

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 3703-3713

www.elsevier.com/locate/disc

(1)

A degree condition implying that every matching is contained in a hamiltonian cycle

Denise Amar^a, Evelyne Flandrin^b, Grzegorz Gancarzewicz^{c,*,1,2}

^a LABRI, Université de Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France ^b LRI, UMR 8623, Bâtiment 490, Université de Paris-Sud, 91405 Orsay, France ^c AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, Kraków, Poland

> Received 1 November 2005; accepted 5 February 2008 Available online 8 April 2008

Abstract

We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We also show that the bound for the degree sum is almost the best possible. © 2008 Elsevier B.V. All rights reserved.

Keywords: Cycle; Hamiltonian cycle; Matching

1. Introduction

For a graph G, V(G) denotes its vertex set and E(G) its edge set. For a vertex x of G, $d_G(x)$, denotes its degree in G, that is the cardinality of $N_G(x) = \{y \in V(G) : xy \in E(G)\}$, the neighborhood of x in G. The subscript G is omitted when it is clear from the context.

In 1960, Ore [6] proved the following.

Theorem 1. Let G be a graph on $n \ge 3$ vertices. If for any pair of independent vertices $x, y \in V(G)$ we have

 $\mathbf{d}(x) + \mathbf{d}(y) \ge n,$

then G is hamiltonian.

Many Ore-type theorems dealing with degree-sum conditions have been proved since. In particular, Bondy [2] showed the following.

Theorem 2. Let G be a 2-connected graph on $n \ge 3$ vertices. If for any independent vertices x, y, $z \in V(G)$ we have

$$d(x) + d(y) + d(z) \ge \frac{3n-2}{2},$$

then G is hamiltonian.

* Corresponding author.

E-mail addresses: amar@labri.u-bordeaux.fr (D. Amar), fe@lri.fr (E. Flandrin), gancarz@uci.agh.edu.pl (G. Gancarzewicz).

¹ Research partially supported by the UST — AGH grant 1142004.

² This work was carried out in part while GG was visiting LRI UPS, Orsay, France.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.02.003

We shall call a set of $k \ge 1$ independent edges a *k*-matching and sometimes simply a matching. The number of edges in a matching *M* will occasionally be denoted by |M| and the set of all end vertices of the edges in *M* will occasionally be denoted by V(M).

Berman [1] proved the conjecture of Häggkvist [4] about cycles through matchings in general graphs.

Theorem 3. Let G be a graph on $n \ge 3$ vertices. If for any pair of independent vertices $x, y \in V(G)$ we have

 $d(x) + d(y) \ge n + 1,$

then every matching lies in a cycle.

Theorem 3 has been improved by Jackson and Wormald [5]. Häggkvist [4] also gave a sufficient condition for a general graph to contain any matching in a hamiltonian cycle. We give this theorem below in a slightly improved version obtained by Wojda [8].

Let \mathcal{G}_n be the family of graphs $G = \overline{K}_{\frac{n+2}{3}} * H$, where *H* is any graph of order $\frac{2n-2}{3}$ containing a perfect matching if $\frac{n+2}{3}$ is an integer, and $\mathcal{G}_n = \emptyset$ otherwise (* denotes the join of graphs).

Theorem 4. Let G be a graph on $n \ge 3$ vertices. If for any pair of independent vertices $x, y \in V(G)$ we have

$$\mathrm{d}(x) + \mathrm{d}(y) \geqslant \frac{4n-4}{3},$$

then every matching of G lies in a hamiltonian cycle, unless $G \in \mathcal{G}_n$.

Las Vergnas [7] has a similar result, with the bound for the degree-sum independent of the number of edges of the matching M.

Theorem 5. Let G be a graph on $n \ge 3$ vertices and let k be an integer $0 \le k \le \frac{n}{2}$. If for any pair of independent vertices $x, y \in V(G)$ we have

$$\mathbf{d}(x) + \mathbf{d}(y) \ge n + k,$$

then every k-matching of G lies in a hamiltonian cycle.

The purpose of this paper is to give new conditions on the degree-sum of three independent vertices under which every matching in a graph G lies in a hamiltonian cycle. First, we state an extension theorem.

Theorem 6. Let G be a 3-connected graph on $n \ge 3$ vertices such that for any independent vertices $x, y, z \in V(G)$, we have

 $d(x) + d(y) + d(z) \ge 2n.$

Let M be a matching in G. If there exists a cycle of G containing M, then there exists a hamiltonian cycle of G containing M.

Theorem 6 shows that if a graph G satisfies (2) and a matching of G lies in a cycle, then this cycle can be extended to a hamiltonian cycle. Using Theorem 6, we prove the following analog of Theorem 2 about hamiltonian cycles through matchings.

Theorem 7. Let G be a 3-connected graph on $n \ge 3$ vertices and let M be a matching in G such that for any independent vertices $x, y, z \in V(G)$ we have

$$d(x) + d(y) + d(z) \ge 2n.$$

(3)

(2)

Then there exists a hamiltonian cycle containing every edge of M or G has a minimal odd M-edge cut-set.

A minimal odd M-edge cut-set is a subset of M such that its suppression disconnects the graph G and which has no proper subset being an G-edge cut-set.

Note that the bound 2n in Theorem 7 is almost best possible. Let $p \ge 2$ and consider a complete graph K_{2p} with a perfect *p*-matching. We define the graph $G = (p + 1)K_1 * K_{2p}$, (* denotes the join of graphs). In this graph,

n = 3p + 1 and G is 3-connected. For any independent x, $y, z \in V(G)$ we have $d(x) + d(y) + d(z) \ge 2n - 2$ and there is no hamiltonian cycle containing the *p*-matching from K_{2p} . So the bound 2n is almost best possible.

Theorem 7 has the following corollary (recall that the *stability number* of a graph G, denoted by $\alpha(G)$ is the cardinality of a maximum independent set of vertices of G).

Corollary 8. Let G be a 3-connected graph on $n \ge 6$ vertices and let M be a matching of G. If $\alpha(G) = 2$, then there is a hamiltonian cycle of G containing M or G has a minimal odd M-edge cut-set.

2. Notation and preliminary results

Let *G* be a graph. Let $A \subseteq V(G)$, $x \in V(G)$, and define $N_A(x) = A \cap N_G(x)$ to be the set of *neighbors of x in A*. A path or a cycle *C* in *G* is usually given as a sequence of vertices from c_0 to c_l such that $c_i c_{i+1} \in E(G)$ for i = 0, ..., l-1 (plus the edge $c_l c_0$ if *C* is a cycle). This induces an orientation on *C*, say from c_0 to c_l . Thus it makes sense to speak of a *successor* c_{i+1} and a *predecessor* c_{i-1} of a vertex c_i (addition modulo l + 1). Denote the successor of a vertex x by x^+ and its predecessor by x^- . This notation can be extended to $A^+ = \{x^+ : x \in A\}$, and similarly, to A^- when $A \subseteq V(G)$.

