A generalized chromatic polynomial, acyclic orientations with prescribed sources and sinks, and network reliability

J. Rodriguez and A. Satyanarayana*
Department of Electrical Engineering and Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Received 29 January 1990
Revised 9 April 1991

Abstract

Rodriguez, J. and A. Satyanarayana, A generalized chromatic polynomial, acyclic orientations with prescribed sources and sinks, and network reliability, Discrete Mathematics 112 (1993) 185-197.

Suppose $G=(V, E)$ is a graph and $K, K^{\prime \prime}, K^{\prime \prime}$ are subsets of V^{\prime} such that $K^{\prime} \subseteq K^{\prime} \cap K^{\prime \prime}$. We introduce and study a polynomial $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ in λ. This polynomial coincides with the classical chromatic polynomial $P(G ; \lambda)$ when $K=V$. The results of this paper generalize Whitney's characterizations of the coefficients of $P(G ; \lambda)$ and the work of Stanley on acyclic orientations. Furthermore, we establish a connection between a family of polynomials associated with network reliability and a family of polynomials associated with $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$.

1. Introduction

An orientation of a graph G is an assignment of a direction to each edge of the graph. An orientation is acyclic if the resulting digraph has no directed cycles. If ω is a directed graph and u is a point of ω then we say that u is a source of ω if its indegree is zero but its outdegree is positive. Likewise, u is termed a sink if its indegree is positive and outdegree is zero. For a given pair of subsets $K^{\prime}, K^{\prime \prime} \subseteq V(G)$, an acyclic orientation ω of G is said to be ($K^{\prime}, K^{\prime \prime}$)-proper if the sources of ω are in K^{\prime} while the sinks are in $K^{\prime \prime}$. Suppose $K \subseteq K^{\prime} \cap K^{\prime \prime}$ and λ is a positive integer. Let $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ be the number of pairs (ω, f), where ω is $\left(K^{\prime}, K^{\prime \prime}\right)$-proper and $f: K \rightarrow\{1,2, \ldots, \hat{\lambda}\}$ is

[^0]a mapping such that $f(x)<f(y)$ if $x, y \in K$ and there is a directed path from x to y in ω. Likewise, let $\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ be the number of pairs (ω, f), where ω is $\left(K^{\prime}, K^{\prime \prime}\right)$ proper and $f: K \rightarrow\{1,2, \ldots, \lambda\}$ such that $f(x) \leqslant f(y)$ if $x, y \in K$ and there is a directed path from x to y in ω.

Let $\sigma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the set of spanning subgraphs S of G such that any component of S intersects K^{\prime} iff it intersects $K^{\prime \prime}$. Suppose $H_{i} \subseteq V(G), S$ is a spanning subgraph of G then define $c\left(S: H_{1}, \ldots, H_{h}, \neg H_{h+1}, \ldots, \neg H_{r}\right)=\mid\{C: C$ is a component of $S, C \cap H_{i} \neq \emptyset$ for all $1 \leqslant i \leqslant h$ and $C \cap H_{i}=\emptyset$ for all $\left.h+1 \leqslant i \leqslant r\right\} \mid$. Define $P(x)$ to be the polynomial

$$
(-1)^{|V(G)|+|K|} \sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}, \neg K\right)} x^{c(S: K)}
$$

over the complex number field. In this paper we show that $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=P(\lambda)$ and $\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=(-1)^{|K|} P(-\lambda)$ for λ integer and positive. For the case of $K=V(G)$, the polynomial $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ coincides with the classical chromatic polynomial $P(G ; \lambda)$.

The topological characterizations of the coefficients of $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ generalize the results of Whitney [87 on $P(G ; \lambda)$. The extended chromatic polynomial studied by Satyanarayana and Tindell [4] is a special case of $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ when $K=K^{\prime}=K^{\prime \prime}$. Furthermore, the results of this paper generalize the work of Stanley [6] concerning acyclic orientations. Finally, we establish a connection between a family of polynomials associated with network reliability and a family of polynomials associated with $P\left(G, K, K^{\prime}, K^{\prime \prime} ;\right.$ i $)$.

2. Preliminaries

Unless defined otherwise, graph-theoretic terminology used here follows Harary [3]. One exception is that we allow multiple edges and loops so that by a graph we mean a pseudo graph. The edge set and the point set of a graph G are denoted by $E(G)$ and $V(G)$ respectively. If $x=\{u, v\}$ is an edge of G then $G \mid x$ is the graph obtained from G by deleting x and identifying the points u and v to a single point. We say that $G \mid x$ is obtained from G by contracting the edge x. Note that all other edges with endpoints u, v become loops of $G \mid x$. Likewise, if X is a set of edges of G then $G \mid X$ is the graph obtained from G by successively contracting all the edges of X. Each edge in $E(G)-X$ can be regarded as an edge of $G \mid X$. This identification, which we henceforth assume, constitutes a bijection between $E(G)-X$ and $E(G \mid X)$. Furthermore, the number of connected components of a graph remains unchanged upon edge contractions. By $\Gamma(G, X)$, we mean the collection of spanning subgraphs S of G such that $E(S) \subseteq X$. When $X=E(G)$ we simply write $\Gamma(G)$ instead $\Gamma(G, X)$.

If λ is a positive integer, we will denote by [λ] the set $\{1, \ldots, \lambda\}$. A λ-coloring of a graph $G=(V, E)$ is a mapping $f: V \rightarrow[\lambda]$. The integers $1,2, \ldots, \lambda$ are called colors. A λ-coloring is proper if no two adjacent points of G are assigned the same color. The
number of distinct proper λ-colorings of a given graph G can be expressed as a polynomial in λ, well known as the chromatic polynomial of G and denoted by $P(G ; \lambda)$. The following topological interpretation for the coefficients of $P(G ; \lambda)$ is due to Whitney [8].

Proposition 2.1. $P(G ; \lambda)=\sum_{S \in \Gamma(G)}(-1)^{|E(S)|} \lambda^{c(S)}$, where $c(S)$ is the number of connected components of S.

