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Abstract 

In the analysis of functionally graded materials (FGMs), the uncoupled approach is used broadly, which is based on homoge-
nized material property and ignores the effect of local micro-structural interaction. The higher-order theory for FGMs 
(HOTFGM) is a coupled approach that explicitly takes the effect of micro-structural gradation and the local interaction of the 
spatially variable inclusion phase into account. Based on the HOTFGM, this article presents a quadrilateral element-based 
method for the calculation of multi-scale temperature field (QTF). In this method, the discrete cells are quadrilateral including
rectangular while the surface-averaged quantities are the primary variables which replace the coefficients employed in the tem-
perature function. In contrast with the HOTFGM, this method improves the efficiency, eliminates the restriction of being rectan-
gular cells and expands the solution scale. The presented results illustrate the efficiency of the QTF and its advantages in ana-
lyzing FGMs. 
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1. Introduction1

Functionally graded materials (FGMs) are a new 
generation of composites in which the micro-structural 
details are spatially varied through non-uniform dis-
tribution of the reinforcement phase(s), by using rein-
forcement with different properties, sizes, and shapes, 
as well as by interchanging the roles of reinforcement 
the matrix phases in a continuous manner. The result is 
a micro-structure that produces continuously changing 
thermal and mechanical properties at the macroscopic 
or continuum level. Although the research of the 
FGMs began in 1980s, enormous number of re-
searches has already been conducted and continuously 
need to be expanded. In the next part, an overview is 
provided of the different approaches employed to 
model the thermo-mechanical response of FGMs[1-9].

Presently, there are two approaches available to 
analyze the response of FGMs to thermo-mechanical 
loads, called coupled and uncoupled approaches[10]. In 
the uncoupled approach, the graded material’s micro-
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structure is replaced by equivalent homogenized prop-
erties which are either determined by micromechanics 
considerations or assumed a priority. In the coupled 
approach, the effect of micro-structural variation and 
the interaction between non-uniformly distributed in-
clusions are explicitly taken into account in solving the 
governing differential equations. The method in 
higher-order theory for functionally graded materials 
(HOTFGM) is an accurate and useful method for the 
analysis of FGMs that accounts for the multi-scale 
coupling. However, it is computationally intensive and 
expensive when the detailed volume discretization is 
required to simulate realistic micro-structural details 
for certain types of FGMs or to capture very high 
thermal and stress gradients. Even though Y. Bansal 
and M. J. Pindera[9] developed the reformulation of 
HOTFGM which can decrease the size of the overall 
system of equations for the thermal and mechanical 
problems by approximately 60%[9], the function of this 
method in modeling micro-structure is limited since 
the rectangular element must be adopted. 

In order to mitigate the negative impact of rectan-
gular element mentioned above, the quadrilateral ele-
ment discretization capability was incorporated into 
the finite-volume theory for FGMs by M. A. A. 
Cavalcante, et al.[11-16] recently. In contrast with the 
parametric mapping used by M. A. A. Cavalcante, et 
al., in this article, we present another approach, which Open access under CC BY-NC-ND license.
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directly extends the HOTFGM to enabling the use of 
quadrilateral elements. Since the use of quadrangular 
element, we named the method developed here as 
quadrilateral element-based method for the calculation 
of multi-scale temperature field (QTF). In the QTF, a 
discretization based on quadrangular elements is em-
ployed to capture the graded material’s heterogeneous 
micro-structure. The thermal field within each cell are 
depicted with quadratic polynomial within local coor-
dinate system, and the unknown coefficients associated 
with the variables with different orders are obtained by 
satisfying the field equations in a surface-averaged 
sense for each cell, followed by the application of con-
tinuity conditions within each cell, and between adja-
cent cells, in a surface-averaged sense together with 
the imposed boundary conditions[11]. Although the 
parametric formulation developed by M. A. A. Caval-
cante, et al.[11-13] and QTF incorporate quadrilateral 
element discretization capability into the HOTFGM, 
they have different manners of constructing the stiff-
ness matrix of an element. In fact, the key problems in 
developing HOTFGM include 1) how to perform the 
integration of the quadrilateral elements and 2) how to 
integrate the stiffness matrix of each element into the 
global equation system. In the parametric formulation, 
the integration is performed by a parametric mapping 
of coordinate system from a reference square element 
to a quadrilateral element. However, in QTF, the inte-
gration is performed by a direct approach, which is 
described in this article. Except this difference, both 
methods employ global/local numbering system to 
establish the global equation system. 

