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Abstract 

Rodriguez, J. and A. Satyanarayana, A generalized chromatic polynomial, acyclic orientations with 

prescribed sources and sinks, and network reliability, Discrete Mathematics 112 (1993) 185-197. 

Suppose G =(V, E) is a graph and K, K’, K” are subsets of V such that K sK’nK”. We introduce 

and study a polynomial P(G, K, K’, K”; I.) in i. This polynomial coincides with the classical 

chromatic polynomial P(G; 1) when K = V. The results of this paper generalize Whitney’s character- 

izations of the coefficients of P(G; i) and the work of Stanley on acyclic orientations. Furthermore, 

we establish a connection between a family of polynomials associated with network reliability and 

a family of polynomials associated with P(G,K, K’, K”; I). 

1. Introduction 

An orientation of a graph G is an assignment of a direction to each edge of the 

graph. An orientation is acyclic if the resulting digraph has no directed cycles. If o is 

a directed graph and u is a point of o then we say that u is a source of o if its indegree 

is zero but its outdegree is positive. Likewise, u is termed a sink if its indegree is 

positive and outdegree is zero. For a given pair of subsets K’, K”s V(G), an acyclic 

orientation CO of G is said to be (K’, K”)-proper if the sources of o are in K’ while the 

sinks are in K”. Suppose K E K’nK” and 1* is a positive integer. Let P(G, K, K’, K”; A) 
be the number of pairs (0, f), where w is (K’, K”)-proper and f: K + { 1,2, . . . , i} is 
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a mapping such that f(x) <f(y) if x, yeK and there is a directed path from x to y in o. 

Likewise, let P(G, K, K’, K”; 1.) be the number of pairs (~,f), where o is (K’, K”)- 

proper andf:K+{1,2,..., /1} such that f(x) <f(y) if x, ~EK and there is a directed 

path from x to y in o. 

Let a(G: K’, K”) be the set of spanning subgraphs S of G such that any component 

of S intersects K’ iff it intersects K”. Suppose Hi E V(G), S is a spanning subgraph 

of G then define c(S: H1,...,H,,, TH~+~,...,T H,)=j(C: C is a component of 

S,CnHi#@ for all 1 <i<h and CnHi=O for all k+l di<r}l. Define P(x) to be the 

polynomial 

(_ l)lQc)l+l~l c (_ I)IEM+c(S:K’,lK) XC(S:K) 

S?%T(G: K’, K”) 

over the complex number field. In this paper we show that P(G, K, K’, K”; A)=P(A) 
and P(G, K, K’, K”; %)=( - 1) lK1 P( - 3,) for 2 integer and positive. For the case of 

K = V(G), the polynomial P(G, K, K’, K”; A) coincides with the classical chromatic 

polynomial P(G; 1.). 

The topological characterizations of the coefficients of P(G, K, K’, K”; A) generalize 

the results of Whitney [8] on P(G; 2). The extended chromatic polynomial studied 

by Satyanarayana and Tindeil [4] is a special case of P(G, K, K’, K”;/1) when 

K = K’= K”. Furthermore, the results of this paper generalize the work of Stanley [6] 

concerning acyclic orientations. Finally, we establish a connection between a family 

of polynomials associated with network reliability and a family of polynomials 

associated with P(G, K, K’, K”; jb). 

2. Preliminaries 

Unless defined otherwise, graph-theoretic terminology used here follows Harary 

[3]. One exception is that we allow multiple edges and loops so that by a graph we 

mean a pseudo graph. The edge set and the point set of a graph G are denoted by E(G) 

and I’(G) respectively. If x = {u, v} is an edge of G then G Ix is the graph obtained from 

G by deleting x and identifying the points u and u to a single point. We say that G 1 x is 

obtained from G by contracting the edge x. Note that all other edges with endpoints 

u, v become loops of Glx. Likewise, if X is a set of edges of G then GI X is the graph 

obtained from G by successively contracting all the edges of X. Each edge in E(G)-X 
can be regarded as an edge of G I X. This identification, which we henceforth assume, 

constitutes a bijection between E(G)-X and E(GJX). Furthermore, the number of 

connected components of a graph remains unchanged upon edge contractions. By 

T(G, X), we mean the collection of spanning subgraphs S of G such that E(S)sX. 
When X= E(G) we simply write T(G) instead T(G, X). 

