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Abstract

We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian
cycle. We also show that the bound for the degree sum is almost the best possible.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

For a graph G, V(G) denotes its vertex set and E(G) its edge set. For a vertex x of G, dG(x), denotes its degree
in G, that is the cardinality of NG(x) = {y ∈ V(G) : xy ∈ E(G)}, the neighborhood of x in G. The subscript G is
omitted when it is clear from the context.

In 1960, Ore [6] proved the following.

Theorem 1. Let G be a graph on n > 3 vertices. If for any pair of independent vertices x, y ∈ V(G) we have

d(x)+ d(y) > n, (1)

then G is hamiltonian.

Many Ore-type theorems dealing with degree-sum conditions have been proved since. In particular, Bondy [2]
showed the following.

Theorem 2. Let G be a 2-connected graph on n > 3 vertices. If for any independent vertices x, y, z ∈ V(G) we have

d(x)+ d(y)+ d(z) >
3n − 2

2
,

then G is hamiltonian.
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We shall call a set of k > 1 independent edges a k-matching and sometimes simply a matching. The number of
edges in a matching M will occasionally be denoted by |M | and the set of all end vertices of the edges in M will
occasionally be denoted by V(M).

Berman [1] proved the conjecture of Häggkvist [4] about cycles through matchings in general graphs.

Theorem 3. Let G be a graph on n > 3 vertices. If for any pair of independent vertices x, y ∈ V(G) we have

d(x)+ d(y) > n + 1,

then every matching lies in a cycle.

Theorem 3 has been improved by Jackson and Wormald [5]. Häggkvist [4] also gave a sufficient condition for a
general graph to contain any matching in a hamiltonian cycle. We give this theorem below in a slightly improved
version obtained by Wojda [8].

Let Gn be the family of graphs G = K n+2
3
∗ H , where H is any graph of order 2n−2

3 containing a perfect matching

if n+2
3 is an integer, and Gn = ∅ otherwise (∗ denotes the join of graphs).

Theorem 4. Let G be a graph on n > 3 vertices. If for any pair of independent vertices x, y ∈ V(G) we have

d(x)+ d(y) >
4n − 4

3
,

then every matching of G lies in a hamiltonian cycle, unless G ∈ Gn .

Las Vergnas [7] has a similar result, with the bound for the degree-sum independent of the number of edges of the
matching M .

Theorem 5. Let G be a graph on n > 3 vertices and let k be an integer 0 6 k 6 n
2 . If for any pair of independent

vertices x, y ∈ V(G) we have

d(x)+ d(y) > n + k,

then every k-matching of G lies in a hamiltonian cycle.

The purpose of this paper is to give new conditions on the degree-sum of three independent vertices under which
every matching in a graph G lies in a hamiltonian cycle. First, we state an extension theorem.

Theorem 6. Let G be a 3-connected graph on n > 3 vertices such that for any independent vertices x, y, z ∈ V(G),
we have

d(x)+ d(y)+ d(z) > 2n. (2)

Let M be a matching in G. If there exists a cycle of G containing M, then there exists a hamiltonian cycle of G
containing M.

Theorem 6 shows that if a graph G satisfies (2) and a matching of G lies in a cycle, then this cycle can be extended
to a hamiltonian cycle. Using Theorem 6, we prove the following analog of Theorem 2 about hamiltonian cycles
through matchings.

Theorem 7. Let G be a 3-connected graph on n > 3 vertices and let M be a matching in G such that for any
independent vertices x, y, z ∈ V(G) we have

d(x)+ d(y)+ d(z) > 2n. (3)

Then there exists a hamiltonian cycle containing every edge of M or G has a minimal odd M-edge cut-set.

A minimal odd M-edge cut-set is a subset of M such that its suppression disconnects the graph G and which has
no proper subset being an G-edge cut-set.

Note that the bound 2n in Theorem 7 is almost best possible. Let p > 2 and consider a complete graph K2p with
a perfect p-matching. We define the graph G = (p + 1)K1 ∗ K2p, (∗ denotes the join of graphs). In this graph,



D. Amar et al. / Discrete Mathematics 309 (2009) 3703–3713 3705

n = 3p + 1 and G is 3-connected. For any independent x, y, z ∈ V(G) we have d(x) + d(y) + d(z) > 2n − 2 and
there is no hamiltonian cycle containing the p-matching from K2p. So the bound 2n is almost best possible.

Theorem 7 has the following corollary (recall that the stability number of a graph G, denoted by α(G) is the
cardinality of a maximum independent set of vertices of G).

Corollary 8. Let G be a 3-connected graph on n > 6 vertices and let M be a matching of G. If α(G) = 2, then there
is a hamiltonian cycle of G containing M or G has a minimal odd M-edge cut-set.

2. Notation and preliminary results

Let G be a graph. Let A ⊆ V(G), x ∈ V(G), and define NA(x) = A ∩NG(x) to be the set of neighbors of x in A.
A path or a cycle C in G is usually given as a sequence of vertices from c0 to cl such that ci ci+1 ∈ E(G) for

i = 0, . . . , l− 1 (plus the edge clc0 if C is a cycle). This induces an orientation on C , say from c0 to cl . Thus it makes
sense to speak of a successor ci+1 and a predecessor ci−1 of a vertex ci (addition modulo l+1). Denote the successor
of a vertex x by x+ and its predecessor by x−. This notation can be extended to A+ = {x+ : x ∈ A}, and similarly,
to A− when A ⊆ V(G).

