p_{1}, q_{1}\right]$ internally disjoint with Γ.
Suppose that $p_{2} q_{2} \notin \mathrm{E}(G)$. Then $p_{2} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$. We have $\mathrm{N}\left(p_{1}\right) \subset \mathrm{V}(R) \cup\left\{x, y, p_{2}\right\}$.
Let $r \in \mathrm{~V}(R)$ be a neighbor of p_{1}. We have $r, p_{2} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$, that implies $r p_{2} \in \mathrm{E}(G)$, a contradiction with Lemma 1. So $\mathrm{N}_{R}\left(p_{1}\right)=\emptyset$, and $\mathrm{N}\left(p_{1}\right) \subset\left\{x, y, p_{2}\right\}$.

Since G is 3 -connected and $\mathrm{N}\left(p_{1}\right)=\left\{x, y, p_{2}\right\}$, the condition $\mathrm{d}\left(p_{1}\right) \geqslant \mathrm{d}\left(q_{2}\right)$ implies that $|V(R)| \leqslant 1$ and so $R=\emptyset$ or $R=\left\{r_{1}\right\}$. If $R=\emptyset$, it is easy to see that if we remove the vertices x and y, the graph is disconnected. Since G is 3 -connected, it is a contradiction. Let $R=\left\{r_{1}\right\}$. Note that $x r_{1} \notin M$ or $y r_{1} \notin M$. If $R=\left\{r_{1}\right\}$ and $x r_{1} \notin M$, then $x p_{1} p_{2} r_{1} y q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $R=\left\{r_{1}\right\}$ and $x r_{1} \notin M$, then $x r_{1} p_{2} p_{1} y q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction and Claim 2 is proved.

Note that we have also the following corollaries from Claim 2.

Corollary 1. Both pairs of vertices $\left\{y, p_{1}\right\}$ and $\left\{y, q_{1}\right\}$ are independent and have no common neighbors in S.
Corollary 2. If the vertices $\left\{y, p_{1}\right\}$ (or $\left\{y, q_{1}\right\}$) have no common neighbors on R, then $p_{1} q_{1} \in \mathrm{E}(G)$ and y is adjacent to every neighbor of p_{2} (or q_{2}) on R.
Proof of Corollary 2. If there exists a set of three independent vertices containing y and p_{1} (or q_{1}), then $\mathrm{d}(y)+$ $\mathrm{d}\left(p_{1}\right) \geqslant n+3$. Note that we have $\mathrm{N}\left(p_{1}\right) \cap \mathrm{N}(y) \subset \mathrm{V}(R) \cup\left\{x, p_{2}\right\},\left|\mathrm{N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}(y)\right| \geqslant 3$.

Hence, if $\mathrm{N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}(y)=\emptyset$, then there is no independent set of three vertices containing p_{1} and y, and $p_{1} q_{1} \in \mathrm{E}(G)$. As $\mathrm{N}_{R}(y) \cup \mathrm{N}_{R}\left(p_{1}\right)=\mathrm{V}(R)$, by Lemma $1, y$ is adjacent to every vertex of $\mathrm{N}_{R}\left(p_{2}\right)=\mathrm{N}_{R}\left(q_{2}\right)$.