If 2 is a positive integer, we will denote by [A] the set { 1, .., A}. A i-coloring of 

a graph G = (V, E) is a mapping f: V+[%]. The integers 1,2, . . . ,A are called colors. 
A I-coloring is proper if no two adjacent points of G are assigned the same color. The 



A generalized chromatic polynomial 187 

number of distinct proper A-colorings of a given graph G can be expressed as 

a polynomial in 2, well known as the chromatic polynomial of G and denoted by 

P(G; 2). The following topological interpretation for the coefficients of P(G; 2) is due 

to Whitney [S]. 

Proposition 2.1. P(G; A) = CSErcGj (- l)‘E(S)I A’(‘), where c(S) is the number of connected 
components of S. 

We need the following generalization of Proposition 2.1. 

Proposition 2.2. If G is a graph and HsE(G), then 

P(G,iw)= 1 (-1) ‘Q’) P((G-(H-E(S)))IE(S); 2). 
SET(G,H) 

Proof. By Proposition 2.1, 

P(G, ;1)= 1 (- l)IE@)’ ],c@) 
SET(G) 

= c (- 1)IW’)l 1 (_ p”)l ;IWuS”) 2 
S’eT(G, H) S”eT(G, E(G)pH) 

where c(X) is the number of connected components of X. Consider the subgraphs, say 

GreT(G) such that E(G1)=E(S’uS”), and G,cr((G-(H-E(S’)))IE(S’)) such that 

E(G,)=E(S”). Clearly c(G,)=c(G,). Thus 

c 
(_ p”)l ~4S’US”) = 

c 
(_ p”)l p”). 

S”er(G,E(G)-H) S”C((G-(H-E(S’)))lE(S’)) 

Now, by Proposition 2.1, 

c (- l)IE(s”)l ~(S")=P((G-(H-E(S')))I~(S'); n), 
S”Er((G-(H-E(S’)))lE(S’)) 

and the proposition follows. 0 

Definition 2.1 (acyclic orientations, sources. sinks, extensions and restrictions). An 

orientation of a graph G is an assignment of a direction to each edge of the graph. An 

orientation is acyclic if the resulting digraph has no directed cycles. If o is a directed 

graph and u is a point of w then we say that u is a source of w if its indegree is zero but 

its outdegree is positive. Likewise, u is termed a sink if its indegree is positive and 

outdegree is zero. Suppose w and w’ are orientations of a graph G and its subgraph G’ 

respectively. If the digraph c~’ is a subgraph of w then o is an extension of w’, and o’ is 

a restriction of 0. 

The following proposition is due to Greene [Z]. 
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Proposition 2.3. Let Q(G: u, v) = { co w is an acyclic orientation of G with u being the 1 

only source and v the only sink of co}. Zf { u, v } is an edge of a graph G containing i isolated 
points, then 

(l‘?(G: u,v)(=(-1) ‘v(G)‘+i (P(G; A)/(%- l))lAE1. 

Let N(G) be the number of acyclic orientations of a graph G. The following 

proposition is due to Stanley [6]. 

Proposition 2.4. For any graph G, N(G)=( - l)lV(G)l P(G; - 1). 

An immediate consequence of Propositions 2.1 and 2.4 is the following. 

Proposition 2.5. For any graph G, N(G)=( - l)lV(G)l CsErcGj (- l)~s(s)~+c(s! 

The following proposition is well known. 

Proposition 2.6. If u is a point of G such that the neighborhood of u induces a clique in 
G, then P(G; %)=(&deg(u)) P(G-u; 3.). 