Let C = c0 . . . cl be a cycle in G with an orientation as above. For any pair of vertices ci , c j ∈ V(C) we define
four intervals (paths) (addition modulo l + 1). If C is a path, the intervals that make sense are defined similarly.

• ]ci , c j [ is the path c+i · · · c
−

j .
• [ci , c j [ is the path ci c

+

i · · · c
−

j .
• ]ci , c j ] is the path c+i · · · c

−

j c j .
• [ci , c j ] is the path ci c

+

i · · · c
−

j c j .

It is useful to define ε : [V (G)]2 −→ {0, 1} by ε((u, v)) = 1 if and only if uv ∈ E(G). Of course, we write ε(uv)
for ε((u, v)) most of the time.

Let W be a property defined for all graphs of order n and let k be a nonnegative integer. The property W is said to
be k-stable if whenever G + xy has property W and dG(x)+ dG(y) > k then G itself has property W .

Let k, s1, . . . , sl be positive integers. We call S a path system of length k if the components of S are vertex disjoint
paths

P1 : x1
0 x1

1 . . . x
1
s1
,

...

Pl : x l
0x l

1 . . . x
l
sl

and
∑l

i=1 si = k.
Note that a k-matching is a path system of length k with each path of length one.
Bondy and Chvátal [3] proved the following theorem, which we shall need in the proof.

Theorem 9. Let n and k be positive integers with k 6 n − 3 . Then the property of being k-edge-hamiltonian is
(n + k)-stable.

3. Proof of Theorem 6

Let k = |M | and let C be a longest cycle of G containing every edge of M . We assume that C is not hamiltonian.
Let R = V(G) \ V(C) be the set of vertices of G not on C . Let u ∈ R. Since G is 3-connected, we have P1[u, a],
P2[u, b], P3[u, c] three internally disjoint paths from u to C , for any distinct a, b, c ∈ V(C). Since two consecutive
edges of C cannot be in M , there is an orientation of C such that at least at least two edges among aa+, bb+, cc+

are not in M . Without loss of generality we may assume that aa+ 6∈ M , bb+ 6∈ M . The three vertices u, a+, b+ are
independent (since C is the longest cycles containing M), so by the assumption (2) we have

d(u)+ d(a+)+ d(b+) > 2n. (4)

From now on the orientation of C is fixed and the vertices on the cycle are implicitly numbered x0, . . . , xl from
some arbitrary vertex x0. This also fixes the intervals on C .
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3.1. Neighbors of u, a+, b+ in R and C

Since C is the longest cycle, no vertex of R can be adjacent to more than one of a+, b+. Thus, since the three
vertices are independent, dR(a+)+ dR(b+)+ dR(u) 6 |V(R)| − 1.

If a− is adjacent to u, a−a ∈ M , otherwise C can be extended, and similarly for b−. Hence

(NC (u))
+
∩ [NC (a

+) ∪ NC (b
+)] ⊂ {α ∈ V(C), α−α ∈ M}

and ∣∣(NC (u))
+
∩ [NC (a

+) ∪ NC (b
+)]
∣∣ 6 k.

As
∣∣NC (u)+ ∪ NC (a+) ∪ NC (b+)

∣∣ 6 |V(C)|, we have

|NC (u)| + |NC (a
+) ∪ NC (b

+)| 6 |V(C)| + k.

Moreover∣∣NC (a
+) ∪ NC (b

+)
∣∣ = ∣∣NC (a

+)
∣∣+ ∣∣NC (b

+)
∣∣− ∣∣NC (a

+) ∩ NC (b
+)
∣∣ .

To find an upper bound for
∣∣NC (a+) ∩ NC (b+)

∣∣ we shall study vertices of NC (a+) ∩ NC (b+).
Let C1 = C[a, b] and C2 = C[b, a] be the two intervals on the cycle C with endvertices a and b. Note that for any

vertex x from the cycle C we have xx+ 6∈ M or x−x 6∈ M.
Let x ∈ C1 ∩ NC (a+) ∩ NC (b+). If xx+ 6∈ M and x+ ∈ NC (a+), then the cycle

P1[u, a]a− · · · b+xx− · · · a+x+ · · · b−P2[b, u]

is a cycle containing M longer than C , a contradiction.
Hence x+ 6∈ NC (a+) and x+ 6∈ NC (a+) ∩ NC (b+). Similarly if x−x 6∈ M , then x− 6∈ NC (b+) and

x− 6∈ NC (a+) ∩ NC (b+).
Using similar arguments for a vertex x ∈ C2 ∩ NC (a+) ∩ NC (b+), we can show that if xx+ 6∈ M , then

x+ 6∈ NC (a+) ∩ NC (b+) and if x−x 6∈ M , then x− 6∈ NC (a+) ∩ NC (b+).
By removing the edges of the matching M from the cycle C we obtain a sequence of paths Pj such that

V(C) =
⋃

j V(Pj ).

We have shown that on any path Pj there are no two consecutive vertices from the set NC (a+) ∩NC (b+) and thus

∣∣NC (a
+) ∩ NC (b

+) ∩ V(Pj )
∣∣ 6 ⌈∣∣V(Pj )

∣∣
2

⌉
.

3.2. Relations on degrees of a+, b+, u

Recall that Pj are the paths obtained from C by removing the edges of M. For i > 2, let ni be the number of paths
Pj of length i − 1. The following relations must be satisfied:

k =
∑
i>2

ni

|V(C)| =
∑
i>2

ini

∣∣NC (a
+) ∩ NC (b

+)
∣∣ 6∑

i>2

⌈
i

2

⌉
ni .