We can now complete the proof of Theorem 7 for $\alpha=\beta=2$.
By Lemma 1, the sets $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(q_{1}\right)$ and $\mathrm{N}_{R}\left(p_{2}\right)=\mathrm{N}_{R}\left(q_{2}\right)$ define a partition of R and by Remark 2 we may assume that $\mathrm{N}_{R}\left(p_{1}\right)$ is a complete graph. If an edge $a b \in \mathrm{E}(R)$ is such that a is adjacent to p_{1} (and q_{1}) and b is adjacent to p_{2} (and q_{2}), then, by Lemma $1, a b \in M$. Let $\left\{e_{j}=a_{j} b_{j}: a_{j} \in \mathrm{~N}_{R}\left(p_{1}\right), b_{j} \in \mathrm{~N}_{R}\left(p_{2}\right)\right\}$ be the set of these edges. The path R can be partitioned into subpaths: $R_{0}=R\left[x, a_{1}\right]\left(=\{x\}\right.$ if $\left.a_{1}=x\right)$, $R_{1}=R\left[b_{1} \cdots b_{2}\right], \ldots R_{s}=R\left[b_{s}, y\right]\left(=\{y\}\right.$ if $\left.b_{s}=y\right)$. Every vertex of $R_{0}, R_{2}, \ldots, R_{2 j} \ldots$ is adjacent to p_{1} (and q_{1}), and every vertex of $R_{1}, R_{3}, \ldots, R_{s}$ is adjacent to p_{2} (and q_{2}). Note that s is odd. If no other edge exists between $\mathrm{N}\left(p_{1}\right) \cup\left\{p_{1}, q_{1}\right\}$ and $\mathrm{N}\left(p_{2}\right) \cup\left\{p_{2}, q_{2}\right\}$, then the set

$$
\left\{e_{j}=a_{j} b_{j}: a_{j} \in \mathrm{~N}_{R}\left(p_{1}\right), b_{j} \in \mathrm{~N}_{R}\left(p_{2}\right), 1 \leqslant j \leqslant s\right\} \cup\left\{p_{1} p_{2}, q_{1} q_{2}\right\}
$$

is a minimal odd M-edge cut-set.
Otherwise there exists an edge $c d \in \mathrm{E}(G)$, with $c \in \mathrm{~N}\left(p_{1}\right), d \in \mathrm{~N}\left(p_{2}\right)$.
Case 1: There is an edge $r_{t} y$, with $r_{t} \in \mathrm{~N}_{R}\left(p_{1}\right)$.
Note that in this case $c=r_{t}$ and $y=d$. We shall consider two cases $r_{t} r_{t+1} \notin M$ and $r_{t} r_{t+1} \in M$. Recall that from Claim $2 p_{2} q_{2} \in \mathrm{E}(G)$.
Subcase 1.1: $r_{t} r_{t+1} \notin M$.
By Lemma 1, $r_{t+1} q_{1} \in \mathrm{E}(G)$ and $x r_{1} \ldots r_{t} y r_{\gamma} \cdots r_{t+1} q_{1} q_{2} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 1.2: $r_{t} r_{t+1} \in M$.
Since $\mathrm{N}_{R}\left(p_{1}\right)$ and $\mathrm{N}_{R}\left(p_{2}\right)$ define a partition of R, we have $r_{t+1} \in \mathrm{~N}_{R}\left(p_{1}\right)$ or $r_{t+1} \in \mathrm{~N}_{R}\left(p_{2}\right)$. If $r_{t+1} \in \mathrm{~N}_{R}\left(p_{1}\right)$, then, from Lemma 1, $r_{t-1} \in \mathrm{~N}_{R}\left(p_{1}\right), r_{t+2} \in \mathrm{~N}_{R}\left(p_{1}\right)$ and $r_{t-1} r_{t+2} \in \mathrm{E}(G)$. In this case $x r_{1} \ldots r_{t-1} r_{t+2 \ldots} . . r_{\gamma} y r_{t} r_{t+1} q_{1} q_{2} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