3. The polynomial P(G, K, K', K"; A) 

Let G be a graph and K’, K”c V(G). An acyclic orientation o of G is said to be 

(K’, K”)-proper if the sources of u are in K’ while the sinks are in K”. Suppose 

Kc K’nK” and 2 is a positive integer. Let P(G, K, K’, K”; A) be the number of pairs 

(o,f ), where w is (K’, K”)-proper and f: K + [A] such that f(x) <f ( y) if x, YE K and 

there is a directed path from x to y in o. Likewise, let P(G, K, K’, K”; A) be the number 

of pairs (0, f), where o is (K’, K “)-proper andf: K + [A] such thatf(x) d f ( y) if x, YE K 
and there is a directed path from x to y in o. Let a(G: K’, K”) be the set of spanning 

subgraphs S of G such that any component of S intersects K’ iff it intersects K”. 
Suppose His V(G), S is a spanning subgraph of G then define C(S: HI, . . . . H,,, 

lH,+,,...,lH,)={C:CisacomponentofS,CnHi#~forall1~idhandCnHi=0 

for all h+ldidr}. Let c(S: HI ,..., Hh, -I&+~ ,.,., lH,)=IC(S: HI ,..., II,,, 

lNIClr . . ..lH.)l. 

Theorem 3.1. Let G be a graph with K, K’, K”s V(G) such that KC K’nK” and ifu is 
an isolated point of G then UEK’~K”. Then 

P(G, K, K’, K”; A)=(- l)‘V’ ‘E(s)‘+r(s:K’,lK) (_R)CWK)~ 
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Proof. For a given integer n> 1, we construct the graph G(n) as follows: V(G(n))= 

VG)u(uo,ar, . . . . u,} where the Ui are new vertices not in V(G) and E(G(n))=E(G)u 

{{Ui,Uj}: OQi<j<n} U {{Uo,X}: XEK’} U {{ U,,X}: XEK”} U {{IA( 2Qidn,xsK}. 
Graph G(n) is illustrated in Fig. 1. 

By Proposition 2.2, 

P(G(n); /I)= 1 (- 1)’ ( )’ Es NW-(E(G)-W)))I-W); 4 
ser(W),E(‘?) 

= sc;,) (- 1F) P((G(n)-(E(G)-E(S)))IE(S); 4. 

Consider a term in the summation corresponding to a subgraph SET(G). Clearly, the 

set of connected components of S can be partitioned into {C(S :l (K’uK”)), 

C(S:K’,iK”), C(S:K”,lK’), C(S:K’,K”,lK), C(S:K)}. Let G’(n) be the graph 

obtained from (G(n) - (E(G) - E(S))) I E(S) by replacing multiple edges by single ones. 

Every component in C(S : i(K’uK”)) becomes an isolated point in G’(n). Likewise, 

the components in C(S: K’,lK”) and in C(S: K”,iK’) become degree-l points 

adjacent to u,-, and u1 respectively. The components in C(S : K’, K”, 1 K) correspond 

to degree-2 points adjacent to both u. and u1 . Finally, those in C(S : K) become points 

of degree n + 1 adjacent to uo, . . . . u,. Since the graph induced by {uo, . . . . u,} in 

G’(n) is the complete graph K,+ 1, by repeated application of Proposition 2.6, 

we get 

~(/2-n-l)‘(~:~)P(K,+~; A). 

K . 

Fig. 1. The graph G(n) of Theorem 3.1. 
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As G’(n) is obtained from (G(n)-(E(G)-E(S)))IE(S) by replacing multiple edges by 

single ones, we have P((G(n)-{E(G)-E(S)})IE(S); A)=P(G’(n); A). Thus 

P(G(n); A)= c (_ l)i&S)i j_C(S:~(K”-JK”)) (~_l)C(S:K’,lK”)+C(S:K”,lK’) 

SET(G) 

By Proposition 2.3, 

x P((G(n)-(E(G)-E(S)))IE(S); W- ~)IA=I. 