As

dC (a
+)+ dC (b

+)+ dC (u) 6 |V(C)| + k +
∣∣NC (a

+) ∩ NC (b
+)
∣∣
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we have

dC (a
+)+ dC (b

+)+ dC (u) 6
∑
j>1

(2 jn2 j + (2 j + 1)n2 j+1)

+

∑
j>1

(n2 j + n2 j+1)+
∑
j>1

( jn2 j + ( j + 1)n2 j+1)

6
∑
j>1

(3 j + 1)n2 j +
∑
j>1

(3 j + 3)n2 j+1

6
∑
j>1

4 jn2 j +
∑
j>1

(4 j + 2)n2 j+1.

Hence

dC (a
+)+ dC (b

+)+ dC (u) 6 2 |V(C)|

and

d(a+)+ d(b+)+ d(u) 6 2 |V(C)| + |V(R)| − 1 6 2(|V(C)| + |V(R)|)− |V(R)| − 1 = 2n − |V(R)| − 1,

a contradiction with (4).
This contradiction ends the proof of Theorem 6. �

4. Proof of Theorem 7

Let k = |M |.

4.1. Preliminary remarks

Remark 1. For two independent vertices x , y ∈ V(G) two cases can occur:

(1) If there exists a vertex z such that x, y, z are independent, then d(x)+ d(y) > 2n − d(z) > n + 3.
(2) If there is no vertex in G independent with x and y, then N(x)∪N(y)∪{x, y} covers V(G) and d(x)+d(y) > n−2.

Remark 2. If x and y are independent vertices satisfying d(x) + d(y) = n − 2 + ε, with 0 6 ε 6 3, then we can
assume that N(x) \ N(y) is a complete graph.

Remark 1 follows from (3).

Proof of Remark 2. Since x and y are independent and d(x) + d(y) = n − 2 + ε, with 0 6 ε 6 3, there is no
vertex in G independent with x and y. We may assume d(y) 6 d(x). Note that in this case d(y) 6 n−2+ε

2 and if u1

and u2 are independent vertices in N(x) \ N(y), then d(u1) + d(u2) > 2n − d(y) > 3n−1
2 = n + n−1

2 . If n is even,
then d(u1) + d(u2) > n + n

2 > n + k. If n is odd, then any matching of G has at most n−1
2 edges, then we have

again d(u1) + d(u2) > n + k. In any case u1u2 is in the (n + k)-closure of G. From Theorem 9 we can assume that
N(x) \ N(y) is a complete graph. �

We will need the following notion introduced by Berman [1].

Definition 1. A θ -graph through a matching M is the union of two cycles C1 and C2 whose intersection is a path of
length at least one and such that M ⊂ E(C1) ∪ E(C2) and every edge of M incident with a vertex of C1 ∩ C2 lies in
C1 ∩ C2.

We will prove the theorem by contradiction. We assume that for a matching M there is no hamiltonian cycle
containing M and consider a cycle C in G which satisfies the following conditions.

(1) |E(C) ∩ M | is maximum.
(2) Up to condition (1) the length of C is maximum, so by Theorem 6, C is a hamiltonian cycle.
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Let M ′ = E(C) ∩ M . By assumption M ′ 6= M and then there exists an edge e = xy ∈ M , e 6∈ E(C). The edge
e = xy is a chord of the hamiltonian cycle. Let C1 = xx+ · · · yx and C2 = xx− · · · yx . Note that (C1 ∪ C2) satisfies
the definition of a θ -graph through M ′ ∪ {e}.

Let Γ (C1,C2) be a θ -graph through M ′ ∪ {e} satisfying moreover:

(1) The intersection C1 ∩ C2 is maximum.
(2) Under condition (1) |V(Γ (C1,C2))| is maximum.

Define in Γ (C1,C2), R′ = C1 ∩ C2 = xr1r2 . . . rγ y, R = r1r2 . . . rγ , P = C1 \ C2 = p1 p2 . . . pα with
xp1 ∈ E(C1), Q = C2 \ C1 = q1q2 . . . qβ with xq1 ∈ E(C2). Sometimes we will write Γ instead of Γ (C1,C2).

Remark 3. From the definition of a θ -graph, the edges xp1, xq1, ypα, yqβ are not in M . Hence vertices p1 and qβ
are independent and also q1 and pα are independent.

Proof of Remark 3. Suppose that p1qβ ∈ E(G), then the cycle p1qβqβ−1 . . . q1xr1r2 . . . rγ ypα pα−1 . . . p1 is a cycle
through M ∩ E(Γ ), a contradiction. The proof for q1 and pα is similar. �

Remark 4. We can use the same arguments as Berman [1] (see inequalities (4)–(12) in [1]) and we have the following
inequality:

d(p1)+ d(q1)+ d(pα)+ d(qβ) 6 2n. (5)

Since the graph G satisfies the condition (3) (i.e. for any independent vertices w1, w2, w3 ∈ V(G) we have
d(w1)+ d(w2)+ d(w3) > 2n) and by Remark 1 we have the following inequalities.

d(p1)+ d(qβ) > n − 2,

d(q1)+ d(pα) > n − 2.

Hence, from (5) we have

d(q1)+ d(pα) 6 n + 2,

d(p1)+ d(qβ) 6 n + 2

and from Remark 1 there is no vertex independent of p1 and qβ and no vertex independent of q1 and pα.