We need the following generalization of Proposition 2.1.

Proposition 2.2. If G is a graph and $H \subseteq E(G)$, then

$$
P(G, \lambda)=\sum_{S \in \Gamma(G, H)}(-1)^{|E(S)|} P((G-(H-E(S))) \mid E(S) ; \lambda)
$$

Proof. By Proposition 2.1,

$$
\begin{aligned}
P(G, \lambda) & =\sum_{S \in \Gamma(G)}(-1)^{|E(S)|} \lambda^{c(S)} \\
& =\sum_{S^{\prime} \in \Gamma(G, H)}(-1)^{\left|E\left(S^{\prime}\right)\right|} \sum_{S^{\prime \prime} \in \Gamma(G, E(G)-H)}(-1)^{\left|E\left(S^{\prime \prime}\right)\right|} \lambda^{c\left(S^{\prime} \cup S^{\prime \prime}\right)},
\end{aligned}
$$

where $c(X)$ is the number of connected components of X. Consider the subgraphs, say $G_{1} \in \Gamma(G)$ such that $E\left(G_{1}\right)=E\left(S^{\prime} \cup S^{\prime \prime}\right)$, and $G_{2} \in \Gamma\left(\left(G-\left(H-E\left(S^{\prime}\right)\right)\right) \mid E\left(S^{\prime}\right)\right)$ such that $E\left(G_{2}\right)=E\left(S^{\prime \prime}\right)$. Clearly $c\left(G_{1}\right)=c\left(G_{2}\right)$. Thus

$$
\sum_{S^{\prime \prime} \in \Gamma(G, E(G)-H)}(-1)^{\left|E\left(S^{\prime \prime}\right)\right|} \lambda^{c\left(S^{\prime} \cup S^{\prime \prime}\right)}=\sum_{S^{\prime \prime} \in \Gamma\left(\left(G-\left(H-E\left(S^{\prime}\right)\right)\right) \mid E\left(S^{\prime}\right)\right)}(-1)^{\left|E\left(S^{\prime \prime}\right)\right|} \lambda^{c\left(S^{\prime \prime}\right)} .
$$

Now, by Proposition 2.1,

$$
\sum_{S^{\prime \prime} \in \Gamma\left(\left(G-\left(H-E\left(S^{\prime}\right)\right) \mid E\left(S^{\prime}\right)\right)\right.}(-1)^{\left|E\left(S^{\prime \prime}\right)\right|} \lambda^{c\left(S^{\prime \prime}\right)}=P\left(\left(G-\left(H-E\left(S^{\prime}\right)\right)\right) \mid E\left(S^{\prime}\right) ; \lambda\right)
$$

and the proposition follows.

Definition 2.1 (acyclic orientations, sources. sinks, extensions and restrictions). An orientation of a graph G is an assignment of a direction to each edge of the graph. An orientation is acyclic if the resulting digraph has no directed cycles. If ω is a directed graph and u is a point of ω then we say that u is a source of ω if its indegree is zero but its outdegree is positive. Likewise, u is termed a $\sin k$ if its indegree is positive and outdegree is zero. Suppose ω and ω^{\prime} are orientations of a graph G and its subgraph G^{\prime} respectively. If the digraph ω^{\prime} is a subgraph of ω then ω is an extension of ω^{\prime}, and ω^{\prime} is a restriction of ω.

The following proposition is due to Greene [2].

Proposition 2.3. Let $\Omega(G: u, v)=\{\omega \mid \omega$ is an acyclic orientation of G with u being the only source and v the only sink of $\omega\}$. If $\{u, v\}$ is an edge of a graph G containing i isolated points, then

$$
|\Omega(G: u, v)|=\left.(-1)^{V(G) \mid+i}(P(G ; \lambda) /(\lambda-1))\right|_{\lambda=1} .
$$

Let $N(G)$ be the number of acyclic orientations of a graph G. The following proposition is due to Stanley [6].

Proposition 2.4. For any graph $G, N(G)=(-1)^{|V(G)|} P(G ;-1)$.

An immediate consequence of Propositions 2.1 and 2.4 is the following.
Proposition 2.5. For any graph $G, N(G)=(-1)^{|V(G)|} \sum_{S \in \Gamma(G)}(-1)^{|E(S)|+c(S)}$.

The following proposition is well known.

Proposition 2.6. If u is a point of G such that the neighborhood of u induces a clique in G, then $P(G ; \lambda)=(\lambda-\operatorname{deg}(u)) P(G-u ; \lambda)$.

3. The polynomial $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$

Let G be a graph and $K^{\prime}, K^{\prime \prime} \subseteq V(G)$. An acyclic orientation ω of G is said to be ($K^{\prime}, K^{\prime \prime}$)-proper if the sources of ω are in K^{\prime} while the sinks are in $K^{\prime \prime}$. Suppose $K \subseteq K^{\prime} \cap K^{\prime \prime}$ and λ is a positive integer. Let $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ be the number of pairs (ω, f), where ω is ($K^{\prime}, K^{\prime \prime}$)-proper and $f: K \rightarrow[\lambda]$ such that $f(x)<f(y)$ if $x, y \in K$ and there is a directed path from x to y in ω. Likewise, let $\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ be the number of pairs (ω, f), where ω is $\left(K^{\prime}, K^{\prime \prime}\right)$-proper and $f: K \rightarrow[\lambda]$ such that $f(x) \leqslant f(y)$ if $x, y \in K$ and there is a directed path from x to y in ω. Let $\sigma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the set of spanning subgraphs S of G such that any component of S intersects K^{\prime} iff it intersects $K^{\prime \prime}$. Suppose $H_{i} \subseteq V(G), S$ is a spanning subgraph of G then define $C\left(S: H_{1}, \ldots, H_{h}\right.$, $\left.\neg H_{h+1}, \ldots, \neg H_{r}\right)=\left\{C: C\right.$ is a component of $S, C \cap H_{i} \neq \emptyset$ for all $1 \leqslant i \leqslant h$ and $C \cap H_{i}=\emptyset$ for all $h+1 \leqslant i \leqslant r\}$. Let $c\left(S: H_{1}, \ldots, H_{h}, \neg H_{h+1}, \ldots, \neg H_{r}\right)=\mid C\left(S: H_{1}, \ldots, H_{h}\right.$, $\left.\neg H_{h+1}, \ldots, \neg H_{r}\right) \mid$.