Let $C = c_0 \dots c_l$ be a cycle in G with an orientation as above. For any pair of vertices $c_i, c_j \in V(C)$ we define four intervals (paths) (addition modulo l + 1). If C is a path, the intervals that make sense are defined similarly.

-] c_i, c_j [is the path $c_i^+ \cdots c_i^-$.
- $[c_i, c_j]$ is the path $c_i c_i^+ \cdots c_j^-$.
- $]c_i, c_j]$ is the path $c_i^+ \cdots c_j^- c_j$.
- $[c_i, c_j]$ is the path $c_i c_i^+ \cdots c_j^- c_j$.

It is useful to define $\epsilon : [V(G)]^2 \longrightarrow \{0, 1\}$ by $\epsilon((u, v)) = 1$ if and only if $uv \in E(G)$. Of course, we write $\epsilon(uv)$ for $\epsilon((u, v))$ most of the time.

Let *W* be a property defined for all graphs of order *n* and let *k* be a nonnegative integer. The property *W* is said to be *k*-stable if whenever G + xy has property *W* and $d_G(x) + d_G(y) \ge k$ then *G* itself has property *W*.

Let k, s_1, \ldots, s_l be positive integers. We call S a *path system of length* k if the components of S are vertex disjoint paths

$$P_1: \quad x_0^1 x_1^1 \dots x_{s_1}^1,$$

$$\vdots$$

$$P_l: \quad x_0^l x_1^l \dots x_{s_l}^l$$

and $\sum_{i=1}^{l} s_i = k$.

Note that a *k*-matching is a path system of length *k* with each path of length one.

Bondy and Chvátal [3] proved the following theorem, which we shall need in the proof.

Theorem 9. Let *n* and *k* be positive integers with $k \leq n - 3$. Then the property of being *k*-edge-hamiltonian is (n + k)-stable.

3. Proof of Theorem 6

Let k = |M| and let *C* be a longest cycle of *G* containing every edge of *M*. We assume that *C* is not hamiltonian. Let $R = V(G) \setminus V(C)$ be the set of vertices of *G* not on *C*. Let $u \in R$. Since *G* is 3-connected, we have $P_1[u, a]$, $P_2[u, b]$, $P_3[u, c]$ three internally disjoint paths from *u* to *C*, for any distinct *a*, *b*, $c \in V(C)$. Since two consecutive edges of *C* cannot be in *M*, there is an orientation of *C* such that at least at least two edges among aa^+ , bb^+ , cc^+ are not in *M*. Without loss of generality we may assume that $aa^+ \notin M$, $bb^+ \notin M$. The three vertices u, a^+, b^+ are independent (since *C* is the longest cycles containing *M*), so by the assumption (2) we have

$$d(u) + d(a^{+}) + d(b^{+}) \ge 2n.$$
(4)

From now on the orientation of *C* is fixed and the vertices on the cycle are implicitly numbered x_0, \ldots, x_l from some arbitrary vertex x_0 . This also fixes the intervals on *C*.

3.1. Neighbors of u, a^+, b^+ in R and C

Since *C* is the longest cycle, no vertex of *R* can be adjacent to more than one of a^+ , b^+ . Thus, since the three vertices are independent, $d_R(a^+) + d_R(b^+) + d_R(u) \leq |V(R)| - 1$.

If a^- is adjacent to $u, a^-a \in M$, otherwise C can be extended, and similarly for b^- . Hence

$$(\mathcal{N}_{\mathcal{C}}(u))^{+} \cap [\mathcal{N}_{\mathcal{C}}(a^{+}) \cup \mathcal{N}_{\mathcal{C}}(b^{+})] \subset \{\alpha \in \mathcal{V}(\mathcal{C}), \alpha^{-}\alpha \in M\}$$

and

$$\left| (\mathbf{N}_C(u))^+ \cap [\mathbf{N}_C(a^+) \cup \mathbf{N}_C(b^+)] \right| \leq k.$$

As $\left| \mathbf{N}_{C}(u)^{+} \cup \mathbf{N}_{C}(a^{+}) \cup \mathbf{N}_{C}(b^{+}) \right| \leq |\mathbf{V}(C)|$, we have

$$|N_C(u)| + |N_C(a^+) \cup N_C(b^+)| \le |V(C)| + k.$$

Moreover

$$\left| N_{C}(a^{+}) \cup N_{C}(b^{+}) \right| = \left| N_{C}(a^{+}) \right| + \left| N_{C}(b^{+}) \right| - \left| N_{C}(a^{+}) \cap N_{C}(b^{+}) \right|.$$

To find an upper bound for $|N_C(a^+) \cap N_C(b^+)|$ we shall study vertices of $N_C(a^+) \cap N_C(b^+)$.

Let $C_1 = C[a, b]$ and $C_2 = C[b, a]$ be the two intervals on the cycle C with endvertices a and b. Note that for any vertex x from the cycle C we have $xx^+ \notin M$ or $x^-x \notin M$.

Let $x \in C_1 \cap N_C(a^+) \cap N_C(b^+)$. If $xx^+ \notin M$ and $x^+ \in N_C(a^+)$, then the cycle

 $P_1[u, a]a^- \cdots b^+ xx^- \cdots a^+ x^+ \cdots b^- P_2[b, u]$

is a cycle containing M longer than C, a contradiction.

Hence $x^+ \notin N_C(a^+)$ and $x^+ \notin N_C(a^+) \cap N_C(b^+)$. Similarly if $x^-x \notin M$, then $x^- \notin N_C(b^+)$ and $x^- \notin N_C(a^+) \cap N_C(b^+)$.

Using similar arguments for a vertex $x \in C_2 \cap N_C(a^+) \cap N_C(b^+)$, we can show that if $xx^+ \notin M$, then $x^+ \notin N_C(a^+) \cap N_C(b^+)$ and if $x^-x \notin M$, then $x^- \notin N_C(a^+) \cap N_C(b^+)$.

By removing the edges of the matching M from the cycle C we obtain a sequence of paths P_j such that $V(C) = \bigcup_i V(P_j)$.