2. Theory and Formulations 

The geometric model on which the QTF is based is 
shown in Fig.1. The cross section of the micro-struc- 
ture length of the heterogeneous composite, having 
infinite length in the z-direction and being functionally 
graded in the x-y plane, is appropriately discretized 
into totally Ne elements with identical material proper-
ties and local coordinates of xmin x xmax and ymin

y ymax. The loads including a prescribed surface tem-
perature and/or heat distribution, are applied to the x-y
plane.

Fig.1  Discretization of QTF.

The formula of temperature within each cell em-
ployed by QTF is similar to the formula employed by 

HOTFGM (which is based on the quadratic polyno-
mial in the local coordinate system attached to a cell’s 
center), the similar manner of satisfying the governing 
field equations (steady-state heat conduction equation 
and equilibrium equation) in a surface sense, and the 
interfacial continuity and boundary condition in a sur-
face-integral sense. The major difference between the 
QTF and the reformulated HOTFGM is in the shape of 
cell. Cells in the reformulation of the HOTFGM are 
rectangular which is shown in Fig.2 and those for the 
QTF are quadrilateral as shown in Fig.1. 

Fig.2  Discretization of reformation of HOTFGM. 

Like the reformulation of the HOTFGM, the QTF 
should construct a local conductivity matrix that re-
lates the surface-averaged heat flux to the sur-
face-averaged temperature for a certain cell i, to satisfy 
the steady-state heat conduction equation[2,4].

We use the local conductivity matrices to construct 
the global conductivity matrix by enforcing the heat 
flux and temperature continuity conditions at the in-
terfaces of the adjacent cells in an average sense. 
Therefore the QTF has the same efficiency as that of 
reformulated HOTFGM, and has larger range of ap-
plication, because the reformation of the HOTFGM is 
based on the rectangular cells while the QTF is em-
ploying the quadrilateral elements. In mathematics, the 
integral method and difficulty with regard to the rec-
tangle and the quadrangle are different, with the latter 
more complex than the former. For example, the global 
conductivity matrix of the QTF is a 4 4 matrix and 
each element of the matrix is a multinomial containing 
at least 680 elements. Compared with the QTF, the 
reformation of the HOTFGM is straightforward. The 
detailed derivations of the local and global conductiv-
ity matrices are outlined next. 

2.1. Formulation of local temperature  

The temperature field T (i) within the cell i is ap-
proximatly depicted by a second-order polynomial in 
terms of local coordinate system x(i), y(i) as 

( ) ( ) ( ) ( ) ( ) ( )
(00) (10) (01)

i i i i i iT T T x T y
( ) ( ) 2 ( ) ( ) 2

(20) (02)( ) ( )i i i iT x T y          (1) 

where ( )
( )

i
mnT (m,n=0,1,2) is the unknown variable asso-

ciated with each cell. 
The heat flux ( )i

xq  and ( )i
yq  at any point within 

cell i can be obtained from the Fourier law of heat 
conduction, 



No.5 Sun Zhigang et al. / Chinese Journal of Aeronautics 23(2010) 529-536 · 531 · 

( )
( ) ( )

( )

( )
( ) ( )

( )

i
i i

x x i

i
i i

y y i

Tq k
x

Tq k
y

             (2) 

where ( )i
xk  and ( )i

yk  are the heat conductivity coeffi-
cients of the material of cell i, which are constant 
within the cell i in this article. Therefore the heat flux 

( )i
xq  and ( )i

yq  at any point within cell i can be ex-
pressed as 

( ) ( ) ( ) ( ) ( )
(10) (20)

( ) ( ) ( ) ( ) ( )
(01) (02)

2

2

i i i i i
x x

i i i i i
y y

q k T x T

q k T y T
         (3) 

2.2. Local conductivity matrix 

The local conductivity matrix is used to find the 
connection between the surface-averaged temperature 
and the surface-averaged heat flux in one element. 
Compared to local conductivity matrices in the refor-
mation of the HOTFGM, there are differences between 
the two kinds of local conductivity matrices. First of 
all, in the rectangular element, the four edges can be 
expressed as the top, bottom, left and right edges while 
in the QTF, because of the randomness of edge direc-
tion, the edges of each quadrilateral element have to be 
expressed with their numbering such as the 1st, 2nd, 3rd 
and 4th edges. Secondly, the integration in the rectangu-
lar element is comparatively simple, but the integration 
in the quadrilateral element has to employ local coordi-
nate system before the integration can be carried out. 