Theorem 3.1. Let G be a graph with $K, K^{\prime}, K^{\prime \prime} \subseteq V(G)$ such that $K \subseteq K^{\prime} \cap K^{\prime \prime}$ and if u is an isolated point of G then $u \in K^{\prime} \cap K^{\prime \prime}$. Then

$$
\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=(-1)^{|V|} \sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}, \neg K\right)}(-\lambda)^{c(S: K)} .
$$

Proof. For a given integer $n \geqslant 1$, we construct the graph $G(n)$ as follows: $V(G(n))=$ $V(G) \cup\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ where the u_{i} are new vertices not in $V(G)$ and $E(G(n))=E(G) \cup$ $\left\{\left\{u_{i}, u_{j}\right\}: 0 \leqslant i<j \leqslant n\right\} \cup\left\{\left\{u_{0}, x\right\}: x \in K^{\prime}\right\} \cup\left\{\left\{u_{1}, x\right\}: x \in K^{\prime \prime}\right\} \cup\left\{\left\{u_{i}, x\right): 2 \leqslant i \leqslant n, x \in K\right\}$. Graph $G(n)$ is illustrated in Fig. 1.

By Proposition 2.2,

$$
\begin{aligned}
P(G(n) ; \lambda) & =\sum_{S \in \Gamma(G(n), E(G))}(-1)^{|E(S)|} P((G(n)-(E(G)-E(S))) \mid E(S) ; \lambda) \\
& =\sum_{S \in \Gamma(G)}(-1)^{|E(S)|} P((G(n)-(E(G)-E(S))) \mid E(S) ; \lambda) .
\end{aligned}
$$

Consider a term in the summation corresponding to a subgraph $S \in \Gamma(G)$. Clearly, the set of connected components of S can be partitioned into $\left\{C\left(S: \neg\left(K^{\prime} \cup K^{\prime \prime}\right)\right.\right.$), $\left.C\left(S: K^{\prime}, \neg K^{\prime \prime}\right), C\left(S: K^{\prime \prime}, \neg K^{\prime}\right), C\left(S: K^{\prime}, K^{\prime \prime}, \neg K\right), C(S: K)\right\}$. Let $G^{\prime}(n)$ be the graph obtained from $(G(n)-(E(G)-E(S))) \mid E(S)$ by replacing multiple edges by single ones. Every component in $C\left(S: \neg\left(K^{\prime} \cup K^{\prime \prime}\right)\right)$ becomes an isolated point in $G^{\prime}(n)$. Likewise, the components in $C\left(S: K^{\prime}, \neg K^{\prime \prime}\right)$ and in $C\left(S: K^{\prime \prime}, \neg K^{\prime}\right)$ become degree-1 points adjacent to u_{0} and u_{1} respectively. The components in $C\left(S: K^{\prime}, K^{\prime \prime}, \neg K\right)$ correspond to degree- 2 points adjacent to both u_{0} and u_{1}. Finally, those in $C(S: K)$ become points of degree $n+1$ adjacent to u_{0}, \ldots, u_{n}. Since the graph induced by $\left\{u_{0}, \ldots, u_{n}\right\}$ in $G^{\prime}(n)$ is the complete graph K_{n+1}, by repeated application of Proposition 2.6, we get

$$
\begin{aligned}
P\left(G^{\prime}(n) ; \lambda\right)= & \lambda^{c\left(S: \neg\left(K^{\prime} \cup K^{\prime \prime}\right)\right.}(\lambda-1)^{c\left(S: K^{\prime}, \neg K^{\prime \prime}\right)+c\left(S: K^{\prime \prime}, \neg K^{\prime}\right)}(\lambda-2)^{c\left(S: K^{\prime}, K^{\prime \prime}, \neg K\right)} \\
& \times(\lambda-n-1)^{c(S: K)} P\left(K_{n+1} ; \lambda\right) .
\end{aligned}
$$

Fig. 1. The graph $G(n)$ of Theorem 3.1.

As $G^{\prime}(n)$ is obtained from $(G(n)-(E(G)-E(S))) \mid E(S)$ by replacing multiple edges by single ones, we have $P((G(n)-\{E(G)-E(S)\}) \mid E(S) ; \lambda)=P\left(G^{\prime}(n) ; \lambda\right)$. Thus

$$
\begin{aligned}
P(G(n) ; \lambda)= & \sum_{S \in \Gamma(G)}(-1)^{|E(S)|} \lambda^{c\left(S: \neg\left(K^{\prime} \cup K^{\prime \prime}\right)\right)}(\lambda-1)^{c\left(S: K^{\prime}, \neg K^{\prime \prime}\right)+c\left(S: K^{\prime \prime}, \neg K^{\prime}\right)} \\
& \times(\lambda-2)^{c\left(S: K^{\prime}, K^{\prime \prime}, \neg K\right)}(\lambda-n-1)^{c(S: K)} P\left(K_{n+1} ; \lambda\right) .
\end{aligned}
$$

By Proposition 2.3,

$$
\begin{aligned}
\left|\Omega\left(G(n): u_{0}, u_{1}\right)\right|= & (-1)^{|V(G)|+n+1} \sum_{S \in \Gamma(G)}(-1)^{|E(S)|} \\
& \times P((G(n)-(E(G)-E(S))) \mid E(S) ; \lambda) /\left.(\lambda-1)\right|_{\lambda=1} .
\end{aligned}
$$