We have shown that on any path P_i there are no two consecutive vertices from the set $N_C(a^+) \cap N_C(b^+)$ and thus

$$\left| \mathbf{N}_{C}(a^{+}) \cap \mathbf{N}_{C}(b^{+}) \cap \mathbf{V}(P_{j}) \right| \leq \left\lceil \frac{\left| \mathbf{V}(P_{j}) \right|}{2} \right\rceil.$$

3.2. Relations on degrees of a^+ , b^+ , u

Recall that P_j are the paths obtained from C by removing the edges of M. For $i \ge 2$, let n_i be the number of paths P_j of length i - 1. The following relations must be satisfied:

$$k = \sum_{i \ge 2} n_i$$
$$|\mathbf{V}(C)| = \sum_{i \ge 2} i n_i$$
$$\left| \mathbf{N}_C(a^+) \cap \mathbf{N}_C(b^+) \right| \le \sum_{i \ge 2} \left\lceil \frac{i}{2} \right\rceil n_i.$$

As

 $d_C(a^+) + d_C(b^+) + d_C(u) \leq |V(C)| + k + |N_C(a^+) \cap N_C(b^+)|$

we have

$$d_{C}(a^{+}) + d_{C}(b^{+}) + d_{C}(u) \leq \sum_{j \geq 1} (2jn_{2j} + (2j+1)n_{2j+1}) + \sum_{j \geq 1} (n_{2j} + n_{2j+1}) + \sum_{j \geq 1} (jn_{2j} + (j+1)n_{2j+1}) \leq \sum_{j \geq 1} (3j+1)n_{2j} + \sum_{j \geq 1} (3j+3)n_{2j+1} \leq \sum_{j \geq 1} 4jn_{2j} + \sum_{j \geq 1} (4j+2)n_{2j+1}.$$

Hence

 $\mathrm{d}_C(a^+) + \mathrm{d}_C(b^+) + \mathrm{d}_C(u) \leqslant 2 |\mathrm{V}(C)|$

and

$$d(a^{+}) + d(b^{+}) + d(u) \leq 2|V(C)| + |V(R)| - 1 \leq 2(|V(C)| + |V(R)|) - |V(R)| - 1 = 2n - |V(R)| - 1$$

a contradiction with (4).

This contradiction ends the proof of Theorem 6. \Box

4. Proof of Theorem 7

Let k = |M|.

4.1. Preliminary remarks

Remark 1. For two independent vertices $x, y \in V(G)$ two cases can occur:

(1) If there exists a vertex z such that x, y, z are independent, then $d(x) + d(y) \ge 2n - d(z) \ge n + 3$.

(2) If there is no vertex in G independent with x and y, then $N(x) \cup N(y) \cup \{x, y\}$ covers V(G) and $d(x) + d(y) \ge n-2$.

Remark 2. If x and y are independent vertices satisfying $d(x) + d(y) = n - 2 + \epsilon$, with $0 \le \epsilon \le 3$, then we can assume that $N(x) \setminus N(y)$ is a complete graph.

Remark 1 follows from (3).

Proof of Remark 2. Since x and y are independent and $d(x) + d(y) = n - 2 + \epsilon$, with $0 \le \epsilon \le 3$, there is no vertex in G independent with x and y. We may assume $d(y) \le d(x)$. Note that in this case $d(y) \le \frac{n-2+\epsilon}{2}$ and if u_1 and u_2 are independent vertices in $N(x) \setminus N(y)$, then $d(u_1) + d(u_2) \ge 2n - d(y) \ge \frac{3n-1}{2} = n + \frac{n-1}{2}$. If n is even, then $d(u_1) + d(u_2) \ge n + \frac{n}{2} \ge n + k$. If n is odd, then any matching of G has at most $\frac{n-1}{2}$ edges, then we have again $d(u_1) + d(u_2) \ge n + k$. In any case u_1u_2 is in the (n + k)-closure of G. From Theorem 9 we can assume that $N(x) \setminus N(y)$ is a complete graph. \Box

We will need the following notion introduced by Berman [1].

Definition 1. A θ -graph through a matching M is the union of two cycles C_1 and C_2 whose intersection is a path of length at least one and such that $M \subset E(C_1) \cup E(C_2)$ and every edge of M incident with a vertex of $C_1 \cap C_2$ lies in $C_1 \cap C_2$.

We will prove the theorem by contradiction. We assume that for a matching M there is no hamiltonian cycle containing M and consider a cycle C in G which satisfies the following conditions.

- (1) $|E(C) \cap M|$ is maximum.
- (2) Up to condition (1) the length of C is maximum, so by Theorem 6, C is a hamiltonian cycle.

Let $M' = E(C) \cap M$. By assumption $M' \neq M$ and then there exists an edge $e = xy \in M$, $e \notin E(C)$. The edge e = xy is a chord of the hamiltonian cycle. Let $C_1 = xx^+ \cdots yx$ and $C_2 = xx^- \cdots yx$. Note that $(C_1 \cup C_2)$ satisfies the definition of a θ -graph through $M' \cup \{e\}$.

Let $\Gamma(C_1, C_2)$ be a θ -graph through $M' \cup \{e\}$ satisfying moreover:

- (1) The intersection $C_1 \cap C_2$ is maximum.
- (2) Under condition (1) $|V(\Gamma(C_1, C_2))|$ is maximum.

Define in $\Gamma(C_1, C_2)$, $R' = C_1 \cap C_2 = xr_1r_2 \dots r_\gamma y$, $R = r_1r_2 \dots r_\gamma$, $P = C_1 \setminus C_2 = p_1p_2 \dots p_\alpha$ with $xp_1 \in E(C_1)$, $Q = C_2 \setminus C_1 = q_1q_2 \dots q_\beta$ with $xq_1 \in E(C_2)$. Sometimes we will write Γ instead of $\Gamma(C_1, C_2)$.

Remark 3. From the definition of a θ -graph, the edges $xp_1, xq_1, yp_\alpha, yq_\beta$ are not in M. Hence vertices p_1 and q_β are independent and also q_1 and p_α are independent.

Proof of Remark 3. Suppose that $p_1q_\beta \in E(G)$, then the cycle $p_1q_\beta q_{\beta-1} \dots q_1xr_1r_2 \dots r_\gamma yp_\alpha p_{\alpha-1} \dots p_1$ is a cycle through $M \cap E(\Gamma)$, a contradiction. The proof for q_1 and p_α is similar. \Box

Remark 4. We can use the same arguments as Berman [1] (see inequalities (4)–(12) in [1]) and we have the following inequality:

$$d(p_1) + d(q_1) + d(p_{\alpha}) + d(q_{\beta}) \leq 2n.$$
(5)

Since the graph G satisfies the condition (3) (i.e. for any independent vertices $w_1, w_2, w_3 \in V(G)$ we have $d(w_1) + d(w_2) + d(w_3) \ge 2n$) and by Remark 1 we have the following inequalities.

 $d(p_1) + d(q_\beta) \ge n - 2,$ $d(q_1) + d(p_\alpha) \ge n - 2.$

Hence, from (5) we have

 $d(q_1) + d(p_{\alpha}) \leq n + 2,$ $d(p_1) + d(q_{\beta}) \leq n + 2$

and from Remark 1 there is no vertex independent of p_1 and q_β and no vertex independent of q_1 and p_α .

Remark 5. From (5), without loss of generality, we may assume that $d(p_1) + d(q_\beta) \leq n, d(q_\beta) \leq \frac{n}{2}$ and so, by Remark 2, $N(p_1) \setminus N(q_\beta)$ is a complete graph.

The following lemmas involve the neighbors of the vertices p_1, q_1, p_α , and q_β on the paths R, P, Q.