Therefore, we should find local coordinate system to 
obtain the expression for the surface-averaged tem-
perature. There are several concepts used in the local 
coordinate implementation, including the direction 
vector of each edge and the length of each edge. 

The first step is to construct the direction vectors 
( )x i
at  and ( )y i

at (a=1,2,3,4) and the characteristic pa-

rameters of the cells including ( )i
al  as shown in  

Fig.3. The direction vectors express the unit vectors in 

Fig.3  Direction vectors of cell i.

the direction of being parallel and normal to the edges, 
which are defined by Eqs.(4)-(5): 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ),
i i i i

x i y ib a b a
a ai i

a a

x x y yt t
l l

( 1,2,3,4; 2,3,4,1)a b        (4) 

2 2( ) ( ) ( ) ( ) ( )i i i i i
a b a b al x x y y

( 1,2,3,4; 2,3,4,1)a b        (5) 

So the heat flux at the boundaries of cell can be ex-
pressed with the direction vectors. 

( ) ( ) ( ) ( ) ( ) ( 1,2,3,4)i i x i i y i
j x j y jq q t q t j      (6) 

The local conductivity matrix should relate the sur-
face-averaged heat flux explicitly to the sur-
faced-averaged temperature. Therefore the sur-

face-averaged heat flux 
( )i
Q is defined at the outer 

boundary of the cell in the following manner (as 
shown in Fig.4): 

( ) ( ) ( ) ( ) ( )
1 2 3 4

i i i i i
Q Q Q QQ         (7) 

where
( )i
jQ ( j =1,2,3,4) is defined as 

( )
1( ) ( ) ( )

( ) 0

1 d
ili i i

jj i
j

Q q l
l

         (8) 

Fig.4  Surface-averaged temperature and heat flux of cell i.

These equations result in a matrix which relates the 
surface-averaged heat flux to the ( )

( )
i

mnT :

T( ) ( ) ( ) ( )
1 2 3 4
i i i i

Q Q Q Q

T( ) ( ) ( ) ( ) ( ) ( )
(00) (10) (01) (20) (02)

i i i i i iT T T T TC     (9) 

We can get the variables through the surface-aver- 
aged temperatures 

( )i
T :
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( ) ( ) ( ) ( ) ( )
1 2 3 4

i i i i iT T T TT         (10) 

where
( ) ( ) ( )

0

1 d ( 1,2,3,4)jli i i
j j

j
T T l j

l
     (11) 

Substituting the expression of ( )iT given by Eq.(1) 
into the preceding definitions and performing the av-
eraging procedure, we obtain a matrix relating the sur-
face-averaged temperature to the zeroth-, the first- and 
the second-order micro-variables. However, there are 
five unknown coefficients with four equations. In or-
der to express these five micro-variables solely in 
terms of the surface-averaged temperature, we employ 
the steady-state heat conduction equation (Eq.(12)), 
which is satisfied in area sense within the cell i.

( )( )

( ) ( ) 0
ii

yx
i i

qq
x y

            (12) 

Substituting Eq.(2) into Eq.(1), in conjunction with 
Eq.(11) and Eq.(12), we can simplify the obtained 
equation as follows: 

T( ) ( ) ( ) ( )
1 2 3 4 0i i i iT T T T

T( ) ( ) ( ) ( ) ( ) ( )
(00) (10) (01) (20) (02)

i i i i i iT T T T TA     (13) 

which relates the surface-averaged temperature to the 
micro-variables. To obtain the inverse matrix of ( )iA ,
the micro-variables can be expressed with the sur-
face-averaged tempertures: 

T( ) ( ) ( ) ( ) ( )
(00) (10) (01) (20) (02)

i i i i iT T T T T
T( ) ( ) ( ) ( ) ( )

1 2 3 4
i i i i iT T T TB        (14) 

Therefore, we substitute Eq.(14) into the Eq.(9), the 
new matrix which relates the surface-averaged tem-
perature to the surface-averaged heat flux is obtained 
as follows: 

T( ) ( ) ( ) ( )
1 2 3 4

i i i iQ Q Q Q
T( ) ( ) ( ) ( ) ( )

1 2 3 4
i i i i iT T T TD        (15) 

where the matrix D(i) is the local conductivity matrix of 
the cell i.