If $r_{t+1} \in \mathrm{~N}_{R}\left(p_{2}\right)$, then, by Lemma 1, $r_{t+2} \in \mathrm{~N}_{R}\left(p_{2}\right)$. Note that, since $r_{t} r_{t+1} \in M$, we have $r_{t-1} t, t_{t+1} r_{t+2} \notin M$. Hence $x r_{1} \ldots r_{t-1} p_{1} p_{2} r_{t+2} \ldots r_{\gamma} y r_{t} r_{t+1} q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Case 2: The vertex y is not adjacent to any vertex of $\mathrm{N}_{R}\left(p_{1}\right)$.
By Corollary $2, y$ is adjacent to any vertex of $\mathrm{N}_{R}\left(p_{2}\right)$. Let $r_{t} \in \mathrm{~N}_{R}\left(p_{1}\right), r_{m} \in \mathrm{~N}_{R}\left(p_{2}\right)$ such that $r_{t} r_{m} \in \mathrm{E}(G)$.
Subcase 2.1: $r_{t} r_{t+1}, r_{m} r_{m+1} \notin M$ or $r_{t-1} r_{t}, r_{m-1} r_{m} \notin M$.
If $t<m$ and $r_{t} r_{t+1}, r_{m} r_{m+1} \notin M$, then, from Lemma 1, $q_{1} r_{t+1}, q_{2} r_{m+1} \in \mathrm{E}(G)$ and, hence, $x r_{1} \ldots r_{t} r_{m} r_{m-1} \ldots$ $r_{t+1} q_{1} q_{2} r_{m+1} \ldots y p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $t<m$ and $r_{t-1} r_{t}, r_{m-1} r_{m} \notin M$, then, from Lemma 1, $r_{t-1} q_{1}, r_{m-1} p_{2} \in \mathrm{E}(G)$ and, hence, $x r_{1} \ldots r_{t-1} q_{1} q_{2} y r_{\gamma} \ldots r_{m} r_{t} r_{t+1} \ldots r_{m-1} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

If $t>m$ and $r_{t} r_{t+1}, r_{m} r_{m+1} \notin M$, then, from Lemma $1, r_{m+1} q_{2}, q_{1} r_{t+1} \in \mathrm{E}(G)$ and, hence, $x r_{1} \ldots$ $r_{m} r_{t} r_{t-1} \ldots r_{m+1} q_{2} q_{1} r_{t+1} \ldots r_{\gamma} y p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $t>m$ and $r_{t-1} r_{t}, r_{m-1} r_{m} \notin M$, then, from Lemma $1, r_{m-1} q_{2}, q_{1} r_{t-1} \in \mathrm{E}(G)$ and, hence, $x r_{1} \ldots r_{m-1} q_{2} q_{1} r_{t-1} \ldots r_{m} r_{t} \ldots y p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 2.2: $r_{t} r_{t+1} \in M$ and $r_{m-1} r_{m} \in M$ if $t<m, r_{t-1} r_{t} \in M$ and $r_{m} r_{m+1} \in M$ if $t>m$.
There exists i, i between t and m, such that $r_{i} r_{i+1} \notin M$. The vertices r_{i} and r_{i+1} are both adjacent to p_{1} and q_{1} or to p_{2} and q_{2}.
Subcase 2.2.1: The vertices r_{i} and r_{i+1} are both adjacent to p_{1} and q_{1}.
If $t<m$, then since $r_{t-1}, r_{i+1} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$, we have $r_{t-1} r_{i+1} \in \mathrm{E}(G)$ and since $r_{m} \in \mathrm{~N}_{R}\left(p_{2}\right)$ from Lemma $1 q_{2} r_{m+1} \in \mathrm{E}(G)$. Hence $x r_{1} \ldots r_{t-1} r_{i+1} \ldots r_{m} r_{t} r_{t+1} \ldots r_{i} q_{1} q_{2} r_{m+1} \ldots y p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $t>m$, then $r_{t+1}, r_{i+1} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$, we have $r_{t+1} r_{i+1} \in \mathrm{E}(G)$ and since $r_{m} \in \mathrm{~N}_{R}\left(p_{2}\right)$ from