Lemma 1. (1) If uv is an edge of R not in M, then two cases can occur.

- (a) Vertices p_1 and q_1 are both adjacent to u and v, and vertices p_{α} and q_{β} are independent of u and v, and there is no path internally disjoint with Γ , from u and v to p_{α} and q_{β} .
- (b) Vertices p_{α} and q_{β} are both adjacent to u and v, and vertices p_1 and q_1 are independent of u and v, and even there is no path internally disjoint with Γ , from u or v to p_1 or q_1 .
- (2) Consequently for any $r \in V(R)$ we have two possibilities.
 - (a) Vertices p_1 and q_1 are both adjacent to r, and vertices p_{α} and q_{β} are independent of r.
 - (b) Vertices p_{α} and q_{β} are both adjacent to r, and vertices p_1 and q_1 are independent of r.
- (3) If $xr_1 \notin M$, then r_1p_1 , $r_1q_1 \in E(G)$ and r_1p_{α} , $r_1q_{\beta} \notin E(G)$, and if $yr_{\gamma} \notin M$, then $r_{\gamma}p_{\alpha}$, $r_{\gamma}q_{\beta} \in E(G)$ and $r_{\gamma}p_1$, $r_{\gamma}q_1 \notin E(G)$.

Proof of Lemma 1. We shall prove first 1. As $N(p_1) \cup N(q_\beta) = V(G) \setminus \{p_1, q_\beta\}$ and $N(q_1) \cup N(p_\alpha) = V(G) \setminus \{q_1, p_\alpha\}$, the vertex *u* is adjacent to at least one of the vertices p_1 or q_β . Recall that we prove Theorem 7 and we have supposed that there is no cycle containing every edge of $M \cap E(\Gamma)$. Suppose that $up_1 \in E(G)$. Then since there is no cycle through $M \cap E(\Gamma)$, we have $p_\alpha v \notin E(G)$ and $q_\beta v \notin E(G)$. That implies $q_1 v \in E(G)$ and $p_1 v \in E(G)$. Hence $q_\beta u \notin E(G)$ and $p_\alpha v \notin E(G)$, that implies $q_1 v \in E(G)$. Suppose now that $up_1 \notin E(G)$. In this case $q_\beta u \in E(G)$. That implies $q_1 v \notin E(G)$ and then $p_\alpha v \in E(G)$. Hence $q_1 u \notin E(G)$ and $p_\alpha u \in E(G)$. From the above $p_1 v \notin E(G)$ and $q_{\beta}v \in E(G)$. Moreover we can replace the condition $wt \notin E(G)$ by "there is no path from w to t, internally disjoint of Γ , where w may be u or v, and t may be $p_1, p_{\alpha}, q_1, q_{\beta}$ ".

Using similar arguments we can show 2 and 3. \Box

Note that from Lemma 1, we have $d_R(p_1) = d_R(q_1)$ and similarly $d_R(p_\alpha) = d_R(q_\beta)$.

Lemma 2. If $p_i p_{i+1}$ is an edge from $E(P) \setminus M$, then $q_\beta p_{i+1}$, $q_1 p_i$, $q_\beta p_i$, $q_1 p_{i+1} \notin E(G)$ and $p_1 p_i$, $p_1 p_{i+1}$, $p_\alpha p_i$, $p_\alpha p_{i+1}$ are edges of G. Similarly, if $q_i q_{i+1}$ is an edge from $E(Q) \setminus M$, then $p_1 q_i$, $p_\alpha q_{i+1}$, $p_1 q_{i+1}$, $p_\alpha q_i \notin E(G)$ and $q_1 q_i$, $q_1 q_{i+1}$, $q_\beta q_i$, $q_\beta q_{i+1}$ are edges of G.

Proof of Lemma 2. We will give a detailed proof showing that if $p_i p_{i+1} \in E(P)$, then $q_\beta p_i \notin E(G)$ and $p_1 p_i \in E(G)$. The proofs for the other vertices are similar.

The hypothesis of maximality of $C_1 \cap C_2$ implies that the edges q_1p_i , $q_\beta p_{i+1}$, p_1q_i , $p_\alpha q_{i+1}$ are not in E(G). As $N(p_1) \cup N(q_\beta) \cup \{p_1, q_\beta\}$ or $N(q_1) \cup N(p_\alpha) \cup \{q_1, p_\alpha\}$ cover V(G) and the edges p_1p_{i+1} , $p_\alpha p_i$, q_1q_{i+1} , $q_\beta q_i$ are in E(G). If $p_1p_{i+1} \in E(G)$, then $q_\beta p_i \notin E(G)$ since elsewhere

 $xr_1\cdots r_{\gamma}yp_{\alpha}\cdots p_{i+1}p_1p_2\cdots p_iq_{\beta}\cdots q_1x$

is a cycle through $M' \cup \{e\}$, a contradiction. Hence $p_1 p_i \in E(G)$. \Box

With the preliminary remarks and definitions out of the way, we can proceed with the proof of Theorem 7. We will first study the case where $\alpha = \beta = 2$ and obtain the existence of a minimal odd *M*-edge cut-set. Then we will assume that $\alpha \ge 3$ or $\beta \ge 3$ and use the structure of the neighborhood of the vertices $p_1, q_1, p_\alpha, q_\beta$ to obtain a contradiction.

4.2. Proof of Theorem 7 for $\alpha = \beta = 2$

We prove a series of claims. Let $S = G \setminus \Gamma$.

Claim 1. The vertex p_1 has no neighbor in S.

Proof of Claim 1. Suppose that $w \in V(S)$ is adjacent to p_1 . Since *G* is 3-connected, we have a vertex $t \in V(\Gamma) \setminus \{p_1\}$ and a path $\pi[w, t]$ from *w* to Γ internally disjoint from Γ . Note that $t \neq q_2$, since elsewhere we obtain a cycle through $M' \cup \{e\}$. Because of the maximality of $|V(\Gamma)|$, $t \neq x$. For the same reason, $wq_2 \notin E(G)$ and $wx \notin E(G)$. If $t = q_1$, then $xq_2 \notin E(G)$ and thus $x, w \in N(p_1) \setminus N(q_2)$. From the above, $wx \in E(G)$, a contradiction. Note that also $wq_1 \notin E(G)$, and by Remark 4, $wp_2 \in E(G)$. By the maximality of $|V(\Gamma)|$, $t \neq y$. It is possible that $t = p_2$, but in this case, since *G* is 3-connected, there exists a path, say $\pi[w, r]$ from *w* to Γ to $r \in V(R)$, other than the edges wp_1 and wp_2 . At least one of the edges rr^+ and r^-r is not in *M* and either r^+ in the first case or r^- in the second case is adjacent to one of p_1 or p_2 . These edges allow us to construct a cycle through $M' \cup \{e\}$, a contradiction.

Claim 2. The edge p_2q_2 is in E(G).

Proof of Claim 2. Case 1: $p_1q_1 \in E(G)$ or there exists a path $\pi[p_1, q_1]$ internally disjoint with Γ .