According to a rough estimation, the local conduc-
tivity matrix of the cell i contains 16 elements, each of 
which is a multinomial containing at least 680 ele-
ments. 

2.3. Global conductivity matrix 

This step assembles the local conductivity matrices 
of all cells to form a global conductivity matrix, which 
reflects the entire thermal response of the material. To 
solve the global conductivity matrix, the interfacial 
temperature and heat flux continuity conditions and 
the boundary conditions should be used in the equa-

tions. 
The temperature continuity conditions at the inter-

faces between adjacent cells are applied in an average 
sense.

Taking the model in Fig.5 as an example, the sur-
face-averaged temperature at the interface between cell 
1 and cell 2 should be continuous. In other words, the 
surface-averaged temperatures of edge 2 and edge 4 
must be equal to each other, and we can express it as 
follows: 

(1) (2)
2 4T T                (16) 

Fig.5  Continuity conditions of adjacent cells.

Similarly, considering cell 2 and cell 3, the tem-
perature continuity at the interfaces between adjacent 
cells can be applied in an average sense: 

(2) (3)
3 1T T               (17) 

There are also surface-averaged temperature at the 
external boundary of composite, which can be used as 
the boundary condition. 

The heat flux continuity at the interfaces between 
adjacent cells is also applied in an average sense. Tak-
ing the model in Fig.5 as example, the surface-aver- 
aged heat flux at the interface between cell 1 and cell 2 
should be continuous. In other words, the surface-  
averaged heat flux of edge 2 and edge 4 must be equal 
to each other, and we can express it as follows: 

(1) (2)
2 4 0Q Q               (18) 

where (1)
2Q  is the surface-averaged heat flux going 

out of the 2nd boundary of cell 1, and 
(2)
4Q the sur-

face-averaged heat flux going out of the 4th boundary 
of cell 2. 

Similarly, considering cell 2 and cell 3, the tem-
perature continuity at the interfaces between adjacent 
cells can be applied in an average sense: 

(2) (3)
3 1 0Q Q               (19) 
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There are also surface-averaged heat flux at the ex-
ternal boundary of composite, which can be used as 
the boundary condition. 

After applying the continuity conditions, the exter-
nal boundary conditions should be applied. The quan-
tity of the external boundary depends on whether the 
temperature or heat flux is applied on the external 
boundary. 

For the heat transfer, there are three kinds of bound-
ary conditions. The first boundary condition is to give 
the temperatures of the boundary, the 2nd boundary 
condition is to give the density of heat flux of the 
boundary, and the 3rd boundary condition is to give 
the surface heat transfer coefficient h between the 
boundary and the liquid and the temperature of the 
surrounding liquid tf.

These give rise to the additional equations to solve 
the global conductivity matrix. 

Using the local conductivity matrix of Eq.(15), the 
temperature continuity conditions of Eqs.(16)-(17), the 
surface-averaged temperatures at the boundaries, the 
heat flux continuity condition, Eqs.(18)-(19), and the 
external boundary condition, the global conductivity 
matrix can be expressed as the following simple form: 

T Q                  (20) 

where  is the global thermal conductivity matrix ob-
tained through assembling the local conductivity ma-
trices of Eq.(15), using the local/global conductivity 
matrices approaches explained earlier. This matrix 
contains the information on the geometry and thermal 
conductivities of the individual cells. Because of the 
huge scale of the global conductivity matrix, the ma-
trix  is not displayed in detail here.  

The vector T contains the unknown surface-aver- 
aged temperatures at the cell interfaces and the outer 
boundary of the composite (some of which are 
known), and is given by 

(1) (2) ( ) ( ) ( )
1 1 1 2 3[ i i iT T T T TT

e( )( ) ( 1)
4 4 4 ]Ni iT T T           (21) 

And the Q  in Eq.(20) can be expressed as 
(1) (2) ( ) ( ) ( )
1 1 1 2 3[ i i iQ Q Q Q QQ

e( )( ) ( +1)
4 4 4 ]Ni iQ Q Q        (22) 

Solving the global conductivity matrix, the vector 
T  can be obtained, which contains all the surface- 
averaged temperatures at the interfaces of the cells. 
Substituting the expression of 

( )i
jT into Eq.(14), the 

micro-variables of each cell can be obtained. Finally, 
the temperature field at local level can be calculated by 
Eq.(1).