However, a simple computation shows that

$$
P((G(n)-(E(G)-E(S))) \mid E(S) ; \lambda) /\left.(\lambda-1)\right|_{\lambda=1}=0
$$

if $c\left(S: K^{\prime}, \neg K^{\prime \prime}\right)>0$ or $c\left(S: K^{\prime \prime}, \neg K^{\prime}\right)>0$, and

$$
\begin{aligned}
& P((G(n)-(E(G)-E(S))) \mid E(S) ; \lambda) /\left.(\lambda-1)\right|_{\lambda=1}=(-1)^{n-1+c\left(S: K^{\prime}, K^{\prime \prime}, \neg K\right)} \\
& \times(-n)^{c(S: K)}(n-1)!
\end{aligned}
$$

otherwise.
Hence

$$
\begin{aligned}
\left|\Omega\left(G(n), u_{0}, u_{1}\right)\right|= & (-1)^{|V(G)|}(n-1)!\sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}, \neg K\right)} \\
& \times(-n)^{c(S: K)} .
\end{aligned}
$$

It remains to show that $\left|\Omega\left(G(n), u_{0}, u_{1}\right)\right|=(n-1)!\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)$. Consider the clique Q induced by $\left\{u_{2}, u_{3}, \ldots, u_{n}\right\}$ in $G(n)$. Let ω_{0} be one of the ($n-1$)! acyclic orientations of Q. Let $\Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)=\left\{\omega \in \Omega\left(G(n), u_{0}, u_{1}\right) \mid \omega\right.$ is an extension of $\left.\omega_{0}\right)$. It suffices to show that $\left|\Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)\right|=\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)$.

Let $\Omega F\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)=\left\{(\omega, f) \mid \omega\right.$ is $\left(K^{\prime}, K^{\prime \prime}\right)$-proper and $f: K \rightarrow[n]$ such that $f(x) \leqslant f(y)$ if $x, y \in K$ and there is a directed path from x to y in $\omega\}$. We construct a bijection $\Phi: \Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right) \quad \Omega F\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)$. For $\omega \in \Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)$, $\Phi(\omega)=\left(\omega_{G}, f\right)$ where ω_{G} is the restriction of ω to G. For a given $v \in K, \omega$ induces a total ordering $<_{\omega}$ on the set $\left\{v, u_{2}, \ldots, u_{n}\right.$) in the sense that if $x, y \in\left\{v, u_{2}, \ldots, u_{n}\right\}$ then $x<y$ iff the edge $\{x, y\}$ is oriented from x to y in ω. Let φ be the unique strict order preserving map from $\left(\left\{v, u_{2}, \ldots, u_{n}\right),<_{\omega}\right)$ to ($\left.[n],<\right)$. Define $f(v)=\varphi(v)$. We first show that $\left(\omega_{G}, f\right) \in \Omega F\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)$. Clearly ω_{G} is $\left(K^{\prime}, K^{\prime \prime}\right)$-proper. Suppose $x, y \in K$ and there is a directed path π from x to y in ω_{G}. If $f(x)>f(y)$ then it follows that there exists a point $u_{j}, 2 \leqslant j \leqslant n$, such that the edge $\left\{u_{j}, x\right\}$ is oriented from u_{j} to x and the edge $\left\{y, u_{j}\right\}$ is oriented from y to u_{j} in ω. Then ω is not acyclic. Hence $f(x) \leqslant f(y)$ and $\left(\omega_{G}, f\right) \in \Omega F\left(G, K, K^{\prime}, K^{\prime \prime} ; n\right)$.

To show that Φ is $1: 1$, suppose $\omega, \omega^{\prime} \in \Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)$ such that $\Phi(\omega)=\Phi\left(\omega^{\prime}\right)$, where $\Phi(\omega)=\left(\omega_{G}, f\right)$ and $\Phi\left(\omega^{\prime}\right)=\left(\omega_{G}^{\prime}, f^{\prime}\right)$. Let $X=\left\{\left\{v, u_{j}\right) \mid v \in K\right.$ and $\left.u_{j} \in Q\right\}$. Since $\omega_{G}=\omega_{G}^{\prime}$, any edge $\{x, y\} \notin X$ is oriented from x to y in ω iff it is oriented from x to y in ω^{\prime}. Furthermore, since $f=f^{\prime},\{x, y\} \in X$ is oriented from x to y in ω iff it is oriented from x to y in ω^{\prime}. Thus $\omega=\omega^{\prime}$. To show that Φ is onto, pick any $\left(\omega_{G}, f\right) \in \Omega F\left(G, K, K^{\prime}, K^{\prime \prime} ;\right.$ n). We extend ω_{G} to an orientation ω such that $\omega \in \Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)$. Consider a partition of the edge set $E(G(n))=\{E(G), E(Q), X, Y\}$, where $X=\left\{\left\{v, u_{j}\right\} \mid v \in K\right.$ and $\left.u_{j} \in Q\right\}$ and Y is the set of edges incident on u_{0} or u_{1}. The orientation ω is constructed as follows. Edges $\left\{u_{0}, y\right\} \in Y$ are oriented from u_{0} to y while the edges $\left\{u_{1}, y\right\} \in Y$ are oriented from y to u_{1}. To orient the edges of X, consider the total ordering $u_{i_{1}}<\cdots<u_{i_{n-1}}$ on the set $\left\{u_{2}, u_{3}, \ldots, u_{n}\right\}$ induced by ω_{0}; the ordering is in the sense that $x<y$ iff the edge $\{x, y\}$ is oriented from x to y in ω_{0}. If $\{x, y\} \in X$ such that $x \in K$ and $y=u_{i_{j}}$, then the orientation of $\left\{x, u_{i_{j}}\right\}$ is from $u_{i_{j}}$ to x whenever $j<f(x)$, and it is oriented from x to $u_{i_{j}}$ otherwise. The edges of $E(G)$ and $E(Q)$ are oriented exactly as in ω_{G} and ω_{0} respectively. Clearly ω is an acyclic orientation. Since G has no isolated points outside $K^{\prime} \cap K^{\prime \prime}$, we conclude that u_{0} is the only source and u_{1} is the only sink of ω and $\omega \in \Omega\left(G(n), u_{0}, u_{1}, \omega_{0}\right)$. This completes the proof.