Then xp_2 , $xq_2 \notin E(G)$ elsewhere we obtain a cycle through $M' \cup \{e\}$. The conditions $x \in N(p_1) \setminus N(q_2)$, $xp_2 \notin E(G)$ imply $p_2 \in N(q_2)$ i.e. $p_2q_2 \in E(G)$.

Case 2: $p_1q_1 \notin E(G)$ and there exists no path $\pi[p_1, q_1]$ internally disjoint with Γ .

Suppose that $p_2q_2 \notin E(G)$. Then $p_2 \in N(p_1) \setminus N(q_2)$. We have $N(p_1) \subset V(R) \cup \{x, y, p_2\}$.

Let $r \in V(R)$ be a neighbor of p_1 . We have $r, p_2 \in N(p_1) \setminus N(q_2)$, that implies $rp_2 \in E(G)$, a contradiction with Lemma 1. So $N_R(p_1) = \emptyset$, and $N(p_1) \subset \{x, y, p_2\}$.

Since G is 3-connected and $N(p_1) = \{x, y, p_2\}$, the condition $d(p_1) \ge d(q_2)$ implies that $|V(R)| \le 1$ and so $R = \emptyset$ or $R = \{r_1\}$. If $R = \emptyset$, it is easy to see that if we remove the vertices x and y, the graph is disconnected. Since G is 3-connected, it is a contradiction. Let $R = \{r_1\}$. Note that $xr_1 \notin M$ or $yr_1 \notin M$. If $R = \{r_1\}$ and $xr_1 \notin M$, then $xp_1p_2r_1yq_2q_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If $R = \{r_1\}$ and $xr_1 \notin M$, then $xr_1p_2p_1yq_2q_1x$ is a cycle through $M' \cup \{e\}$, a contradiction and Claim 2 is proved. \Box

Note that we have also the following corollaries from Claim 2.

Corollary 1. Both pairs of vertices $\{y, p_1\}$ and $\{y, q_1\}$ are independent and have no common neighbors in S.

Corollary 2. If the vertices $\{y, p_1\}$ (or $\{y, q_1\}$) have no common neighbors on R, then $p_1q_1 \in E(G)$ and y is adjacent to every neighbor of p_2 (or q_2) on R.

Proof of Corollary 2. If there exists a set of three independent vertices containing y and p_1 (or q_1), then $d(y) + d(p_1) \ge n + 3$. Note that we have $N(p_1) \cap N(y) \subset V(R) \cup \{x, p_2\}, |N_R(p_1) \cap N_R(y)| \ge 3$.

Hence, if $N_R(p_1) \cap N_R(y) = \emptyset$, then there is no independent set of three vertices containing p_1 and y, and $p_1q_1 \in E(G)$. As $N_R(y) \cup N_R(p_1) = V(R)$, by Lemma 1, y is adjacent to every vertex of $N_R(p_2) = N_R(q_2)$. \Box

We can now complete the proof of Theorem 7 for $\alpha = \beta = 2$.

By Lemma 1, the sets $N_R(p_1) = N_R(q_1)$ and $N_R(p_2) = N_R(q_2)$ define a partition of R and by Remark 2 we may assume that $N_R(p_1)$ is a complete graph. If an edge $ab \in E(R)$ is such that a is adjacent to p_1 (and q_1) and b is adjacent to p_2 (and q_2), then, by Lemma 1, $ab \in M$. Let $\{e_j = a_jb_j : a_j \in N_R(p_1), b_j \in N_R(p_2)\}$ be the set of these edges. The path R can be partitioned into subpaths: $R_0 = R[x, a_1](= \{x\} \text{ if } a_1 = x),$ $R_1 = R[b_1 \cdots b_2], \ldots R_s = R[b_s, y](= \{y\} \text{ if } b_s = y)$. Every vertex of $R_0, R_2, \ldots, R_{2j} \ldots$ is adjacent to p_1 (and q_1), and every vertex of R_1, R_3, \ldots, R_s is adjacent to p_2 (and q_2). Note that s is odd. If no other edge exists between $N(p_1) \cup \{p_1, q_1\}$ and $N(p_2) \cup \{p_2, q_2\}$, then the set

$$\{e_j = a_j b_j : a_j \in N_R(p_1), b_j \in N_R(p_2), 1 \le j \le s\} \cup \{p_1 p_2, q_1 q_2\}$$

is a minimal odd *M*-edge cut-set.

Otherwise there exists an edge $cd \in E(G)$, with $c \in N(p_1)$, $d \in N(p_2)$.

Case 1: There is an edge $r_t y$, with $r_t \in N_R(p_1)$.

Note that in this case $c = r_t$ and y = d. We shall consider two cases $r_t r_{t+1} \notin M$ and $r_t r_{t+1} \in M$. Recall that from Claim 2 $p_2q_2 \in E(G)$.

Subcase 1.1: $r_t r_{t+1} \notin M$.

By Lemma 1, $r_{t+1}q_1 \in E(G)$ and $xr_1 \dots r_t yr_{\gamma} \dots r_{t+1}q_1q_2p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. Subcase 1.2: $r_tr_{t+1} \in M$.

Since $N_R(p_1)$ and $N_R(p_2)$ define a partition of R, we have $r_{t+1} \in N_R(p_1)$ or $r_{t+1} \in N_R(p_2)$. If $r_{t+1} \in N_R(p_1)$, then, from Lemma 1, $r_{t-1} \in N_R(p_1)$, $r_{t+2} \in N_R(p_1)$ and $r_{t-1}r_{t+2} \in E(G)$. In this case $xr_1 \dots r_{t-1}r_{t+2\dots}r_{\gamma}yr_tr_{t+1}q_1q_2p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

If $r_{t+1} \in N_R(p_2)$, then, by Lemma 1, $r_{t+2} \in N_R(p_2)$. Note that, since $r_t r_{t+1} \in M$, we have $r_{t-1}t$, $t_{t+1}r_{t+2} \notin M$. Hence $xr_1 \dots r_{t-1}p_1p_2r_{t+2} \dots r_{\gamma}yr_tr_{t+1}q_2q_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Case 2: The vertex y is not adjacent to any vertex of $N_R(p_1)$.

By Corollary 2, y is adjacent to any vertex of $N_R(p_2)$. Let $r_t \in N_R(p_1)$, $r_m \in N_R(p_2)$ such that $r_t r_m \in E(G)$.

Subcase 2.1: $r_t r_{t+1}, r_m r_{m+1} \notin M$ or $r_{t-1} r_t, r_{m-1} r_m \notin M$.