Lemma $1 q_{2} r_{m-1} \in \mathrm{E}(G)$. Hence $x r_{1} \ldots r_{m-1} q_{2} q_{1} r_{i} r_{i-1} \ldots r_{m} r_{t} \ldots r_{i+1} r_{t+1} \ldots y p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 2.2.2: The vertices r_{i} and r_{i+1} are both adjacent to p_{2} and q_{2}.
In this case, from Corollary $2, r_{i}$ and r_{i+1} are adjacent to y. If $t<m$, then, from Lemma $1, r_{t-1} q_{1} \in \mathrm{E}(G)$ and $x r_{1} \ldots r_{t-1} q_{1} q_{2} r_{i} r_{i-1} \ldots r_{t} r_{m} r_{m-1} \ldots r_{i+1} y r_{\gamma} \ldots r_{m+1} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $t>m$, then from Lemma $1 r_{m-1} p_{2}, p_{1} r_{t+1} \in \mathrm{E}(G)$ and $x r_{1} \ldots r_{m-1} p_{2} p_{1} r_{t+1} \ldots y r_{i+1} \ldots r_{t} r_{m} \ldots r_{i} q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 2.3: $r_{t-1} r_{t} \in M$ and $r_{m} r_{m+1} \in M$ if $t<m$ or $r_{t} r_{t+1} \in M$ and $r_{m-1} r_{m} \in M$ if $t>m$.
Recall that from Claim 2, $q_{2} p_{2} \in \mathrm{E}(G)$. From Corollary 2, if $t<m$, then $r_{m-1} y \in \mathrm{E}(G)$ and if $t>m$, then $r_{m+1} y \in \mathrm{E}(G)$. Hence if $t<m$, then $x r_{1} \ldots r_{t} r_{m} \ldots y r_{m-1} \ldots r_{t+1} q_{1} q_{2} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. If $t>m, x r_{1} \ldots r_{m} r_{t} r_{t+1} \ldots y r_{m+1} \ldots r_{t-1} q_{1} q_{2} p_{2} p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

This completes the proof of Theorem 7 for $\alpha=\beta=2$.

4.3. Proof of Theorem 7 for $\alpha \geqslant 3$ or $\beta \geqslant 3$

Case 1: $p_{1} q_{1} \in \mathrm{E}(G)$.
Remark 6. The hypothesis of maximality of the intersection $C_{1} \cap C_{2}$ implies that the edges $p_{1} p_{2}$ and $q_{1} q_{2}$ are in M.
Remark 7. Since there is no cycle through $M^{\prime} \cup\{e\}$ we have $x q_{\beta} \notin \mathrm{E}(G), x p_{\alpha} \notin \mathrm{E}(G)$ and there is no path $\pi\left[x, q_{\beta}\right]$ or $\pi\left[x, p_{\alpha}\right]$ internally disjoint of Γ.

Remark 8. Since $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), p_{\alpha} \in \mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right)$ and $x p_{\alpha} \notin \mathrm{E}(G), p_{\alpha} \notin \mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, we have $p_{\alpha} q_{\beta} \in \mathrm{E}(G)$, that implies $p_{\alpha} p_{\alpha-1}, q_{\beta} q_{\beta-1} \in M$ and $y p_{1}, y q_{1} \notin \mathrm{E}(G)$.

Remark 9. If $w \in \mathrm{~N}_{S}\left(p_{1}\right)$ and $w \notin \mathrm{~N}\left(q_{\beta}\right)$, then $w \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, that implies $w x \in \mathrm{E}(G)$, a contradiction with the hypothesis of maximality of $|\mathrm{V}(\Gamma)|$. Hence $\mathrm{N}_{S}\left(p_{1}\right)=\emptyset$.

By Lemma 2 and the property that $p_{1} p_{2}, q_{1} q_{2}, p_{\alpha} p_{\alpha-1}, q_{\beta-1} q_{\beta}$ are in M, we deduce the following lemma.
Lemma 3. (1) The vertex p_{1} is independent of q_{2}, \ldots, q_{β} and adjacent to $p_{2}, \ldots, p_{\alpha-1}$.
(2) The vertex q_{1} is independent of $p_{2}, \ldots, p_{\alpha}$ and adjacent to $q_{2}, \ldots, q_{\beta-1}$.
(3) The vertex p_{α} is independent of $q_{1}, \ldots, q_{\beta-1}$ and adjacent to $p_{2}, \ldots, p_{\alpha-1}$.
(4) The vertex q_{β} is independent of $p_{1}, \ldots, p_{\alpha-1}$ and adjacent to $q_{2}, \ldots, q_{\beta-1}$.