3. Numerical Examples 

3.1. Example 1 

In many practical applications, multi-layers struc-

tures are widely used. In order to prevent yielding due 
to exposure to high temperature, certain layers are set 
being subjected to very high thermal gradient to pro-
tect the other layers. Here, we demonstrate the effi-
ciency of the extended version by considering a 
6-layer structure with discretized realistic micro- 
structure.

The geometry and the boundary conditions of the 
illustrated structure are shown in Figs.6-7. In Fig.6, Kx
and Ky are coefficients of heat conduction in the x- and 
y-direction. In the y-direction of the x-y plane, the 
largest width is 3.2 m while the narrowest width is 
2.4 m, and each of the space in the x-direction is 1 m. 
It is discretized into six cells. From left to right, the 
ratios between the six heat conductivity coefficients 
are 14:150:14:80:8:60 W/(m·K), while the heat con-
ductivity coefficients in the x-direction and in the 
y-direction are equivalent. The structure is subjected to 
300 K at the left boundary and 100 K at the right 
boundary, while the bottom boundary and the top 
boundary are insulated from heat conduction (zero 
heat flux). The detailed boundary conditions are shown 
in Fig.7. 

Fig.6  Detailed shape of structure. 

Fig.7  Heat loading sketch. 

For the given geometry, micro-structure, and 
boundary conditions, the temperature field can be 
fixed using the QTF and the results should be com-
pared with the finite-element solution. The fi-
nite-element solution can be obtained with the avail-
able tool finite-element method (FEM) to generate the 
same mesh and micro-structure as the QTF and carry 
out temperature analysis. For the finite-element solu-
tion, temperature analysis is carried out using two- 
dimensional and 8-noded thermal (plane 77) elements. 
The boundary conditions are shown in Fig.7. 

In order to compare the results obtained from the 
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two approaches on a common basis, the nodal tem-
peratures obtained from the FEM are exported into the 
same post-process as in the QTF. The temperature field 
generated by the QTF is essentially indistinguishable 
from that generated by FEM. This is seen in the 
cross-sectional plots for the temperature (Figs.8-9) and 
the horizontal numerical value (Fig.10) given that 
y = 0. In Figs.8-10, T reprensts temperature. 

Fig.8  Temperature field obtained from QTF. 

Fig.9  Temperature field obtained from FEM. 

Fig.10  Horizontal numerical value given that y=0.

In Fig.10, the difference between QTF and FEM can 
be negligible, so for the accuracy of the temperature, 
the QTF is equivalent to the FEM. 

3.2. Example 2 

In this numerical example, there is a right angle 
plane, its geometry and boundary conditions are shown 
in Figs.11-12. In the y-direction of the x-y plane, the 
largest width is 4 m while the narrowest width is 2 m, 
and the same geometry is for the x-direction. The struc-
ture has the uniform heat conductivity coefficient: the 
heat conductivity coefficients in both the x-direction and 
y-direction are all 10 W/(m·K). The structure is sub-
jected to 0 K at the left and the bottom boundaries, and 
the top face and the right boundaries are 100 K while the 
two northeast boundaries are 200 K. The detailed 

boundary condition is shown in Fig.12. 
In particular, this structure is analyzed using the 

QTF and the results are compared and contrasted with 
that of FEM. For the given geometry, micro-structure, 
and boundary conditions, the temperature field can be 
fixed using the QTF and the results should be com-
pared with the finite-element solution. 

In the QTF, there are three kinds of mesh discretiza-
tion, which are shown in Fig.13. The plane is meshed 
into 16, 24 and 80 elements, while Fig.14 shows the 
corresponding equivalent stress field for each mesh. 
The numbers in bracket are coordinates of the nodes. 

Fig.11  Detailed shape of right angle structure.

Fig.12  Loading sketch.
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Fig.13  Three kinds of mesh. 

The finite-element solution can be obtained using 
the commercial FEM software with which the same 
mesh is generated and micro-structure and the tem-
perature analysis are carried out. For the finite-element 
solution, thermal analysis is carried out using twodi-
mensional and eight-noded thermal elements. The 
boundary conditions are applied as shown in Fig.12, 
and the result is shown in Fig.15. 

From Figs.13-14, the result of the structure with 16 

Fig.14  Corresponding equivalent stress field. 