If t < m and $r_t r_{t+1}, r_m r_{m+1} \notin M$, then, from Lemma 1, $q_1 r_{t+1}, q_2 r_{m+1} \in E(G)$ and, hence, $xr_1 \dots r_t r_m r_{m-1} \dots r_{t+1}q_1q_2r_{m+1} \dots yp_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If t < m and $r_{t-1}r_t, r_{m-1}r_m \notin M$, then, from Lemma 1, $r_{t-1}q_1, r_{m-1}p_2 \in E(G)$ and, hence, $xr_1 \dots r_{t-1}q_1q_2yr_{\gamma} \dots r_mr_tr_{t+1} \dots r_{m-1}p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

If t > m and $r_t r_{t+1}, r_m r_{m+1} \notin M$, then, from Lemma 1, $r_{m+1}q_2, q_1r_{t+1} \in E(G)$ and, hence, $xr_1 \dots r_m r_t r_{t-1} \dots r_{m+1}q_2q_1r_{t+1} \dots r_{\gamma}yp_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If t > m and $r_{t-1}r_t, r_{m-1}r_m \notin M$, then, from Lemma 1, $r_{m-1}q_2, q_1r_{t-1} \in E(G)$ and, hence, $xr_1 \dots r_{m-1}q_2q_1r_{t-1} \dots r_mr_t \dots yp_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Subcase 2.2: $r_t r_{t+1} \in M$ and $r_{m-1} r_m \in M$ if $t < m, r_{t-1} r_t \in M$ and $r_m r_{m+1} \in M$ if t > m.

There exists *i*, *i* between *t* and *m*, such that $r_i r_{i+1} \notin M$. The vertices r_i and r_{i+1} are both adjacent to p_1 and q_1 or to p_2 and q_2 .

Subcase 2.2.1: The vertices r_i and r_{i+1} are both adjacent to p_1 and q_1 .

If t < m, then since r_{t-1} , $r_{i+1} \in N(p_1) \setminus N(q_2)$, we have $r_{t-1}r_{i+1} \in E(G)$ and since $r_m \in N_R(p_2)$ from Lemma 1 $q_2r_{m+1} \in E(G)$. Hence $xr_1 \ldots r_{t-1}r_{i+1} \ldots r_mr_tr_{t+1} \ldots r_iq_1q_2r_{m+1} \ldots yp_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If t > m, then r_{t+1} , $r_{i+1} \in N(p_1) \setminus N(q_2)$, we have $r_{t+1}r_{i+1} \in E(G)$ and since $r_m \in N_R(p_2)$ from Lemma 1 $q_2r_{m-1} \in E(G)$. Hence $xr_1 \dots r_{m-1}q_2q_1r_ir_{i-1} \dots r_mr_t \dots r_{i+1}r_{i+1} \dots yp_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Subcase 2.2.2: The vertices r_i and r_{i+1} are both adjacent to p_2 and q_2 .

In this case, from Corollary 2, r_i and r_{i+1} are adjacent to y. If t < m, then, from Lemma 1, $r_{t-1}q_1 \in E(G)$ and $xr_1 \ldots r_{t-1}q_1q_2r_ir_{i-1} \ldots r_tr_mr_{m-1} \ldots r_{i+1}yr_{\gamma} \ldots r_{m+1}p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If t > m, then from Lemma 1 $r_{m-1}p_2$, $p_1r_{t+1} \in E(G)$ and $xr_1 \ldots r_{m-1}p_2p_1r_{t+1} \ldots yr_{i+1} \ldots r_tr_m \ldots r_iq_2q_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Subcase 2.3: $r_{t-1}r_t \in M$ and $r_mr_{m+1} \in M$ if t < m or $r_tr_{t+1} \in M$ and $r_{m-1}r_m \in M$ if t > m.

Recall that from Claim 2, $q_2p_2 \in E(G)$. From Corollary 2, if t < m, then $r_{m-1}y \in E(G)$ and if t > m, then $r_{m+1}y \in E(G)$. Hence if t < m, then $xr_1 \dots r_t r_m \dots yr_{m-1} \dots r_{t+1}q_1q_2p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction. If t > m, $xr_1 \dots r_m r_t r_{t+1} \dots yr_{m+1} \dots r_{t-1}q_1q_2p_2p_1x$ is a cycle through $M' \cup \{e\}$, a contradiction.

This completes the proof of Theorem 7 for $\alpha = \beta = 2$. \Box

4.3. Proof of Theorem 7 for $\alpha \ge 3$ or $\beta \ge 3$

Case 1: $p_1q_1 \in E(G)$.

Remark 6. The hypothesis of maximality of the intersection $C_1 \cap C_2$ implies that the edges $p_1 p_2$ and $q_1 q_2$ are in M.

Remark 7. Since there is no cycle through $M' \cup \{e\}$ we have $xq_\beta \notin E(G)$, $xp_\alpha \notin E(G)$ and there is no path $\pi[x, q_\beta]$ or $\pi[x, p_\alpha]$ internally disjoint of Γ .

Remark 8. Since $x \in N(p_1) \setminus N(q_\beta)$, $p_\alpha \in N(p_1) \cup N(q_\beta)$ and $xp_\alpha \notin E(G)$, $p_\alpha \notin N(p_1) \setminus N(q_\beta)$, we have $p_\alpha q_\beta \in E(G)$, that implies $p_\alpha p_{\alpha-1}, q_\beta q_{\beta-1} \in M$ and $yp_1, yq_1 \notin E(G)$.

Remark 9. If $w \in N_S(p_1)$ and $w \notin N(q_\beta)$, then $w \in N(p_1) \setminus N(q_\beta)$, that implies $wx \in E(G)$, a contradiction with the hypothesis of maximality of $|V(\Gamma)|$. Hence $N_S(p_1) = \emptyset$.

By Lemma 2 and the property that $p_1 p_2$, $q_1 q_2$, $p_\alpha p_{\alpha-1}$, $q_{\beta-1} q_\beta$ are in M, we deduce the following lemma.

Lemma 3. (1) The vertex p_1 is independent of q_2, \ldots, q_β and adjacent to $p_2, \ldots, p_{\alpha-1}$.

- (2) The vertex q_1 is independent of p_2, \ldots, p_{α} and adjacent to $q_2, \ldots, q_{\beta-1}$.
- (3) The vertex p_{α} is independent of $q_1, \ldots, q_{\beta-1}$ and adjacent to $p_2, \ldots, p_{\alpha-1}$.
- (4) The vertex q_{β} is independent of $p_1, \ldots, p_{\alpha-1}$ and adjacent to $q_2, \ldots, q_{\beta-1}$.

We recall that we consider the case $\alpha \ge 3$ or $\beta \ge 3$.

Subcase 1.1: $\alpha \ge 3$.

By Lemma 2, $p_{\alpha-1} \in N(p_1) \setminus N(q_\beta)$. As $x \in N(p_1) \setminus N(q_\beta)$, $xp_{\alpha-1} \in E(G)$, the edges p_1p_2 and $p_{\alpha-1}p_\alpha$ are in M and the condition $\alpha > 2$ implies $\alpha \ge 4$. By Lemma 3, $p_{\alpha-2}p_\alpha \in E(G)$, and then $xr_1 \dots r_\gamma$ $yq_\beta \dots q_1p_1p_2 \dots p_{\alpha-2}p_\alpha p_{\alpha-1}x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Subcase 1.2: $\alpha = 2$ and $\beta \ge 3$.