A consequence of Theorem 3.1 is the following generalization of Proposition 2.5.

Corollary 3.1. Let G be a graph with $K^{\prime}, K^{\prime \prime} \subseteq V(G)$ and if u is an isolated point of G then $u \in K^{\prime} \cap K^{\prime \prime}$. If $N\left(G, K^{\prime}, K^{\prime \prime}\right)$ is the number of acyclic orientations of G in which all sources are in K^{\prime} and the sinks are in $K^{\prime \prime}$, then

$$
N\left(G, K^{\prime}, K^{\prime \prime}\right)=(-1)^{|V|} \sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}\right)} .
$$

Let (X, \leqslant) be a partially ordered set. Let $\bar{O}(X, \leqslant ; \lambda)$ be the number of order preserving mappings $f:(X, \leqslant) \rightarrow([\lambda], \leqslant)$ and $O(X, \leqslant ; \lambda)$ be the number of strict order preserving mappings $f:(X, \leqslant) \rightarrow([\lambda], \leqslant)$. A mapping f is order preserving if $x \leqslant y$ implies $f(x) \leqslant f(y)$ and it is strict order preserving if $x<y$ implies $f(x)<f(y)$. It is well known that $\bar{O}(X, \leqslant ; \lambda)$ and $O(X, \leqslant ; \lambda)$ are polynomials in λ. The following result of Stanley [5] establishes an important connection between these two polynomials.

Proposition 3.1. $O(X, \leqslant ; \lambda)=(-1)^{|X|} \bar{O}(X, \leqslant ;-\lambda)$.

Theorem 3.2. Let G be a graph with $K, K^{\prime}, K^{\prime \prime} \subseteq V(G)$ such that $K \subseteq K^{\prime} \cap K^{\prime \prime}$ and if u is an isolated point of G then $u \in K^{\prime} \cap K^{\prime \prime}$. Then

$$
P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=(-1)^{|V|+|K|} \sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}, \neg K\right)} \lambda^{c(S: K)} .
$$

Proof. If F is the collection of $\left(K^{\prime}, K^{\prime \prime}\right)$-proper acyclic orientations of G, then it is clear that each $\omega \in F$ induces a partial ordering \leqslant_{ω} on K. Thus $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=$ $\sum_{\omega \in F} O\left(K, \leqslant_{\omega} ; \lambda\right), \bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=\sum_{\omega \in F} \bar{O}\left(K, \leqslant_{\omega} ; \lambda\right)$. The theorem follows from Theorem 3.1 and Proposition 3.1.

If isolated points are allowed outside of $K^{\prime} \cap K^{\prime \prime}$ then Theorems 3.1 and 3.2 yield the following.

Corollary 3.2. Suppose G is a graph and $K, K^{\prime}, K^{\prime \prime} \subseteq V(G)$ such that $K \subseteq K^{\prime} \cap K^{\prime \prime}$. Let I be the set of isolated points of G that are not in $K^{\prime} \cap K^{\prime \prime}$. Then

$$
\begin{aligned}
P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)= & (-1)^{|V|+|K|-|I|} \\
& \times \sum_{S \in \sigma\left(G-I: K^{\prime}-I, K^{\prime \prime}-I\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}-I, \neg K\right)} \lambda^{c(S: K)}, \\
\bar{P}\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)= & (-1)^{|V|-|I|} \\
& \times \sum_{S \in \sigma\left(G-I: K^{\prime}-I, K^{\prime \prime}-I\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}-I, \neg K\right)}(-\hat{\lambda})^{c(S: K)} .
\end{aligned}
$$

Definition 3.1 (external activity). A spanning forest of a graph G is an acyclic spanning subgraph of G. Let G be a graph and < a strict linear order on $E(G)$. Let F be a spanning forest of G. An edge $x=\{u, v\}, x \notin F$, is said to be externally active relative to F if there is a path π between u and v in F such that $x<y$ for all edges y on π. The external activity of F is the number of externally active edges of F.

The following interpretation for the coefficients of $P(G ; \lambda)$ is due to Whitney [8].
Proposition 3.2. Let $G=(V, E)$ be a graph. If $m_{j}(G)$ is the number of spanning forests of G having j connected components and external activity zero, then

$$
P(G ; \lambda)=\sum_{j=1}^{|V|}(-1)^{|V|-j} m_{j}(G) \lambda^{j} .
$$

We extend the characterization of Whitney to $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)$. For this, we need the following notion of internal activity. Tutte [7] introduced the notion of internal activity relative to a set of edges and showed that $P(G ; \lambda)$ can be expressed in terms of certain spanning trees of G. However, the internal activity introduced here is not a generalization of Tutte's notion of internal activity.

Definition 3.2 (internal activity). Let $G=(V, E)$ be a graph with $K, K^{\prime}, K^{\prime \prime} \subseteq V$ such that $K \subseteq K^{\prime} \cap K^{\prime \prime}$ and if u is an isolated point of G then $u \in K^{\prime} \cap K^{\prime \prime}$. Let $\sigma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the set of spanning subgraphs S of G such that any component of S intersects K^{\prime} iff it intersects $K^{\prime \prime}$. Let $\sigma_{K^{\prime}}(G)$ be the set of spanning subgraphs S of G such that every
component of S intersects K^{\prime}. An edge x of a spanning forest $F \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right) \cap \sigma_{K^{\prime}}(G)$ is said to be internally active relative to F if $F-x \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)-\sigma_{K^{\prime}}(G)$ and whenever y is an edge of G such that $F-x+y \in \sigma_{K^{\prime}}(G)$ then $x \leqslant y$. The internal activity of F is the number of internally active edges of F.