However, a simple computation shows that 

P((G(n)-(E(G)-E(S)))IE(S); 4/(~-1h=,=~ 

if c(S:K’,lK”)>O or c(S:K”,lK’)>O, and 

P((G(n)-(E(G)-E(S)))IE(S); A)/@- l)ln= 1 =(- l)n-‘+c(S:K’,K”,7K) 

x (_#s:K) (+ l)! 

otherwise. 

Hence 

I52(G(n),u,,u,)/=(- l)lV(‘)’ (n-l)! c (_ l)Is(s)l+c(s:K’.~K) 
.%a(G:K’,K”) 

It remains to show that In(G( ), n uo,ul)l=(n-l)! P(G,K,K’,K”;n). Consider the 

clique Q induced by {uz, u3, . . . . u,} in G(n). Let o0 be one of the (n- l)! acyclic 

orientations of Q. Let S~(G(~),U~,~~,CO~)={OES~(G(I~),U~,U~)I o is an extension of 

oe). It suffices to show that IS2(G(n),u,,,u1,00)l =P(G, K,K’,K”;n). 
Let QF(G, K, K’, K”; n) = {(co, f)l w is (K’,K”)-proper and f: K+[n] such that 

f(x)<f(y) if x, ~EK and there is a directed path from x to y in 01. We construct 

a bijection @: S2(G(n), uO, ul, 00)+S2F(G, K, K’, K”; n). For o~S2(G(n), uO, ur, wO), 

Q(w) =(wG, f) where oG is the restriction of o to G. For a given VEK, w induces a total 

ordering <,ontheset{v,~~,...,u,)inthesensethatifx,y~{v,~~,...,u,}thenx<yiff 

the edge {x, y} is oriented from x to y in w. Let rp be the unique strict order preserving 

map from ({v,uz, . . . . u,,), cw) to ([n], <). Define f(v)=q(v). We first show that 

(w~,~)ES~F(G, K, K’, K”; n). Clearly oG is (K’, K”)-proper. Suppose x, ytzK and there 

is a directed path 71 from x to y in wG. Iff(x)>f(y) then it follows that there exists 

a point uj, 2 <j< IZ,‘ such that the edge {uj, x} is oriented from Uj to x and the edge 

{ y, #j> is oriented from y to uj in o. Then w is not acyclic. Hence f(x) < f(y) and 

(~~,f)&F(c, K, K’, K”; n). 
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To show that @ is 1: 1, suppose o,o’~SZ(G(n),u,,u,,w~) such that Q(o)= @(or), 

where @(w)=(o~,~) and @(o’)=(o&,f’). Let X={{u,uj)(uEK and UjsQ}. Since 

0&=0&, any edge {x, y} $X is oriented from x to y in o iff it is oriented from x to y in 

0’. Furthermore, sincef=f’, {x, y}eX is oriented from x toy in o iff it is oriented from 

x to y in 0’. Thus o=o’. To show that @ is onto, pick any (o,,f)~fiF(G, K, K’, K”; 

n). We extend OG to an orientation o such that w~a(G(n), uo, ul,oO). Consider 

a partition of the edge set E(G(n))= {E(G), E(Q), X, Y}, where X= {{V,Uj> 1 VEK and 

~jEQ> and Y is the set of edges incident on u. or ul. The orientation o is constructed 

as follows. Edges {uO,y}~ Y are oriented from a0 to y while the edges {~i,y)~ Y are 

oriented from y to ul. To orient the edges of X, consider the total ordering 

Ui, < “’ <Ui,_, on the set (u2,u3, . . . . u,> induced by 0,; the ordering is in the sense 

that x < y iff the edge {x, y} is oriented from x to y in oo. If {x, Y}EX such that xgK 
and y = uij, then the orientation of {x, Uij} is from Ui, to x whenever j <f(x), and it is 

oriented from x to Ui, otherwise. The edges of E(G) and E(Q) are oriented exactly as in 

oG and w. respectively. Clearly o is an acyclic orientation. Since G has no isolated 

points outside K’nK”, we conclude that a0 is the only source and ai is the only sink of 

o and w~~n(G(n), uo, ul,oo). This completes the proof. 0 

A consequence of Theorem 3.1 is the following generalization of Proposition 2.5. 