The vertex p_2 is a common neighbor of p_1 and q_β , thus $d(p_1)+d(q_\beta) \ge n-1$ and that implies $d(q_1)+d(p_2) \le n+1$ and $\min\{d(q_1), d(p_2)\} \le \frac{n+1}{2}$.

When $d(q_1) \ge d(p_2)$, the (n + k)-closure of $N(q_1) \setminus N(p_2)$ is a complete graph. If it is not, then $d(p_2) > d(q_1)$. We shall examine both cases.

Subcase 1.2.1: $d(q_1) \ge d(p_2)$.

As observed above, $N(q_1) \setminus N(p_2)$ induces a complete graph. As $\beta \ge 3$, $q_2q_3 \notin M$, $q_3 \in N(q_1) \setminus N(p_2)$ and $xq_3 \in E(G)$. Then $x \dots yp_2p_1q_1q_2q_\beta \dots q_3x$ is a cycle through $M' \cup \{e\}$, a contradiction.

Subcase 1.2.2: $d(p_2) > d(q_1)$.

The following inequalities are satisfied: $d(p_1) \ge d(q_\beta)$, $d(p_2) \ge d(q_1)$, $d(p_2) + d(q_1) \ge d(p_1) + d(q_\beta)$.

They imply that $d(p_1)+d(p_2) \ge n-1$. We have $N(p_1) = N_R(p_1) \cup \{p_2, x, q_1\}$ and $N(p_2) = N_R(p_2) \cup \{p_1, y, q_\beta\} \cup N_S(p_1)$. By Lemma 1, $d_R(p_1) + d_R(p_2) = |V(R)| = \gamma \cdot d(p_1) + d(p_2) = d_R(p_1) + d_R(p_2) + 6 + d_S(p_1) + d_S(p_2) \le N_S(p_1) + d_S(p_2) = N_S(p_1) + d_S(p_2) + d_S(p_2) = N_S(p_1) + d_S(p_2) + d_S$

 $\gamma + 6 + |V(S)|$. Since $n = \gamma + \beta + 4 + |V(S)|$, we obtain $n - 1 = \gamma + \beta + 4 + |V(S)| - 1 \le d(p_1) + d(p_2) \le \gamma + 6 + |V(S)|$ and this implies $\beta \le 3$. We have $q_1q_2 \in M$ and $q_{\beta-1}q_\beta \in M$, then if $\beta \le 3$, $q_1q_2 = q_{\beta-1}q_\beta$ and $\beta = 2$, a contradiction.

Case 2: $p_1q_1 \notin E(G)$.

Lemma 4. (1) The vertex p_1 is independent of $q_1, q_2, \ldots, q_\beta$ and adjacent to p_2, \ldots, p_α .

(2) The vertex q_1 is independent of p_1, \ldots, p_{α} and adjacent to q_2, \ldots, q_{β} .

(3) The vertex p_{α} is independent of $q_1, \ldots, q_{\beta-1}$ and adjacent to $p_1, \ldots, p_{\alpha-1}$.

(4) The vertex q_{β} is independent of $p_1, \ldots, p_{\alpha-1}$ and adjacent to $q_1, \ldots, q_{\beta-1}$.

Proof of Lemma 4. The condition $q_1 \notin N(p_1)$ implies that $q_1 \in N(q_\beta)$, the condition $p_1 \notin N(q_1)$ implies that $p_1 \in N(p_\alpha)$ i.e., the edges $p_1 p_\alpha$ and $q_1 q_\beta$ are in E(G). Let *i* be a minimal integer such that $p_1 q_i \in E(G)$. For $1 \leq j \leq i-1$, $p_1 q_j \notin E(G)$, and so $q_\beta q_j \in E(G)$. The hypothesis of maximality of $C_1 \cap C_2$ implies that $q_i q_{i+1} \in M$ and then $q_{i-1}q_i \notin M$. The cycle $xr_1 \ldots r_\gamma yp_\alpha \ldots p_1 q_i \ldots q_\beta q_{i-1} \ldots q_1 x$ is a cycle through $M' \cup \{e\}$, a contradiction. The vertex p_1 is independent of $q_1, q_2, \ldots, q_\beta$, and hence q_β is adjacent to $q_1, q_2, \ldots, q_{\beta-1}$.

The proofs for the other vertices are similar. \Box

Subcase 2.1: $p_{\alpha}q_{\beta} \notin E(G)$.

Claim 3. If $p_{\alpha}q_{\beta} \notin E(G)$, then $N_R(p_1) = N_R(q_1) = \emptyset$.

Proof of Claim 3. If $p_{\alpha} \in N(p_1) \setminus N(q_{\beta})$ and $u \in N_R(p_1)$, then $uq_{\beta} \notin E(G)$, $u \in N(p_1) \setminus N(q_{\beta})$ and hence $u \in N_R(p_1) \cap N_R(p_{\alpha})$, a contradiction with Lemma 1. \Box

Claim 4. At least one of the edges xp_{α} or xq_{β} is in E(G).

Proof of Claim 4. If $x \in N(p_1) \setminus N(q_\beta)$, x is adjacent to every vertex of $N(p_1) \setminus N(q_\beta)$, then $xp_\alpha \in E(G)$.

Corollary 3. $N_S(p_1) \cap N_S(q_1) = \emptyset$.

Claim 5. At least one of the edges yp_1 or yq_1 is in E(G).

Proof of Claim 5. Vertices p_1 and q_1 have no common neighbor in S. The following inequality is satisfied:

 $d(p_1) + d(q_1) \leq \alpha + \beta + |V(S)| + \epsilon(yp_1) + \epsilon(yq_1)$

and since $n = \alpha + \beta + \gamma + 2 + |V(S)|$ we have

 $\mathrm{d}(p_1) + \mathrm{d}(q_1) \leqslant n.$

The vertices p_1 and q_1 are not in any set of three independent vertices and so Claim 5 is proved. \Box

Subsubcase 2.1.1: $\gamma = |V(R)| = 0$.

In this case $xy \in M$. As *G* is 3-connected, $G \setminus \{x, y\}$ is connected. The conditions $\epsilon(xp_{\alpha}) + \epsilon(xq_{\beta}) \ge 1$, $\epsilon(yp_1) + \epsilon(yq_1) \ge 1$ imply that there is no path $\pi[p_1, q_1], \pi[p_1, q_{\beta}], \pi[p_{\alpha}, q_1], \pi[p_{\alpha}, q_{\beta}]$ otherwise there is a cycle through $M' \cup \{e\}$. As *G* is 3-connected, there exists a path $\pi[p_i, q_j]$, with $2 \le i \le \alpha - 1, 2 \le j \le \beta - 1$. We can easily construct a cycle through $M' \cup \{e\}$.