Theorem 3.3. Let G be a graph with $K, K^{\prime}, K^{\prime \prime} \subseteq V(G)$ such that $K \subseteq K^{\prime} \cap K^{\prime \prime}$, and if u is an isolated point of G then $u \in K^{\prime} \cap K^{\prime \prime}$. Let < be a strict linear order on E. If $m_{j}\left(G, K, K^{\prime}, K^{\prime \prime}\right)$ is the number of spanning forests $F \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right) \cap \sigma_{K^{\prime}}(G)$ with $c(F: K)=j$ and with external and internal activity zero, then

$$
P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=(-1)^{|V|+|K|} \sum_{j=1}^{|K|}(-1)^{|V|-j} m_{j}\left(G, K, K^{\prime}, K^{\prime \prime}\right) \lambda^{j} .
$$

Proof. We can assume that every connected component of G has a non-empty intersection with K^{\prime} and $K^{\prime \prime}$, for otherwise there would be no acyclic orientations for G with all sinks in K^{\prime} and all sources in $K^{\prime \prime}$, and we would have $P\left(G, K, K^{\prime}, K^{\prime \prime} ; \hat{\lambda}\right)=0$. Let $\gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the set of spanning forests F of G such that $F \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right) \cap \sigma_{K^{\prime}}(G)$. For any $\operatorname{Se\sigma }\left(G, K^{\prime}, K^{\prime \prime}\right)$, with respect to the strict linear order $<$, pick the maximum weight spanning forest, say F^{\prime}, of S. Let F be the smallest weight forest in $\gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$ such that $F^{\prime} \subseteq F$ and $c\left(F: K^{\prime}\right)=c\left(F^{\prime}: K^{\prime}\right)$. Define a mapping $\Phi: \sigma\left(G, K^{\prime}, K^{\prime \prime}\right) \rightarrow \gamma(G$: $K^{\prime}, K^{\prime \prime}$) where $\Phi(S)=F$.

By Theorem 3.2,

$$
\begin{aligned}
& (-1)^{|V|+|K|} P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=\sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime}\right)}(-1)^{|E(S)|+c\left(S: K^{\prime}, \neg K\right)} \lambda^{c(S: K)} \\
& =\sum_{F \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)}\left(\sum_{S \in \phi^{-1}(F)}(-1)^{|E(S)|}(-1)^{c\left(S: K^{\prime}, \neg K\right)} \lambda^{c(S: K)}\right) .
\end{aligned}
$$

Since $c\left(S: K^{\prime}, \neg K\right)=c\left(F: K^{\prime}, \neg K\right)$ and $c(S: K)=c(F: K)$ for all $S \in \Phi^{-1}(F)$,

$$
\begin{aligned}
(-1)^{|V|+|K|} P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)= & \sum_{F \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)}\left(\sum_{S \in \Phi^{-1}(F)}(-1)^{|E(S)|}\right) \\
& \times(-1)^{c\left(F: K^{\prime}, \neg K\right)} \lambda^{c(F: K)} .
\end{aligned}
$$

Let E_{F} and I_{F} be the set of externally active and internally active edges relative to the spanning forest $F \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$. We first show that $\Phi^{-1}(F)=\left\{S: F-I_{F} \subseteq S \subseteq F \cup E_{F}\right\}$. If an edge $x \in E(S)-E(F)$ is not externally active relative to $F=\Phi(S)$, then there exists an edge y in the unique cycle, say C, of $F+x$ such that $y<x$. As before, let F^{\prime} be the maximum weight spanning forest of S. Since F^{\prime} is obtained from S by the deletion of nonbridges of S it follows that C is in S. Then x is not externally active relative to F^{\prime}. However, $F^{\prime}-y+x$ is a spanning forest of S with a weight larger than that of F^{\prime}, a contradiction. Thus all edges in $E(S)-E(F)$ are externally active relative to F. Next, the edges of $E(F)-E(S)$ are internally active relative to F. To see this, pick an edge
$x \in E(F)-E(S)$. If x is not internally active, there exists an edge y such that $F-x+y \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$ and $y<x$. Clearly $F^{\prime} \subseteq F-x+y$ and $c\left(F^{\prime}: K^{\prime}\right)=c\left(F-x+y: K^{\prime}\right)$. However the weight of $F-x+y$ is smaller than that of F, contradicting the choice of F.
Hence $\Phi^{-1}(F) \subseteq\left\{S: F-I_{F} \subseteq S \subseteq F \cup E_{F}\right\}$. Next consider an $S=(F-Y) \cup X$ where $Y \subseteq I_{F}$ and $X \subseteq E_{F}$. We show $\Phi(S)=F$ so that $\left\{S: F-I_{F} \subseteq S \subseteq F \cup E_{F}\right\} \subseteq \Phi^{-1}(F)$. Suppose F^{\prime} is the maximum weight forest of S. Clearly, F^{\prime} is obtained by repeatedly deleting, say $x_{i_{1}}<\cdots<x_{i_{h}}$, smallest weight edges that are nonbridges. If $x_{i_{j}} \notin X$ for some j, then it follows that there is a cycle C in $S-\left\{x_{i_{1}}, \ldots, x_{i_{j-1}}\right\}$ such that edges x and $x_{i_{j}}$ are in C and $x<x_{i_{j}}$. This is impossible since F^{\prime} is the maximum weight forest. Thus $F^{\prime}=S-X=F-Y$. Let $F^{\prime \prime} \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the minimum weight spanning forest of S such that $F-Y \subseteq F^{\prime \prime}$ and $c\left(F-Y: K^{\prime}\right)=c\left(F^{\prime \prime}: K^{\prime}\right)$. Clearly $F^{\prime \prime}$ is obtained from $F-Y$ by repeatedly adding smallest weight edges, say $y_{i_{1}}, \ldots, y_{i_{m}}$, so that $F^{\prime \prime} \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$. If edge $y_{i_{j}} \notin Y$ for some j then there exists an edge y such that $F^{\prime \prime}-y_{i_{j}}+y \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right)$ and $y<y_{i_{j}}$. Clearly $F-Y \subseteq F^{\prime \prime}-y_{i_{j}}+y$ and $c\left(F-Y: K^{\prime}\right)=c\left(F^{\prime \prime}-y_{i_{j}}+y: K^{\prime}\right)$. However the weight of $F^{\prime \prime}-y_{i_{j}}+y$ is smaller than that of $F^{\prime \prime}$, contradicting the choice of $F^{\prime \prime}$. Hence $F^{\prime \prime}=F$.
Since $\Phi^{-1}(F)=\left\{S: F-I_{F} \subseteq S \subseteq F U E_{F}\right\}$, we conclude that $\sum \sum_{S \in \Phi^{-1}(F)}(-1)^{|E(S)|}=$ $(-1)^{|E(F)|}$ if $E_{F}=I_{F}=\phi$, and $\sum s \in \Phi^{-1}(F)(-1)^{|E(S)|}=0$, otherwise. If $\gamma^{\prime}\left(G: K^{\prime}, K^{\prime \prime}\right)=$ $\left\{F \in \gamma\left(G: K^{\prime}, K^{\prime \prime}\right): F\right.$ has external and internal activity equal to zero $\}$, then