Corollary 3.1. Let G be a graph with K’, K”s V(G) and ifu is an isolated point of G then 
ueK’nK”. lf N(G, K’, K”) is the number of acyclic orientations of G in which all sources 
are in K’ and the sinks are in K”, then 

N(G,K’,K”)=(-l)IVI c (_ 1)IW)l+c(S:K’). 
sEo(G: K’,K”) 

Let (X, <) be a partially ordered set. Let 0(X, <;A) be the number of order 

preserving mappings f: (X, <)-( [A], <) and 0(X, 6; 1) be the number of strict order 

preserving mappings f: (X, <)-([%I, <). A mapping f is order preserving if x 6y 

implies f (x) =S f (y) and it is strict order preserving if x < y implies f (x) < f (y). It is well 

known that 0(X, <;A) and 0(X, <;A) are polynomials in i. The following result of 

Stanley [S] establishes an important connection between these two polynomials. 

Proposition 3.1. 0(X, 6; A) = (- l)lxl 0(X, 6; - 2). 

Theorem 3.2. Let G be a graph with K, K’,K”z V(G) such that KcK’nK” and ifu is 
an isolated point of G then u~K’n K”. Then 

P(G,K,K’,K”; i)=(-l)‘VI+IK’ 1 (_ p(S)l+cw~‘,lK) ~c(S:K). 

SEU(G: K’,K”) 
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Proof. If F is the collection of (K’, K”)-proper acyclic orientations of G, then it 

is clear that each wcF induces a partial ordering 6, on K. Thus P(G, K, K’, K”; A)= 

xwsFO(K, <,;A), &G,K,K’,K”; 4=xweF O(K, G~;A). The theorem follows from 

Theorem 3.1 and Proposition 3.1. 0 

If isolated points are allowed outside of K’nK” then Theorems 3.1 and 3.2 yield the 

following. 

Corollary 3.2. Suppose G is a graph and K, K’, K” s V(G) such that KsK’nK”. Let 
I be the set of isolated points of G that are not in K’nK”. Then 

P(G,K,K’,K“; +(-l)~V~+~KI-~‘~ 

X 
c (-1) 

IE(s)l+c(s:K'-I,lK)~c(S:K) 
2 

SELT(G-I: K'-I,K"--I) 

X 
c 

(_1)1E(S)l+c(S:K’-r,lK) (_i)c(S:K) 

SEa(G-I: K’-I,K”-I) 

Definition 3.1 (external activity). A spanning forest of a graph G is an acyclic 

spanning subgraph of G. Let G be a graph and < a strict linear order on E(G). Let 

F be a spanning forest of G. An edge x = (u, u}, x#F, is said to be externally active 
relative to F if there is a path 71 between u and u in F such that X-C y for all edges y on n. 

The external activity of F is the number of externally active edges of F. 

The following interpretation for the coefficients of P(G;A) is due to Whitney [S]. 

Proposition 3.2. Let G = (V, E) be a graph. If mj(G) is the number of spanning forests of 
G having j connected components and external activity zero, then 

P(G; A)= 1 (- 1)1”-j mj(G) 1’. 
j=l 

We extend the characterization of Whitney to P(G, K, K’, K”; A). For this, we need 

the following notion of internal activity. Tutte [7] introduced the notion of internal 

activity relative to a set of edges and showed that P(G; i) can be expressed in terms of 

certain spanning trees of G. However, the internal activity introduced here is not 

a generalization of Tutte’s notion of internal activity. 