Remark 5. From (5), without loss of generality, we may assume that d(p1) + d(qβ) 6 n, d(qβ) 6 n
2 and so, by

Remark 2, N(p1) \ N(qβ) is a complete graph.

The following lemmas involve the neighbors of the vertices p1, q1, pα, and qβ on the paths R, P, Q.

Lemma 1. (1) If uv is an edge of R not in M, then two cases can occur.
(a) Vertices p1 and q1 are both adjacent to u and v, and vertices pα and qβ are independent of u and v, and

there is no path internally disjoint with Γ , from u and v to pα and qβ .
(b) Vertices pα and qβ are both adjacent to u and v, and vertices p1 and q1 are independent of u and v, and even

there is no path internally disjoint with Γ , from u or v to p1 or q1.
(2) Consequently for any r ∈ V(R) we have two possibilities.

(a) Vertices p1 and q1 are both adjacent to r , and vertices pα and qβ are independent of r .
(b) Vertices pα and qβ are both adjacent to r , and vertices p1 and q1 are independent of r .

(3) If xr1 6∈ M, then r1 p1, r1q1 ∈ E(G) and r1 pα , r1qβ 6∈ E(G), and if yrγ 6∈ M, then rγ pα , rγ qβ ∈ E(G) and
rγ p1, rγ q1 6∈ E(G).

Proof of Lemma 1. We shall prove first 1. As N(p1)∪N(qβ) = V(G)\{p1, qβ} and N(q1)∪N(pα) = V(G)\{q1, pα},
the vertex u is adjacent to at least one of the vertices p1 or qβ . Recall that we prove Theorem 7 and we have supposed
that there is no cycle containing every edge of M ∩ E(Γ ). Suppose that up1 ∈ E(G). Then since there is no cycle
through M ∩ E(Γ ), we have pαv 6∈ E(G) and qβv 6∈ E(G). That implies q1v ∈ E(G) and p1v ∈ E(G). Hence
qβu 6∈ E(G) and pαv 6∈ E(G), that implies q1v ∈ E(G). Suppose now that up1 6∈ E(G). In this case qβu ∈ E(G).
That implies q1v 6∈ E(G) and then pαv ∈ E(G). Hence q1u 6∈ E(G) and pαu ∈ E(G). From the above p1v 6∈ E(G)
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and qβv ∈ E(G). Moreover we can replace the condition wt 6∈ E(G) by “there is no path from w to t , internally
disjoint of Γ , where w may be u or v, and t may be p1, pα, q1, qβ”.

Using similar arguments we can show 2 and 3. �

Note that from Lemma 1, we have dR(p1) = dR(q1) and similarly dR(pα) = dR(qβ).

Lemma 2. If pi pi+1 is an edge from E(P) \ M, then qβ pi+1, q1 pi , qβ pi , q1 pi+1 6∈ E(G) and p1 pi , p1 pi+1, pα pi ,
pα pi+1 are edges of G. Similarly, if qi qi+1 is an edge from E(Q) \ M, then p1qi , pαqi+1, p1qi+1, pαqi 6∈ E(G) and
q1qi , q1qi+1, qβqi , qβqi+1 are edges of G.

Proof of Lemma 2. We will give a detailed proof showing that if pi pi+1 ∈ E(P), then qβ pi 6∈ E(G) and
p1 pi ∈ E(G). The proofs for the other vertices are similar.

The hypothesis of maximality of C1 ∩ C2 implies that the edges q1 pi , qβ pi+1, p1qi , pαqi+1 are not in E(G). As
N(p1) ∪N(qβ) ∪ {p1, qβ} or N(q1) ∪N(pα) ∪ {q1, pα} cover V(G) and the edges p1 pi+1, pα pi , q1qi+1, qβqi are in
E(G). If p1 pi+1 ∈ E(G), then qβ pi 6∈ E(G) since elsewhere

xr1 · · · rγ ypα · · · pi+1 p1 p2 · · · pi qβ · · · q1x

is a cycle through M ′ ∪ {e}, a contradiction. Hence p1 pi ∈ E(G). �

With the preliminary remarks and definitions out of the way, we can proceed with the proof of Theorem 7. We will
first study the case where α = β = 2 and obtain the existence of a minimal odd M-edge cut-set. Then we will assume
that α > 3 or β > 3 and use the structure of the neighborhood of the vertices p1, q1, pα, qβ to obtain a contradiction.

4.2. Proof of Theorem 7 for α = β = 2

We prove a series of claims. Let S = G \ Γ .

Claim 1. The vertex p1 has no neighbor in S.

Proof of Claim 1. Suppose thatw ∈ V(S) is adjacent to p1. Since G is 3-connected, we have a vertex t ∈ V(Γ )\{p1}

and a path π [w, t] fromw to Γ internally disjoint from Γ . Note that t 6= q2, since elsewhere we obtain a cycle through
M ′ ∪ {e}. Because of the maximality of |V(Γ )|, t 6= x . For the same reason, wq2 6∈ E(G) and wx 6∈ E(G). If t = q1,
then xq2 6∈ E(G) and thus x , w ∈ N(p1) \ N(q2). From the above, wx ∈ E(G), a contradiction. Note that also
wq1 6∈ E(G), and by Remark 4, wp2 ∈ E(G). By the maximality of |V(Γ )| , t 6= y. It is possible that t = p2, but in
this case, since G is 3-connected, there exists a path, say π [w, r ] from w to Γ to r ∈ V(R), other than the edges wp1
and wp2. At least one of the edges rr+ and r−r is not in M and either r+ in the first case or r− in the second case is
adjacent to one of p1 or p2. These edges allow us to construct a cycle through M ′ ∪ {e}, a contradiction. �

Claim 2. The edge p2q2 is in E(G).