$$
(-1)^{|V|+|K|} P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=\sum_{F \in \gamma^{\prime}\left(G: K^{\prime} ; K^{\prime \prime}\right)}(-1)^{|E(F)|+c(F ; \neg K)} \lambda^{c(F: K)} .
$$

Since $|E(F)|=|V(G)|-c(F: \neg K)-c(F: K)$,

$$
(-1)^{|V|+|K|} P\left(G, K, K^{\prime}, K^{\prime \prime} ; \hat{\lambda}\right)=\sum_{F \in \gamma^{\prime}\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|V(G)|-c(F: K)} \lambda^{c(F: K)} .
$$

Collecting the terms with $c(F: K)=j$, we have

$$
P\left(G, K, K^{\prime}, K^{\prime \prime} ; \lambda\right)=(-1)^{|V|+|K|} \sum_{j=1}^{|K|}(-1)^{|V|-j} m_{j}\left(G, K, K^{\prime}, K^{\prime \prime}\right) \lambda^{j} .
$$

4. Reliability polynomials and coloring polynomials

Consider the following network reliability measure. Suppose G is a probabilistic graph such that the points of G do not fail but the edges of G fail independently of each other with equal failure probabilities, say q. Let $R_{i}(G ; q)$ be the probability that the spanning subgraph induced by the surviving edges contains exactly i connected components. Suppose $P_{j}(G ; \lambda)$ denotes the number of λ-colorings of $G=(V, E)$ such
that exactly j edges are monochromatic. If $f: V \rightarrow[\lambda]$ is a λ-coloring and $x=\{u, v\}$ is an edge of G, then x is monochromatic iff $f(u)=f(v)$. Clearly $P_{0}(G ; \lambda)=P(G ; \lambda)$. We prove that

$$
\sum_{i=1}^{|V|} R_{i}(G ; q) \lambda^{i}=\sum_{j=0}^{|E|} P_{j}(G ; \lambda) q^{|E|-j}
$$

in a more general setting.
Let G be a graph such that $K^{\prime} \subseteq K^{\prime \prime} \subseteq V(G)$. Recall that if X is a set of edges of G then $G \mid X$ is the graph obtained from G by successively contracting all the edges of X. If K is a subset of the point set of G, we shall denote by $K \mid X$ the corresponding subset of the point set of $G \mid X$.

Define

$$
\begin{aligned}
P_{j}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right)= & \sum_{\{H \subseteq E(G):|H|=j\}}(-1)^{|V(G \mid H)|+\left|\left(K^{\prime} \mid H\right)\right|} \\
& \times P\left(G\left|H, K^{\prime}\right| H, K^{\prime}\left|H, K^{\prime \prime}\right| H ; \lambda\right)
\end{aligned}
$$

Note that $P_{0}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right)-(-1)^{\mid V G G)\left|+\left|K^{\prime}\right|\right.} P\left(G, K^{\prime}, K^{\prime}, K^{\prime \prime} ; \lambda\right)$ and if $K^{\prime}=V$ then $P_{j}(G, V, V ; \lambda)=P_{j}(G ; \lambda)$.

As before, let $\sigma\left(G: K^{\prime}, K^{\prime \prime}\right)$ be the set of spanning subgraphs S of G such that each component of S intersects K^{\prime} iff it intersects $K^{\prime \prime}$. Also, let $c\left(S: K^{\prime}\right)$ be the number of connected components of S that intersect K^{\prime}.

Suppose that $G=(V, E)$ is a probabilistic graph such that the points of G do not fail but the edges fail independently of each other. Assume that all the edges of G have the same failure probability q, where $0 \leqslant q \leqslant 1$. Let $R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)$ be the probability that the spanning subgraph S containing the surviving edges of G is in $\sigma\left(G: K^{\prime}, K^{\prime \prime}\right)$ and $c\left(S: K^{\prime}\right)=i$. For the case of $i=1$, the reliability measure $R_{1}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)$ reduces to the well known K-terminal reliability of G [1]. Furthermore, if $K^{\prime}=V$ then $R_{i}(G, V, V ; q)=R_{i}(G ; q)$.

If $S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)$ is the number of spanning subgraphs S of G such that $S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right), c\left(S: K^{\prime}\right)=i$, and $|E(S)|=j$, then $R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)$ may be written as

$$
R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)=\sum_{j=0}^{|E(G)|} S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(1-q)^{j} q^{|E(G)|-j} .
$$

We now explore the interplay between the polynomials $R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)$ and $P_{j}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right)$.