Definition 3.2 (internal activity). Let G =( V, E) be a graph with K, K’, K”c V such 

that KsK’nK” and if u is an isolated point of G then ugK’nK”. Let a(G: K’, K”) be 

the set of spanning subgraphs S of G such that any component of S intersects K’ iff it 

intersects K”. Let aK,(G) be the set of spanning subgraphs S of G such that every 
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component of S intersects K’. An edge x of a spanning forest FE~(G: K’, K”)no,,(G) 
is said to be internally active relative to F if F - x~cr(G: K’, K”) - cKK’(G) and whenever 

y is an edge of G such that F-x +y~o,,(G) then x by. The internal activity of F is the 

number of internally active edges of F. 

Theorem 3.3. Let G be a graph with K, K’, K”s V(G) such that KC K’nK”, and ifu is 
an isolated point of G then ueK’nK”. Let < be a strict linear order on E. If 
mj(G, K,K’,K”) is the number of spanning forests FE~(G: K’,K”)AcJ~,.(G) with 
c(F: K) =j and with external and internal activity zero, then 

P(G, K, K’, K”; A)=( - l)‘v’+‘e’ C (- l)‘V’-j mj(G, K, K’, K”) A’. 
j=l 

Proof. We can assume that every connected component of G has a non-empty 

intersection with K’ and K”, for otherwise there would be no acyclic orientations for 

G with all sinks in K’ and all sources in K”, and we would have P(G, K, K’, K”; 2)=0. 
Let y(G: K’, K”) be the set of spanning forests F of G such that Fea(G: K’, K”)na,,(G). 
For any SE~(G, K’, K”), with respect to the strict linear order <, pick the maximum 

weight spanning forest, say F’, of S. Let F be the smallest weight forest in y(G: K’, K”) 
such that F’cF and c(F:K’)=c(F’:K’). Define a mapping @:o(G, K’,K”)-+y(G: 
K’, K”) where Q(S) = F. 

By Theorem 3.2, 

(- l)“‘+“’ P(G, K, K’, K”; A)= c (_ l)I~m+c(s:K',lK) ]c(s:K) 

Sm(G: K’,K”) 

= F,j(GTK, K”) (s,;,(,) (- l)‘QS) (- l)C(S:K’Jk) ic(“:“‘). 

Since c(S: K’,iK)=c(F: K’,iK) and c(S: K)=c(F:K) for all SE@-‘(F), 

(- l)‘V’+‘K’ P(G, K, K’, K”; I.)= 
&,,&( ,,;I,,, (- l)‘i(s)) 

~(_l)c(F:K’,lK)~c(F:K) 

Let EF and 1, be the set of externally active and internally active edges relative to the 

spanning forest Fq(G: K’,K”). We first show that @-‘(F)=(S: F-Z,~SGFUE,}. 
If an edge xeE(S)- E(F) is not externally active relative to F = G(S), then there exists 

an edge y in the unique cycle, say C, of F + x such that y < x. As before, let F’ be the 

maximum weight spanning forest of S. Since F’ is obtained from S by the deletion of 

nonbridges of S it follows that C is in S. Then x is not externally active relative to F’. 
However, F’-y+x is a spanning forest of S with a weight larger than that of F’, 
a contradiction. Thus all edges in E(S)- E(F) are externally active relative to F. Next, 

the edges of E(F)-E(S) are internally active relative to F. To see this, pick an edge 
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XEE(F)--E(S). If x is not internally active, there exists an edge y such that 

F-x+y~y(G: K’,K”) and y<x. Clearly F’EF-x+y and c(F’:K’)=c(F-x+y:K’). 