Proof of Claim 2. Case 1: p1q1 ∈ E(G) or there exists a path π [p1, q1] internally disjoint with Γ .
Then xp2, xq2 6∈ E(G) elsewhere we obtain a cycle through M ′ ∪ {e}. The conditions x ∈ N(p1) \ N(q2), xp2 6∈

E(G) imply p2 ∈ N(q2) i.e. p2q2 ∈ E(G).

Case 2: p1q1 6∈ E(G) and there exists no path π [p1, q1] internally disjoint with Γ .
Suppose that p2q2 6∈ E(G). Then p2 ∈ N(p1) \ N(q2). We have N(p1) ⊂ V(R) ∪ {x, y, p2}.
Let r ∈ V(R) be a neighbor of p1. We have r , p2 ∈ N(p1) \ N(q2), that implies r p2 ∈ E(G), a contradiction with

Lemma 1. So NR(p1) = ∅, and N(p1) ⊂ {x, y, p2}.
Since G is 3-connected and N(p1) = {x, y, p2}, the condition d(p1) > d(q2) implies that |V (R)| 6 1 and so

R = ∅ or R = {r1}. If R = ∅, it is easy to see that if we remove the vertices x and y, the graph is disconnected. Since
G is 3-connected, it is a contradiction. Let R = {r1}. Note that xr1 6∈ M or yr1 6∈ M. If R = {r1} and xr1 6∈ M , then
xp1 p2r1 yq2q1x is a cycle through M ′∪{e}, a contradiction. If R = {r1} and xr1 6∈ M , then xr1 p2 p1 yq2q1x is a cycle
through M ′ ∪ {e}, a contradiction and Claim 2 is proved. �

Note that we have also the following corollaries from Claim 2.
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Corollary 1. Both pairs of vertices {y , p1} and {y , q1} are independent and have no common neighbors in S.

Corollary 2. If the vertices {y, p1} (or {y , q1}) have no common neighbors on R, then p1q1 ∈ E(G) and y is adjacent
to every neighbor of p2 (or q2) on R.

Proof of Corollary 2. If there exists a set of three independent vertices containing y and p1 (or q1), then d(y) +
d(p1) > n + 3. Note that we have N(p1) ∩ N(y) ⊂ V(R) ∪ {x, p2}, |NR(p1) ∩ NR(y)| > 3.

Hence, if NR(p1) ∩ NR(y) = ∅, then there is no independent set of three vertices containing p1 and y, and
p1q1 ∈ E(G). As NR(y) ∪ NR(p1) = V(R), by Lemma 1, y is adjacent to every vertex of NR(p2) = NR(q2). �

We can now complete the proof of Theorem 7 for α = β = 2.
By Lemma 1, the sets NR(p1) = NR(q1) and NR(p2) = NR(q2) define a partition of R and by Remark 2 we

may assume that NR(p1) is a complete graph. If an edge ab ∈ E(R) is such that a is adjacent to p1 (and q1)
and b is adjacent to p2 (and q2), then, by Lemma 1, ab ∈ M . Let {e j = a j b j : a j ∈ NR(p1), b j ∈ NR(p2)}

be the set of these edges. The path R can be partitioned into subpaths: R0 = R[x, a1](= {x} if a1 = x),
R1 = R[b1 · · · b2], . . . Rs = R[bs, y](= {y} if bs = y). Every vertex of R0, R2, . . . , R2 j . . . is adjacent to p1
(and q1), and every vertex of R1, R3, . . . , Rs is adjacent to p2 (and q2). Note that s is odd. If no other edge exists
between N(p1) ∪ {p1, q1} and N(p2) ∪ {p2, q2}, then the set

{e j = a j b j : a j ∈ NR(p1), b j ∈ NR(p2), 1 6 j 6 s} ∪ {p1 p2, q1q2}

is a minimal odd M-edge cut-set.
Otherwise there exists an edge cd ∈ E(G), with c ∈ N(p1), d ∈ N(p2).

Case 1: There is an edge rt y, with rt ∈ NR(p1).
Note that in this case c = rt and y = d . We shall consider two cases rtrt+1 6∈ M and rtrt+1 ∈ M. Recall that from

Claim 2 p2q2 ∈ E(G).

Subcase 1.1: rtrt+1 6∈ M.
By Lemma 1, rt+1q1 ∈ E(G) and xr1 . . . rt yrγ · · · rt+1q1q2 p2 p1x is a cycle through M ′ ∪ {e}, a contradiction.

Subcase 1.2: rtrt+1 ∈ M.
Since NR(p1) and NR(p2) define a partition of R, we have rt+1 ∈ NR(p1) or rt+1 ∈ NR(p2). If

rt+1 ∈ NR(p1), then, from Lemma 1, rt−1 ∈ NR(p1), rt+2 ∈ NR(p1) and rt−1rt+2 ∈ E(G). In this case
xr1 . . . rt−1rt+2...rγ yrtrt+1q1q2 p2 p1x is a cycle through M ′ ∪ {e}, a contradiction.