Subcase 2.1.2: $\gamma \ge 1$, $d(q_1) \ge d(p_\alpha)$.

By Claims 4 and 5, $\epsilon(xp_{\alpha}) + \epsilon(xq_{\beta}) \ge 1$ and $\epsilon(yp_1) + \epsilon(yq_1) \ge 1$. Hence we have $d(p_1) + d(q_1) + d(p_{\alpha}) + d(q_{\beta}) \ge 2n - 2$ and this implies $d(p_1) + d(q_1) \ge n - 1$. We have $N(p_1) \subset \{x, y\} \cup \{p_2, \dots, p_{\alpha}\} \cup S$, $N(q_1) \subset \{x, y\} \cup \{q_2, \dots, q_{\beta}\} \cup S$, $N_S(p_1) \cap N_S(q_1) = \emptyset$ and so $d(p_1) + d(q_1) \le \alpha + \beta + |V(S)| + \epsilon(yp_1) + \epsilon(yq_1)$. Moreover $n = \alpha + \beta + \gamma + 2 + |V(S)|$.

The inequality $d(p_1) + d(q_1) \ge n - 1$ gives $\gamma + 1 \le \epsilon(yp_1) + \epsilon(yq_1)$. Hence $\gamma = 1 = \epsilon(yp_1) = \epsilon(yq_1)$. If $xr_1 \in M$, then $xr_1q_\beta \dots q_1yp_\alpha \dots p_1x$ is a cycle through $M' \cup \{e\}$. If $r_1y \in M$, then $xp_1 \dots p_\alpha r_1yq_\beta \dots q_1x$ is a cycle through $M' \cup \{e\}$. In both cases we have a contradiction.

Subcase 2.1.3: $\gamma \ge 1$, $d(q_1) < d(p_\alpha)$.

Note that $d(p_{\alpha}) + d(q_1) = \alpha + \beta + \gamma + |V(S)| + \epsilon(yq_1) + \epsilon(xp_{\alpha}) \leq n$. Hence the (n+k)-closure of $N(p_{\alpha}) \setminus N(q_1)$ is a complete graph. Let $u \in N_R(p_{\alpha})$, $u \in N(p_{\alpha}) \setminus N(q_1)$ and $p_1 \in N(p_{\alpha}) \setminus N(q_1)$. This implies $up_1 \in E(G)$, a contradiction with Lemma 1. Hence $N_R(p_1) = N_R(p_{\alpha}) = \emptyset$, $\gamma = 0$, a contradiction with the hypothesis of Subcase 2.1.3.

Subcase 2.2: $p_{\alpha}q_{\beta} \in E(G)$.

Claim 6. If $p_{\alpha}q_{\beta} \in E(G)$, then $yp_1 \notin E(G)$ and $yq_1 \notin E(G)$.

By Claim 6 d(p₁) + d(q_β) = α + β + γ + $\epsilon(xq_{\beta})$ + 1 + |V(S)| = n - 1 + $\epsilon(xq_{\beta}) \leq n$. d(q₁) + d(p_{α}) = α + β + γ + $\epsilon(xp_{\alpha})$ + 1 + |V(S)| = n - 1 + $\epsilon(xp_{\alpha}) \leq n$.

Subcase 2.2.1: $d(q_1) \ge d(p_\alpha)$.

The (n + k)-closure of $N(q_1) \setminus N(p_{\alpha})$ is a complete graph, so we may assume that $N(q_1) \setminus N(p_{\alpha})$ is complete. Vertices p_1, q_1, y are independent and thus $d(p_1) + d(q_1) \ge n + 3$. Recall that $d_R(q_1) = d_R(p_1)$.

The two equalities:

 $d(p_1) = \alpha + d_R(p_1) + d_S(p_1)$ $d(q_1) = \beta + d_R(q_1) + d_S(q_1)$

imply that

$$\alpha + \beta + 2\mathbf{d}_R(p_1) + \mathbf{d}_S(p_1) + \mathbf{d}_S(q_1) \ge n + 3.$$

If $xp_{\alpha} \in E(G)$ or $xq_{\beta} \in E(G)$, then $N_{S}(p_{1}) \cap N_{S}(q_{1}) = \emptyset$. If $xp_{\alpha} \notin E(G)$ and $xq_{\beta} \notin E(G)$, then $x \in N(p_{1}) \setminus N(q_{\beta})$; if $w \in N_{S}(p_{1})$, then $w \in N(p_{1}) \setminus N(q_{\beta})$ and $xw \in E(G)$, a contradiction with the hypothesis of maximality of $|V(\Gamma)|$. Hence $d_{S}(p_{1})+d_{S}(q_{1}) \leq |V(S)|$. Note that $n+3 \leq d(p_{1})+d(q_{1}) \leq \alpha+\beta+|V(S)|+2d_{R}(p_{1})$. This implies that $\alpha+\beta+\gamma+|V(S)|+5 \leq \alpha+\beta+|V(S)|+2d_{R}(p_{1})$. Since $2d_{R}(p_{1}) \geq \gamma+5$, we have $d_{R}(p_{1}) \geq 5$. If $\alpha > 2$, then $p_{\alpha-1}p_{\alpha} \in M$ and $p_{\alpha-2}p_{\alpha-1} \notin M$. Let $r_{i}r_{i+1}$ be an edge of R not in M, with r_{i} and r_{i+1} adjacent to p_{1} . Vertices r_{i} and r_{i+1} are adjacent to $p_{\alpha-1}$ and $p_{\alpha-2}$. Hence $xr_{1} \dots r_{i}p_{\alpha-2} \dots p_{1}p_{\alpha}p_{\alpha-1}r_{i+1} \dots r_{\gamma}yq_{\beta} \dots q_{1}x$ is a cycle through $M' \cup \{e\}$, a contradiction.

If $\beta > 2$, the argument is similar.

Subcase 2.2.2: $d(p_{\alpha}) > d(q_1)$. If $p_1, y \in N(p_{\alpha}) \setminus N(q_1)$, then $yp_1 \in E(G)$, a contradiction with Claim 6. The proof of Theorem 7 is complete. \Box

References

- [1] K.A. Berman, Proof of a conjecture of Häggkvist on cycles and independent edges, Discrete Math. 46 (1983) 9–13.
- [2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Raport CORR, 1980, pp. 80–16.
- [3] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [4] R. Häggkvist, On F-hamiltonian graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 219–231.
- [5] B. Jackson, N.C. Wormald, Cycles containing matchings and pairwise compatible Euler tours, J. Graph Theory 14 (1990) 127–138.
- [6] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
- [7] M.Las Vergnas, Problèmes de couplages et problemes hamiltoniens en théorie des graphes, Ph.D. Thesis, Université Paris XI, 1972.
- [8] A.P. Wojda, Hamiltonian cycles through matchings, Demonstratio Math. XXI (2) (1983) 547–553.