We recall that we consider the case $\alpha \geqslant 3$ or $\beta \geqslant 3$.
Subcase 1.1: $\alpha \geqslant 3$.
By Lemma 2, $p_{\alpha-1} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$. As $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), x p_{\alpha-1} \in \mathrm{E}(G)$, the edges $p_{1} p_{2}$ and $p_{\alpha-1} p_{\alpha}$ are in M and the condition $\alpha>2$ implies $\alpha \geqslant 4$. By Lemma 3, $p_{\alpha-2} p_{\alpha} \in \mathrm{E}(G)$, and then $x r_{1} \ldots r_{\gamma}$ $y q_{\beta} \ldots q_{1} p_{1} p_{2} \ldots p_{\alpha-2} p_{\alpha} p_{\alpha-1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 1.2: $\alpha=2$ and $\beta \geqslant 3$.
The vertex p_{2} is a common neighbor of p_{1} and q_{β}, thus $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant n-1$ and that implies $\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{2}\right) \leqslant n+1$ and $\min \left\{\mathrm{d}\left(q_{1}\right), \mathrm{d}\left(p_{2}\right)\right\} \leqslant \frac{n+1}{2}$.

When $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{2}\right)$, the $(n+k)$-closure of $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ is a complete graph. If it is not, then $\mathrm{d}\left(p_{2}\right)>\mathrm{d}\left(q_{1}\right)$. We shall examine both cases.
Subcase 1.2.1: $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{2}\right)$.
As observed above, $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ induces a complete graph. As $\beta \geqslant 3, q_{2} q_{3} \notin M, q_{3} \in \mathrm{~N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ and $x q_{3} \in \mathrm{E}(G)$. Then $x \ldots y p_{2} p_{1} q_{1} q_{2} q_{\beta} \cdots q_{3} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 1.2.2: $\mathrm{d}\left(p_{2}\right)>\mathrm{d}\left(q_{1}\right)$.
The following inequalities are satisfied: $\mathrm{d}\left(p_{1}\right) \geqslant \mathrm{d}\left(q_{\beta}\right), \mathrm{d}\left(p_{2}\right) \geqslant \mathrm{d}\left(q_{1}\right), \mathrm{d}\left(p_{2}\right)+\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right)$.
They imply that $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right) \geqslant n-1$. We have $\mathrm{N}\left(p_{1}\right)=\mathrm{N}_{R}\left(p_{1}\right) \cup\left\{p_{2}, x, q_{1}\right\}$ and $\mathrm{N}\left(p_{2}\right)=\mathrm{N}_{R}\left(p_{2}\right) \cup\left\{p_{1}, y, q_{\beta}\right\} \cup$ $\mathrm{N}_{S}\left(p_{1}\right)$. By Lemma 1, $\mathrm{d}_{R}\left(p_{1}\right)+\mathrm{d}_{R}\left(p_{2}\right)=|\mathrm{V}(R)|=\gamma \cdot \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right)=\mathrm{d}_{R}\left(p_{1}\right)+\mathrm{d}_{R}\left(p_{2}\right)+6+\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{2}\right) \leqslant$
$\gamma+6+|\mathrm{V}(S)|$. Since $n=\gamma+\beta+4+|\mathrm{V}(S)|$, we obtain $n-1=\gamma+\beta+4+|\mathrm{V}(S)|-1 \leqslant \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right) \leqslant \gamma+6+|\mathrm{V}(S)|$ and this implies $\beta \leqslant 3$. We have $q_{1} q_{2} \in M$ and $q_{\beta-1} q_{\beta} \in M$, then if $\beta \leqslant 3, q_{1} q_{2}=q_{\beta-1} q_{\beta}$ and $\beta=2$, a contradiction.
Case 2: $p_{1} q_{1} \notin \mathrm{E}(G)$.
Lemma 4. (1) The vertex p_{1} is independent of $q_{1}, q_{2}, \ldots, q_{\beta}$ and adjacent to $p_{2}, \ldots, p_{\alpha}$.
(2) The vertex q_{1} is independent of $p_{1}, \ldots, p_{\alpha}$ and adjacent to q_{2}, \ldots, q_{β}.
(3) The vertex p_{α} is independent of $q_{1}, \ldots, q_{\beta-1}$ and adjacent to $p_{1}, \ldots, p_{\alpha-1}$.
(4) The vertex q_{β} is independent of $p_{1}, \ldots, p_{\alpha-1}$ and adjacent to $q_{1}, \ldots, q_{\beta-1}$.