If rt+1 ∈ NR(p2), then, by Lemma 1, rt+2 ∈ NR(p2). Note that, since rtrt+1 ∈ M , we have rt−1t, tt+1rt+2 6∈ M .
Hence xr1 . . . rt−1 p1 p2rt+2 . . . rγ yrtrt+1q2q1x is a cycle through M ′ ∪ {e}, a contradiction.

Case 2: The vertex y is not adjacent to any vertex of NR(p1).
By Corollary 2, y is adjacent to any vertex of NR(p2). Let rt ∈ NR(p1), rm ∈ NR(p2) such that rtrm ∈ E(G).

Subcase 2.1: rtrt+1, rmrm+1 6∈ M or rt−1rt , rm−1rm 6∈ M .
If t < m and rtrt+1, rmrm+1 6∈ M , then, from Lemma 1, q1rt+1, q2rm+1 ∈ E(G) and, hence, xr1 . . . rtrmrm−1 . . .

rt+1q1q2rm+1 . . . yp2 p1x is a cycle through M ′ ∪ {e}, a contradiction. If t < m and rt−1rt , rm−1rm 6∈ M , then, from
Lemma 1, rt−1q1, rm−1 p2 ∈ E(G) and, hence, xr1 . . . rt−1q1q2 yrγ . . . rmrtrt+1 . . . rm−1 p2 p1x is a cycle through
M ′ ∪ {e}, a contradiction.

If t > m and rtrt+1, rmrm+1 6∈ M , then, from Lemma 1, rm+1q2, q1rt+1 ∈ E(G) and, hence, xr1 . . .

rmrtrt−1 . . . rm+1q2q1rt+1 . . . rγ yp2 p1x is a cycle through M ′∪{e}, a contradiction. If t > m and rt−1rt , rm−1rm 6∈ M ,
then, from Lemma 1, rm−1q2, q1rt−1 ∈ E(G) and, hence, xr1 . . . rm−1q2q1rt−1 . . . rmrt . . . yp2 p1x is a cycle through
M ′ ∪ {e}, a contradiction.

Subcase 2.2: rtrt+1 ∈ M and rm−1rm ∈ M if t < m, rt−1rt ∈ M and rmrm+1 ∈ M if t > m.
There exists i , i between t and m, such that riri+1 6∈ M . The vertices ri and ri+1 are both adjacent to p1 and q1 or

to p2 and q2.

Subcase 2.2.1: The vertices ri and ri+1 are both adjacent to p1 and q1.
If t < m, then since rt−1, ri+1 ∈ N(p1) \ N(q2), we have rt−1ri+1 ∈ E(G) and since rm ∈ NR(p2) from

Lemma 1 q2rm+1 ∈ E(G). Hence xr1 . . . rt−1ri+1 . . . rmrtrt+1 . . . ri q1q2rm+1 . . . yp2 p1x is a cycle through M ′ ∪ {e},
a contradiction. If t > m, then rt+1, ri+1 ∈ N(p1) \ N(q2), we have rt+1ri+1 ∈ E(G) and since rm ∈ NR(p2) from
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Lemma 1 q2rm−1 ∈ E(G). Hence xr1 . . . rm−1q2q1riri−1 . . . rmrt . . . ri+1rt+1 . . . yp2 p1x is a cycle through M ′ ∪ {e},
a contradiction.

Subcase 2.2.2: The vertices ri and ri+1 are both adjacent to p2 and q2.
In this case, from Corollary 2, ri and ri+1 are adjacent to y. If t < m, then, from Lemma 1, rt−1q1 ∈ E(G)

and xr1 . . . rt−1q1q2riri−1 . . . rtrmrm−1 . . . ri+1 yrγ . . . rm+1 p2 p1x is a cycle through M ′ ∪ {e}, a contradiction. If
t > m, then from Lemma 1 rm−1 p2, p1rt+1 ∈ E(G) and xr1 . . . rm−1 p2 p1rt+1 . . . yri+1 . . . rtrm . . . ri q2q1x is a cycle
through M ′ ∪ {e}, a contradiction.

Subcase 2.3: rt−1rt ∈ M and rmrm+1 ∈ M if t < m or rtrt+1 ∈ M and rm−1rm ∈ M if t > m.
Recall that from Claim 2, q2 p2 ∈ E(G). From Corollary 2, if t < m, then rm−1 y ∈ E(G) and if t > m,

then rm+1 y ∈ E(G). Hence if t < m, then xr1 . . . rtrm . . . yrm−1 . . . rt+1q1q2 p2 p1x is a cycle through M ′ ∪ {e},
a contradiction. If t > m, xr1 . . . rmrtrt+1 . . . yrm+1 . . . rt−1q1q2 p2 p1x is a cycle through M ′ ∪ {e}, a contradiction.

This completes the proof of Theorem 7 for α = β = 2. �

4.3. Proof of Theorem 7 for α > 3 or β > 3

Case 1: p1q1 ∈ E(G).

Remark 6. The hypothesis of maximality of the intersection C1 ∩C2 implies that the edges p1 p2 and q1q2 are in M .

Remark 7. Since there is no cycle through M ′ ∪ {e} we have xqβ 6∈ E(G), xpα 6∈ E(G) and there is no path π [x, qβ ]
or π [x, pα] internally disjoint of Γ .

Remark 8. Since x ∈ N(p1) \ N(qβ), pα ∈ N(p1) ∪ N(qβ) and xpα 6∈ E(G), pα 6∈ N(p1) \ N(qβ), we have
pαqβ ∈ E(G), that implies pα pα−1, qβqβ−1 ∈ M and yp1, yq1 6∈ E(G).