However the weight of F-x+ y is smaller than that of F, contradicting the 

choice of F. 
Hence @-‘(F)c{S: F-Z,cSzFuE,}. Next consider an S=(F- Y)uX where 

Ysl, and XsE,. We show @(S)=F so that (S: F-I,GSLFUE,}L@-‘(F). 
Suppose F’ is the maximum weight forest of S. Clearly, F’ is obtained by repeatedly 

deleting, say xi, < ... <xih3 smallest weight edges that are nonbridges. If xi,~X for 

some j, then it follows that there is a cycle C in S - (xi,, . . . , Xij_ ,} such that edges x and 

xi, are in C and x <xi,. This is impossible since F’ is the maximum weight forest. Thus 

F’ = S-X = F - Y. Let F”ey(G: K’, K”) be the minimum weight spanning forest of 

S such that F - Ys F” and c(F - Y: K’)= c(F”: K’). Clearly F” is obtained from F - Y 
by repeatedly adding smallest weight edges, say yil, . . . . y,_, so that F”EY(G: K’, K”). If 

edge yij~ Y for some j then there exists an edge y such that F”- yi, +y~y(G: K’, K”) 
andy<yi,.Clearly F-YzF”-yi,+yandc(F- Y:K’)=C(F”--yi,+y:K’).However 
the weight of F”-yij+y is smaller than that of F”, contradicting the choice of F”. 
Hence F” = F. 

Since @-‘(F)=(S:F-I,ES_~FUE~}, we conclude that &Q-1(~) (-l)‘EtS)‘= 

(-l)‘E(F)’ if EF=ZF=@, and &@-1(F) (-1) ‘E(s)’ = 0, otherwise. If y’(G: K’, K”) = 
{FE~(G: K’, K”): F has external and internal activity equal to zero}, then 

(-l)‘v’+‘K’P(G,K,K’,K”; A)= , FE,,cGFK K ) (_ 1)IW)l+cF:W jwc(F:K). 

Since 1E(F)I=IV(G))-c(F:lK)-c(F:K), 

(- l)‘V’+‘x’ P(G, K, K’, K”; A)= c (_ #V(G)‘-dF:W ~c(F:fQ~ 

Fey’(G: K’,K”) 

Collecting the terms with c(F: K)=j, we have 

IKI 
P(G,K,K’,K”; %)=(-l)‘V’+‘K’ 1 (- 1)"'-j mj(G,K,K',K") 2’. 0 

j=l 

4. Reliability polynomials and coloring polynomials 

Consider the following network reliability measure. Suppose G is a probabilistic 

graph such that the points of G do not fail but the edges of G fail independently of each 

other with equal failure probabilities, say q. Let Ri(G; q) be the probability that the 

spanning subgraph induced by the surviving edges contains exactly i connected 

components. Suppose Pj(G; A) denotes the number of /2-colorings of G =( V, E) such 
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that exactlyj edges are monochromatic. Iff: V-[,?I is a J-coloring and x = {u, V} is an 

edge of G, then x is monochromatic iff f(u) =f(v). Clearly PO (G;%) = P(G; A). We prove 

that 

IVI IEI 
c Ri(G; q) Ai= c P,(G; A) qlEl-j 
i=l j=O 

in a more general setting. 

Let G be a graph such that K’E K”c V(G). Recall that if X is a set of edges of 

G then GIX is the graph obtained from G by successively contracting all the edges of 

X. If K is a subset of the point set of G, we shall denote by KlX the corresponding 

subset of the point set of GIX. 

Define 

Pj(G, K’, K”; n)= C (_~)l~(~l~)I+I(~‘IH)I 

{HrE(G):IH~=j) 

Note that P,,(G, K’, K”; A)=( - 1) P~‘)l+l~‘~ P(G,K’,K’,K”; A) and if K’= V then 

Pj(G, V, V; ~)=Pj(G; n). 