Proof of Lemma 4. The condition $q_{1} \notin \mathrm{~N}\left(p_{1}\right)$ implies that $q_{1} \in \mathrm{~N}\left(q_{\beta}\right)$, the condition $p_{1} \notin \mathrm{~N}\left(q_{1}\right)$ implies that $p_{1} \in \mathrm{~N}\left(p_{\alpha}\right)$ i.e., the edges $p_{1} p_{\alpha}$ and $q_{1} q_{\beta}$ are in $\mathrm{E}(G)$. Let i be a minimal integer such that $p_{1} q_{i} \in \mathrm{E}(G)$. For $1 \leqslant j \leqslant i-1, p_{1} q_{j} \notin \mathrm{E}(G)$, and so $q_{\beta} q_{j} \in \mathrm{E}(G)$. The hypothesis of maximality of $C_{1} \cap C_{2}$ implies that $q_{i} q_{i+1} \in M$ and then $q_{i-1} q_{i} \notin M$. The cycle $x r_{1} \ldots r_{\gamma} y p_{\alpha} \ldots p_{1} q_{i} \ldots q_{\beta} q_{i-1} \ldots q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. The vertex p_{1} is independent of $q_{1}, q_{2}, \ldots, q_{\beta}$, and hence q_{β} is adjacent to $q_{1}, q_{2}, \ldots, q_{\beta-1}$.

The proofs for the other vertices are similar.
Subcase 2.1: $p_{\alpha} q_{\beta} \notin \mathrm{E}(G)$.
Claim 3. If $p_{\alpha} q_{\beta} \notin \mathrm{E}(G)$, then $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(q_{1}\right)=\emptyset$.
Proof of Claim 3. If $p_{\alpha} \in \mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ and $u \in \mathrm{~N}_{R}\left(p_{1}\right)$, then $u q_{\beta} \notin \mathrm{E}(G), u \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ and hence $u \in \mathrm{~N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}\left(p_{\alpha}\right)$, a contradiction with Lemma 1.

Claim 4. At least one of the edges $x p_{\alpha}$ or $x q_{\beta}$ is in $\mathrm{E}(G)$.
Proof of Claim 4. If $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), x$ is adjacent to every vertex of $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, then $x p_{\alpha} \in \mathrm{E}(G)$.
Corollary 3. $\mathrm{N}_{S}\left(p_{1}\right) \cap \mathrm{N}_{S}\left(q_{1}\right)=\emptyset$.
Claim 5. At least one of the edges $y p_{1}$ or $y q_{1}$ is in $\mathrm{E}(G)$.
Proof of Claim 5. Vertices p_{1} and q_{1} have no common neighbor in S. The following inequality is satisfied:

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)
$$

and since $n=\alpha+\beta+\gamma+2+|\mathrm{V}(S)|$ we have

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant n
$$

The vertices p_{1} and q_{1} are not in any set of three independent vertices and so Claim 5 is proved.
Subsubcase 2.1.1: $\gamma=|\mathrm{V}(R)|=0$.
In this case $x y \in M$. As G is 3 -connected, $G \backslash\{x, y\}$ is connected. The conditions $\epsilon\left(x p_{\alpha}\right)+\epsilon\left(x q_{\beta}\right) \geqslant 1$, $\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right) \geqslant 1$ imply that there is no path $\pi\left[p_{1}, q_{1}\right], \pi\left[p_{1}, q_{\beta}\right], \pi\left[p_{\alpha}, q_{1}\right], \pi\left[p_{\alpha}, q_{\beta}\right]$ otherwise there is a cycle through $M^{\prime} \cup\{e\}$. As G is 3 -connected, there exists a path $\pi\left[p_{i}, q_{j}\right]$, with $2 \leqslant i \leqslant \alpha-1,2 \leqslant j \leqslant \beta-1$. We can easily construct a cycle through $M^{\prime} \cup\{e\}$.
Subcase 2.1.2: $\gamma \geqslant 1, \mathrm{~d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{\alpha}\right)$.
By Claims 4 and $5, \epsilon\left(x p_{\alpha}\right)+\epsilon\left(x q_{\beta}\right) \geqslant 1$ and $\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right) \geqslant 1$. Hence we have $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right)+$ $\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant 2 n-2$ and this implies $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n-1$. We have $\mathrm{N}\left(p_{1}\right) \subset\{x, y\} \cup\left\{p_{2}, \ldots, p_{\alpha}\right\} \cup S$, $\mathrm{N}\left(q_{1}\right) \subset\{x, y\} \cup\left\{q_{2}, \ldots, q_{\beta}\right\} \cup S, \mathrm{~N}_{S}\left(p_{1}\right) \cap \mathrm{N}_{S}\left(q_{1}\right)=\emptyset$ and so $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)$. Moreover $n=\alpha+\beta+\gamma+2+|\mathrm{V}(S)|$.

The inequality $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n-1$ gives $\gamma+1 \leqslant \epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)$. Hence $\gamma=1=\epsilon\left(y p_{1}\right)=\epsilon\left(y q_{1}\right)$. If $x r_{1} \in M$, then $x r_{1} q_{\beta} \ldots q_{1} y p_{\alpha} \ldots p_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$. If $r_{1} y \in M$, then $x p_{1} \ldots p_{\alpha} r_{1} y q_{\beta} \ldots q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$. In both cases we have a contradiction.
Subcase 2.1.3: $\gamma \geqslant 1, \mathrm{~d}\left(q_{1}\right)<\mathrm{d}\left(p_{\alpha}\right)$.

Note that $\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{1}\right)=\alpha+\beta+\gamma+|\mathrm{V}(S)|+\epsilon\left(y q_{1}\right)+\epsilon\left(x p_{\alpha}\right) \leqslant n$. Hence the $(n+k)$-closure of $\mathrm{N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$ is a complete graph. Let $u \in \mathrm{~N}_{R}\left(p_{\alpha}\right), u \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$ and $p_{1} \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$. This implies $u p_{1} \in \mathrm{E}(G)$, a contradiction with Lemma 1. Hence $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(p_{\alpha}\right)=\emptyset, \gamma=0$, a contradiction with the hypothesis of Subcase 2.1.3.

Subcase 2.2: $p_{\alpha} q_{\beta} \in \mathrm{E}(G)$.
Claim 6. If $p_{\alpha} q_{\beta} \in \mathrm{E}(G)$, then $y p_{1} \notin \mathrm{E}(G)$ and $y q_{1} \notin \mathrm{E}(G)$.
By Claim $6 \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right)=\alpha+\beta+\gamma+\epsilon\left(x q_{\beta}\right)+1+|\mathrm{V}(S)|=n-1+\epsilon\left(x q_{\beta}\right) \leqslant n \cdot \mathrm{~d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right)=$ $\alpha+\beta+\gamma+\epsilon\left(x p_{\alpha}\right)+1+|\mathrm{V}(S)|=n-1+\epsilon\left(x p_{\alpha}\right) \leqslant n$.
Subcase 2.2.1: $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{\alpha}\right)$.
The $(n+k)$-closure of $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{\alpha}\right)$ is a complete graph, so we may assume that $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{\alpha}\right)$ is complete. Vertices p_{1}, q_{1}, y are independent and thus $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n+3$. Recall that $\mathrm{d}_{R}\left(q_{1}\right)=\mathrm{d}_{R}\left(p_{1}\right)$.