Remark 9. If w ∈ NS(p1) and w 6∈ N(qβ), then w ∈ N(p1) \ N(qβ), that implies wx ∈ E(G), a contradiction with
the hypothesis of maximality of |V(Γ )|. Hence NS(p1) = ∅.

By Lemma 2 and the property that p1 p2, q1q2, pα pα−1, qβ−1qβ are in M , we deduce the following lemma.

Lemma 3. (1) The vertex p1 is independent of q2, , . . . , qβ and adjacent to p2, . . . , pα−1.
(2) The vertex q1 is independent of p2, . . . , pα and adjacent to q2, . . . , qβ−1.
(3) The vertex pα is independent of q1, . . . , qβ−1 and adjacent to p2, . . . , pα−1.

(4) The vertex qβ is independent of p1, . . . , pα−1 and adjacent to q2, . . . , qβ−1.

We recall that we consider the case α > 3 or β > 3.

Subcase 1.1: α > 3.
By Lemma 2, pα−1 ∈ N(p1) \ N(qβ). As x ∈ N(p1) \ N(qβ), xpα−1 ∈ E(G), the edges p1 p2 and pα−1 pα

are in M and the condition α > 2 implies α > 4. By Lemma 3, pα−2 pα ∈ E(G), and then xr1 . . . rγ
yqβ . . . q1 p1 p2 . . . pα−2 pα pα−1x is a cycle through M ′ ∪ {e}, a contradiction.

Subcase 1.2: α = 2 and β > 3.
The vertex p2 is a common neighbor of p1 and qβ , thus d(p1)+d(qβ) > n−1 and that implies d(q1)+d(p2) 6 n+1

and min{d(q1), d(p2)} 6
n+1

2 .
When d(q1) > d(p2), the (n + k)-closure of N(q1) \ N(p2) is a complete graph. If it is not, then d(p2) > d(q1).

We shall examine both cases.

Subcase 1.2.1: d(q1) > d(p2).
As observed above, N(q1) \ N(p2) induces a complete graph. As β > 3, q2q3 6∈ M, q3 ∈ N(q1) \ N(p2) and

xq3 ∈ E(G). Then x . . . yp2 p1q1q2qβ · · · q3x is a cycle through M ′ ∪ {e}, a contradiction.

Subcase 1.2.2: d(p2) > d(q1).
The following inequalities are satisfied: d(p1) > d(qβ), d(p2) > d(q1), d(p2)+ d(q1) > d(p1)+ d(qβ).
They imply that d(p1)+d(p2) > n−1. We have N(p1) = NR(p1)∪{p2, x, q1} and N(p2) = NR(p2)∪{p1, y, qβ}∪

NS(p1). By Lemma 1, dR(p1)+dR(p2) = |V(R)| = γ . d(p1)+d(p2) = dR(p1)+dR(p2)+6+dS(p1)+dS(p2) 6
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γ+6+|V(S)|. Since n = γ+β+4+|V(S)|, we obtain n−1 = γ+β+4+|V(S)|−1 6 d(p1)+d(p2) 6 γ+6+|V(S)|
and this implies β 6 3. We have q1q2 ∈ M and qβ−1qβ ∈ M , then if β 6 3, q1q2 = qβ−1qβ and β = 2, a
contradiction.

Case 2: p1q1 6∈ E(G).

Lemma 4. (1) The vertex p1 is independent of q1, q2, . . . , qβ and adjacent to p2, . . . , pα .
(2) The vertex q1 is independent of p1, . . . , pα and adjacent to q2, . . . , qβ .
(3) The vertex pα is independent of q1, . . . , qβ−1 and adjacent to p1, . . . , pα−1.
(4) The vertex qβ is independent of p1, . . . , pα−1 and adjacent to q1, . . . , qβ−1.

Proof of Lemma 4. The condition q1 6∈ N(p1) implies that q1 ∈ N(qβ), the condition p1 6∈ N(q1) implies that
p1 ∈ N(pα) i.e., the edges p1 pα and q1qβ are in E(G). Let i be a minimal integer such that p1qi ∈ E(G). For
1 6 j 6 i−1, p1q j 6∈ E(G), and so qβq j ∈ E(G). The hypothesis of maximality of C1∩C2 implies that qi qi+1 ∈ M
and then qi−1qi 6∈ M . The cycle xr1 . . . rγ ypα . . . p1qi . . . qβqi−1 . . . q1x is a cycle through M ′ ∪ {e}, a contradiction.
The vertex p1 is independent of q1, q2, . . . , qβ , and hence qβ is adjacent to q1, q2, . . . , qβ−1.

The proofs for the other vertices are similar. �

Subcase 2.1: pαqβ 6∈ E(G).

Claim 3. If pαqβ 6∈ E(G), then NR(p1) = NR(q1) = ∅.

Proof of Claim 3. If pα ∈ N(p1) \ N(qβ) and u ∈ NR(p1), then uqβ 6∈ E(G), u ∈ N(p1) \ N(qβ) and hence
u ∈ NR(p1) ∩ NR(pα), a contradiction with Lemma 1. �

Claim 4. At least one of the edges xpα or xqβ is in E(G).

Proof of Claim 4. If x ∈ N(p1) \ N(qβ), x is adjacent to every vertex of N(p1) \ N(qβ), then xpα ∈ E(G). �

Corollary 3. NS(p1) ∩ NS(q1) = ∅.