As before, let cr(G: K’, K”) be the set of spanning subgraphs S of G such that each 

component of S intersects K’ iff it intersects K”. Also, let c(S: K’) be the number of 

connected components of S that intersect K’. 
Suppose that G = (V, E) is a probabilistic graph such that the points of G do not fail 

but the edges fail independently of each other. Assume that all the edges of G have the 

same failure probability q, where 06 q < 1. Let Ri(G, K’, K”; q) be the probability that 

the spanning subgraph S containing the surviving edges of G is in a(G: K’, K”) and 

c(S: K’)=i. For the case of i= 1, the reliability measure R,(G, K’, K”; q) reduces 

to the well known K-terminal reliability of G [l]. Furthermore, if K’= V then 

Ri(G, v, v; q)=Ri(G; 4). 
If Sy’(G,K’,K”) is the number of spanning subgraphs S of G such that 

SE~(G: K’,K”), c(S: K’)=i, and IE(S)l =j, then R<(G, K’,K”; q) may be written as 

IE(G)l 
R,(G,K’,K”; q)= c Sj.“(G,K’,K”)(l -q)’ qlE@-j. 

j=O 

We now explore the interplay between the polynomials 

Pj(G, K’, K”; 2). 
Ri(G, K’, K”; q) and 

Theorem 4.1. Suppose G = (V, E) is a graph and K’c K” c V, then 

IK’l IEI 
ids Ri(G, K’, K”; q) ~“‘= C Pj(G, K’, K”; n) q”‘~‘. 

j=O 
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Proof. Since Ri(G, K’, K”; q)=Ceo Sy’(G, K’, K”)(l -q)jqlE1-j, we have 

IK’I IK’l IEI 
i;I R,(G, K’, K”; q) /2’= 1 c SS”(G, K’, K”)(l -q)j qlE’-j 2’. 

i=l j=O 

By the binomial theorem and the fact that (:)=O whenever k> i, 

IK’I IK’I If? IEI 

C Ri(G, K’, K”; 4) E.‘= C C C SS”(G, K’, K”)(- l)k jk qlE’-“’ I’. 
i=l i=l j=CJ k=l) 0 

Letting j= k +m and using the fact that Sy’(G, K’, K”)=O whenever j > I_EI, we get 

IK’I 

c Ri(G, K’, K”; 4) 1’= 
i=l 

IK’I IEI IEI 

~~~~S::.(G,K~,K’)(-I)*(k+mm),lLl-m~i. 

Interchanging the order of summation we get 

IK’I IEI 
izI R<(G, K’y K”; 4) 3.‘~ C qlElprn Pm, 

m=O 

where 

IK’I IEI 

Pm=c c S;),m(G,K’,K”)(-l)k 
i=l k=O 

We need only to show that P,,, = P,(G, K’, K”; A). Clearly 

IK’I IEI 

Pm=c 2’ c S~~,,,(G,K’,K”)(-l)k+m(-l)-m 
i=l k=O 

IK’I 

c 
i=l {SEU(G: K’,K”)Ic(S:K’)=i} 

c 
(_ p-~ 

Sw(G: K’,K”) 

For any HE E, there exists a bijection 

@:{Sm(G,K’,K”): H_cE(S))-to(GJH,K’IH,K”IH) 

such that @p(S) = SI H. Moreover, c(S : K’) = c(@(s) : K’J H). Using this bijection in 

conjunction with Theorem 3.2, 

P(GJH,K’JH,K’JH,K”JH; 2) 

=(_ ~)lWAH)I+l(WO 

(Se7(G: 
c l-1) 'E(S)'-'HI /IC(S:K’) 

K’, K”): HsE(S)} 
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Thus 
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Pm (G, K’, K”; %) 

= c (-l)lv(G~H)I+~(K’~H)~P(Gl~,K’l~,K’J~,K”)~. ,) 5 * 

{HzE: IHI=m} 

= c c (_ l)IQS)I-m j>c(S:K’) 

{H&E: IHI=m} {Stu(G: K’,K”): Hz&S)] 

By interchanging sums, 

P,(G, K’, K”; I.)= c c (_ p-m ] c(S:K’) 

SEC(G: K’,K”) {HrE(S): IH~=m} 

= c (_ p-m IE@)l ( > ~cWU=p,. 0 

SeY(G: K’, K”) 
m 
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