The two equalities:

$$
\begin{aligned}
& \mathrm{d}\left(p_{1}\right)=\alpha+\mathrm{d}_{R}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{1}\right) \\
& \mathrm{d}\left(q_{1}\right)=\beta+\mathrm{d}_{R}\left(q_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right)
\end{aligned}
$$

imply that

$$
\alpha+\beta+2 \mathrm{~d}_{R}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right) \geqslant n+3 .
$$

If $x p_{\alpha} \in \mathrm{E}(G)$ or $x q_{\beta} \in \mathrm{E}(G)$, then $\mathrm{N}_{S}\left(p_{1}\right) \cap \mathrm{N}_{S}\left(q_{1}\right)=\emptyset$. If $x p_{\alpha} \notin \mathrm{E}(G)$ and $x q_{\beta} \notin \mathrm{E}(G)$, then $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$; if $w \in \mathrm{~N}_{S}\left(p_{1}\right)$, then $w \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ and $x w \in \mathrm{E}(G)$, a contradiction with the hypothesis of maximality of $|\mathrm{V}(\Gamma)|$. Hence $\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right) \leqslant|\mathrm{V}(S)|$. Note that $n+3 \leqslant \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+2 \mathrm{~d}_{R}\left(p_{1}\right)$. This implies that $\alpha+\beta+\gamma+|\mathrm{V}(S)|+5 \leqslant \alpha+\beta+|\mathrm{V}(S)|+2 \mathrm{~d}_{R}\left(p_{1}\right)$. Since $2 \mathrm{~d}_{R}\left(p_{1}\right) \geqslant \gamma+5$, we have $\mathrm{d}_{R}\left(p_{1}\right) \geqslant 5$. If $\alpha>2$, then $p_{\alpha-1} p_{\alpha} \in M$ and $p_{\alpha-2} p_{\alpha-1} \notin M$. Let $r_{i} r_{i+1}$ be an edge of R not in M, with r_{i} and r_{i+1} adjacent to p_{1}. Vertices r_{i} and r_{i+1} are adjacent to $p_{\alpha-1}$ and $p_{\alpha-2}$. Hence $x r_{1} \ldots r_{i} p_{\alpha-2} \ldots p_{1} p_{\alpha} p_{\alpha-1} r_{i+1} \ldots r_{\gamma} y q_{\beta} \ldots q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

If $\beta>2$, the argument is similar.
Subcase 2.2.2: $\mathrm{d}\left(p_{\alpha}\right)>\mathrm{d}\left(q_{1}\right)$.
If $p_{1}, y \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$, then $y p_{1} \in \mathrm{E}(G)$, a contradiction with Claim 6 .
The proof of Theorem 7 is complete.

References

[1] K.A. Berman, Proof of a conjecture of Häggkvist on cycles and independent edges, Discrete Math. 46 (1983) 9-13.
[2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Raport CORR, 1980, pp. 80-16.
[3] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[4] R. Häggkvist, On F-hamiltonian graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 219-231.
[5] B. Jackson, N.C. Wormald, Cycles containing matchings and pairwise compatible Euler tours, J. Graph Theory 14 (1990) $127-138$.
[6] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[7] M.Las Vergnas, Problèmes de couplages et problemes hamiltoniens en théorie des graphes, Ph.D. Thesis, Université Paris XI, 1972.
[8] A.P. Wojda, Hamiltonian cycles through matchings, Demonstratio Math. XXI (2) (1983) 547-553.

[^0]: * Corresponding author.

 E-mail addresses: amar@labri.u-bordeaux.fr (D. Amar), fe@lri.fr (E. Flandrin), gancarz@uci.agh.edu.pl (G. Gancarzewicz).
 ${ }^{1}$ Research partially supported by the UST - AGH grant 1142004.
 ${ }^{2}$ This work was carried out in part while GG was visiting LRI UPS, Orsay, France.