Fig.15  Result of FEM. 

elements is not good and there are some discontinuous 
temperature points. Compared with the first kind of 
mesh, the temperature field of the structure with 24 
elements is close to that obtained from the FEM, and 
the temperature discontinuity has been eliminated. 
When the structure is meshed by 80 elements, the tem-
perature field is smooth and consistent with the result 
of the FEM. 
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4. Conclusions 

Based on the high-order theory for FGMs, the au-
thors develop a multi-scale method for two-dimen-
sional temperature estimation which can use qua- 
drilateral elements. This article puts forward the theory 
frame, derives the relational formulae, and at the same 
time eliminates the redundant continuity equations and 
decreases the size of the overall numbers of equations 
through the reformulation of the HOTFGM. In other 
words, the QTF expands the solution area and en-
hances the calculation efficiency. After being com-
pared with the FEM, the validity of the QTF is proved. 

References 

[1] Muliana A H. A micromechanical model for predicting 
thermal properties and thermo-viscoelastic responses 
of functionally graded materials. International Journal 
of Solids and Structures 2009; 46(9): 1911-1924. 

[2] Pindera M J, Arnold S M, Aboudi J, et al. Use of com-
posites in functionally graded materials. Composites 
Engineering 1994; 4 (1): 1-18. 

[3] Aboudi J, Pindera M J, Arnold S M. A coupled higher 
theory for functionally graded composites with partial 
homogenization. Composites Engineering 1995; 5(7): 
771-792.

[4] Aboudi J, Pindera M J, Glaeser A M, et al. Use of 
composite in multi-phased and functionally graded 
materials. Composites Part B 1997; 28(1-2): 1-175. 

[5] Needleman A, Suresh S. Mechanics and physics of 
layered and graded materials. Journal of Mechanics 
and Physics of Solids 1996; 44(5): 647-821. 

[6] Shiota I, Miyamoto Y. Functionally graded materials. 
Proceedings of the 4th International Symposium on 
Functionally Graded Materials. Amsterdam: Elsevier, 
1996; 114-121. 

[7] Suresh S, Mortensen A. Fundamentals of functionally 
graded materials. 2nd ed. Cambridge: Cambridge Uni-
versity Press, 1998. 

[8] Paulino G H. Fracture of functionally graded materials. 
Engineering Fracture Mechanics 2002; 69(14-16): 
1519-1812.

[9] Bansal Y, Pindera M J. Efficient reformulation of the 
thermoelastic higher-order theory for functionally 
graded materials. Journal of Thermal Stresses 2003; 
26(11-12): 1055-1092. 

[10] Pindera M J, Aboudi J, Arnold S M. Limitations of the 
uncoupled, RVE-based micromechanical approach in 
the analysis of functionally graded composites. Me-
chanics of Materials 1995; 20(1): 77-94. 

[11] Cavalcante M A A, Marques S P C, Pindera M J. Pa-
rametric formulation of the finite-volume theory for 
functionally graded materials Part I: analysis. Journal 
of Applied Mechanics 2007; 74(5): 935-945. 

[12] Cavalcante M A A, Marques S P C, Pindera M J. 
Computational aspects of the parametric finite-volume 
theory for functionally graded materials. Journal of 
Computational Materials Science 2008; 44(2): 422- 
438.

[13] Cavalcante M A A, Marques S P C, Pindera M J. Tran-
sient thermo-mechanical analysis of a layered cylinder 
by the parametric finite-volume theory. Journal of 
Thermal Stresses 2009; 32(1): 112-134. 

[14] Tanigawa Y, Ootao Y. Transient piezothermoelasticity 
of a two-layered composite hollow cylinder con-
structed of isotropic elastic and piezoelectric layers due 
to asymmetrical heating. Journal of Thermal Stresses 
2007; 30(8): 1003-1023. 

[15] Chatzigeorgiou G, Kalpakides V, Charalambakis N. Bi-
axial loading of continuously graded thermoviscoplas-
tic materials. Computational Mechanics 2007; 39(4): 
335-355.

[16] Cavalcante M A A, Marques S P C, Pindera M J. Pa-
rametric formulation of the finite-volume theory for 
functionally graded materials Part II: numerical results. 
Journal of Applied Mechanics 2007; 74(5): 946-957. 

Biography: 

Sun Zhigang  Born in 1976, he received B.S. and M.S. 
degrees from Nanjing University of Aeronautics and Astro-
nautics in 2002 and 2005 respectively, and then became a 
teacher there. His main research interest is aerospace propul-
sion theory and engineering. 
E-mail: szg_mail@nuaa.edu.cn 