Claim 5. At least one of the edges yp1 or yq1 is in E(G).

Proof of Claim 5. Vertices p1 and q1 have no common neighbor in S. The following inequality is satisfied:

d(p1)+ d(q1) 6 α + β + |V(S)| + ε(yp1)+ ε(yq1)

and since n = α + β + γ + 2+ |V(S)| we have

d(p1)+ d(q1) 6 n.

The vertices p1 and q1 are not in any set of three independent vertices and so Claim 5 is proved. �

Subsubcase 2.1.1: γ = |V(R)| = 0.
In this case xy ∈ M . As G is 3-connected, G \ {x, y} is connected. The conditions ε(xpα) + ε(xqβ) > 1,

ε(yp1)+ ε(yq1) > 1 imply that there is no path π [p1, q1], π [p1, qβ ], π [pα, q1], π [pα, qβ ] otherwise there is a cycle
through M ′ ∪ {e}. As G is 3-connected, there exists a path π [pi , q j ], with 2 6 i 6 α − 1, 2 6 j 6 β − 1. We can
easily construct a cycle through M ′ ∪ {e}.

Subcase 2.1.2: γ > 1, d(q1) > d(pα).
By Claims 4 and 5, ε(xpα) + ε(xqβ) > 1 and ε(yp1) + ε(yq1) > 1. Hence we have d(p1) + d(q1) +

d(pα) + d(qβ) > 2n − 2 and this implies d(p1) + d(q1) > n − 1. We have N(p1) ⊂ {x, y} ∪ {p2, . . . , pα} ∪ S,
N(q1) ⊂ {x, y}∪ {q2, . . . , qβ}∪ S, NS(p1)∩NS(q1) = ∅ and so d(p1)+ d(q1) 6 α+β+|V(S)|+ ε(yp1)+ ε(yq1).
Moreover n = α + β + γ + 2+ |V(S)|.

The inequality d(p1) + d(q1) > n − 1 gives γ + 1 6 ε(yp1) + ε(yq1). Hence γ = 1 = ε(yp1) = ε(yq1). If
xr1 ∈ M , then xr1qβ . . . q1 ypα . . . p1x is a cycle through M ′ ∪ {e}. If r1 y ∈ M , then xp1 . . . pαr1 yqβ . . . q1x is a
cycle through M ′ ∪ {e}. In both cases we have a contradiction.

Subcase 2.1.3: γ > 1, d(q1) < d(pα).
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Note that d(pα)+d(q1) = α+β+γ +|V(S)|+ε(yq1)+ε(xpα) 6 n. Hence the (n+k)-closure of N(pα)\N(q1)

is a complete graph. Let u ∈ NR(pα), u ∈ N(pα) \ N(q1) and p1 ∈ N(pα) \ N(q1). This implies up1 ∈ E(G), a
contradiction with Lemma 1. Hence NR(p1) = NR(pα) = ∅, γ = 0, a contradiction with the hypothesis of Subcase
2.1.3.

Subcase 2.2: pαqβ ∈ E(G).

Claim 6. If pαqβ ∈ E(G), then yp1 6∈ E(G) and yq1 6∈ E(G).

By Claim 6 d(p1) + d(qβ) = α + β + γ + ε(xqβ) + 1 + |V(S)| = n − 1 + ε(xqβ) 6 n. d(q1) + d(pα) =
α + β + γ + ε(xpα)+ 1+ |V(S)| = n − 1+ ε(xpα) 6 n.

Subcase 2.2.1: d(q1) > d(pα).
The (n + k)-closure of N(q1) \ N(pα) is a complete graph, so we may assume that N(q1) \ N(pα) is

complete. Vertices p1, q1, y are independent and thus d(p1)+ d(q1) > n + 3. Recall that dR(q1) = dR(p1).
The two equalities:

d(p1) = α + dR(p1)+ dS(p1)

d(q1) = β + dR(q1)+ dS(q1)

imply that

α + β + 2dR(p1)+ dS(p1)+ dS(q1) > n + 3.

If xpα ∈ E(G) or xqβ ∈ E(G), then NS(p1) ∩ NS(q1) = ∅. If xpα 6∈ E(G) and xqβ 6∈ E(G), then
x ∈ N(p1) \ N(qβ); if w ∈ NS(p1), then w ∈ N(p1) \ N(qβ) and xw ∈ E(G), a contradiction with the hypothesis of
maximality of |V(Γ )|. Hence dS(p1)+dS(q1) 6 |V(S)|. Note that n+3 6 d(p1)+d(q1) 6 α+β+|V(S)|+2dR(p1).
This implies that α+β+γ +|V(S)|+5 6 α+β+|V(S)|+2dR(p1). Since 2dR(p1) > γ +5, we have dR(p1) > 5.
If α > 2, then pα−1 pα ∈ M and pα−2 pα−1 6∈ M . Let riri+1 be an edge of R not in M , with ri and ri+1 adjacent to
p1. Vertices ri and ri+1 are adjacent to pα−1 and pα−2. Hence xr1 . . . ri pα−2 . . . p1 pα pα−1ri+1 . . . rγ yqβ . . . q1x is a
cycle through M ′ ∪ {e}, a contradiction.

If β > 2, the argument is similar.

Subcase 2.2.2: d(pα) > d(q1).
If p1, y ∈ N(pα) \ N(q1), then yp1 ∈ E(G), a contradiction with Claim 6.
The proof of Theorem 7 is complete. �
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