Theorem 4.1. Suppose $G=(V, E)$ is a graph and $K^{\prime} \subseteq K^{\prime \prime} \subseteq V$, then

$$
\sum_{i=1}^{\left|K^{\prime}\right|} R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right) \lambda^{i}=\sum_{j=0}^{|E|} P_{j}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right) q^{|E|-j} .
$$

Proof. Since $R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right)=\sum_{j=0}^{|E|} S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(1-q)^{j} q^{|E|-j}$, we have

$$
\sum_{i=1}^{\left|K^{\prime}\right|} R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right) \lambda^{i}=\sum_{i=1}^{\left|K^{\prime}\right|} \sum_{j=0}^{|E|} S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(1-q)^{j} q^{|E|-j} \lambda^{i}
$$

By the binomial theorem and the fact that $\binom{i}{k}=0$ whenever $k>i$,

$$
\sum_{i=1}^{\left|K^{\prime}\right|} R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right) \lambda^{i}=\sum_{i=1}^{\left|K^{\prime}\right|} \sum_{j=0}^{|E|} \sum_{k=0}^{|E|} S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(-1)^{k}\binom{j}{k} q^{|E|-j+k} \lambda^{i}
$$

Letting $j=k+m$ and using the fact that $S_{j}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)=0$ whenever $j>|E|$, we get

$$
\begin{aligned}
& \sum_{i=1}^{\left|K^{\prime}\right|} R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right) \lambda^{i}= \\
& \sum_{i=1}^{\left|K^{\prime}\right|} \sum_{k=0}^{|E|} \sum_{m-0}^{|E|} S_{k+m}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(-1)^{k}\binom{k+m}{m} q^{|E|-m} \lambda^{i}
\end{aligned}
$$

Interchanging the order of summation we get

$$
\sum_{i=1}^{\left|K^{\prime}\right|} R_{i}\left(G, K^{\prime}, K^{\prime \prime} ; q\right) \lambda^{i}=\sum_{m=0}^{|E|} q^{|E|-m} P_{m}
$$

where

$$
P_{m}=\sum_{i=1}^{\left|K^{\prime}\right|} \sum_{k=0}^{|F|} S_{k+m}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(-1)^{k}\binom{k+m}{m} \lambda^{i}
$$

We need only to show that $P_{m}=P_{m}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right)$. Clearly

$$
\begin{aligned}
P_{m} & =\sum_{i=1}^{\left|K^{\prime}\right|} \lambda^{i} \sum_{k=0}^{|E|} S_{k+m}^{(i)}\left(G, K^{\prime}, K^{\prime \prime}\right)(-1)^{k+m}(-1)^{-m}\binom{k+m}{m} \\
& =\sum_{i=1}^{\left|K^{\prime}\right|} \lambda^{i} \sum_{\left\{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}| | c\left(S: K^{\prime}\right)=i\right\}\right.}(-1)^{|E(S)|-m}\binom{|E(S)|}{m} \\
& =\sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)}(-1)^{|E(S)|-m}\binom{|E(S)|}{m} \lambda^{a\left(S: K^{\prime}\right)} .
\end{aligned}
$$

For any $H \subseteq E$, there exists a bijection

$$
\Phi:\left\{S \in \sigma\left(G, K^{\prime}, K^{\prime \prime}\right): H \subseteq E(S)\right\} \rightarrow \sigma\left(G\left|H, K^{\prime}\right| H, K^{\prime \prime} \mid H\right)
$$

such that $\Phi(S)=S \mid H$. Moreover, $c\left(S: K^{\prime}\right)=c\left(\Phi(s): K^{\prime} \mid H\right)$. Using this bijection in conjunction with Theorem 3.2,

$$
\begin{aligned}
& P\left(G\left|H, K^{\prime}\right| H, K^{\prime}\left|H, K^{\prime \prime}\right| H ; \lambda\right) \\
& =(-1)^{|V(G \mid H)|+\left|\left(K^{\prime} \mid H\right)\right|} \sum_{\left\{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right): H \subseteq E(S)\right\}}(-1)^{|E(S)|-|H|} \lambda^{c\left(S: K^{\prime}\right)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& P_{m}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right) \\
& =\sum_{\{H \subseteq E:|H|=m\}}(-1)^{|V(G \mid H)|+\left|\left(K^{\prime} \mid H\right)\right|} P\left(G\left|H, K^{\prime}\right| H, K^{\prime}\left|H, K^{\prime \prime}\right| H ; \lambda\right) \\
& =\sum_{\{H \subseteq E:|H|=m\}}\left\{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}: H \subseteq E(S)\right\}\right. \\
& (-1)^{|E(S)|-m} \lambda^{c\left(S: K^{\prime}\right)} .
\end{aligned}
$$

By interchanging sums,

$$
\begin{aligned}
P_{m}\left(G, K^{\prime}, K^{\prime \prime} ; \lambda\right) & =\sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime \prime}\right)\{H \subseteq E(S):|H|=m\}}(-1)^{|E(S)|-m} \lambda^{\lambda\left(S: K^{\prime}\right)} . \\
& =\sum_{S \in \sigma\left(G: K^{\prime}, K^{\prime}\right)}(-1)^{|E(S)|-m}\binom{|E(S)|}{m} \lambda^{c\left(S: K^{\prime}\right)}=P_{m} .
\end{aligned}
$$

References

[1] C.J. Colbourn, The Combinatorics of Network Reliability (Oxford Univ. Press, New York, 1987).
[2] C. Greene, Acyclic orientations, in: Aigner, ed., Higher Combinatorics, NATO Advanced Study Institute Series (Reidel, Dordrecht, 1977).
[3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[4] A. Satyanarayana and R. Tindell, Chromatic polynomials and network reliability, Discrete Math. 67 (1987) 57-79.
[5] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119 (1972).
[6] R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973) 171-178.
[7] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80-91.
[8] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579.

[^0]: Correspondence to: A. Satyanarayana, Department of Electrical Engineering and Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA

 * Work of the second author supported in part by ARO under Grant DAAL03-90-G-0078.

