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Abstract

In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise
as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth
perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation
rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As
application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n � 2, and also to
show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence
of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on s’intéresse à une classe de lois de balance multi-dimensionnelles avec une source non locale, qui résultent
des modèles simplifiés pour l’hydrodynamique des gaz irradiants. En utilisant la méthode de l’énergie, la stabilité, le taux de
convergence des solutions au voisinage des états constants, les ondes planes régulières et les états périodiques sont étudiés.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we are concerned with the hyperbolic–elliptic coupled system in several dimensions:

∂tu + ∇ · [f (u) + q
]= S, (1.1)

−∇[∇ · q − u] + q = 0. (1.2)
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Here u = u(t, x) : R×Rn → R and q = q(t, x) : R×Rn → Rn are unknown, and n � 1 denotes the space dimension.
f (u) = (f1(u), f2(u), . . . , fn(u)) : R → Rn and S = S(t, x) : R×Rn → R are given functions. It is supposed that the
flux function f (u) is smooth in u. Additionally, in Section 3 dealing with planar rarefaction waves, we shall assume
that the first component f1 is strictly convex.

The system (1.1)–(1.2) can alternatively be written as a single equation. In fact, let P be a pseudo-differential
operator defined by:

P̂ u(ξ) = 1

1 + |ξ |2 û(ξ),

and then taking the divergence of (1.2) gives,

∇ · q = −�Pu.

Thus, the system (1.1)–(1.2) reduces to

∂tu + ∇ · f (u) = �Pu + S. (1.3)

Note that Pu is equivalent to the non-local convolution operator:

Pu = K ∗ u,

where the kernel K is the Bessel potential given by,

K(x) = 1

(4π)n/2

∞∫
0

s− n
2 e−s− |x|2

4s ds,

satisfying the following basic properties:

K(x) = K
(|x|)� 0,

∫
Rn

K(x)dx = 1, �K ∗ u = −u + K ∗ u.

The main goal of this paper is to introduce the classical energy method to prove the stability and convergence
rate of smooth solutions to the model system (1.1)–(1.2) or equivalently (1.3) near some existing equilibria such as
constant states, one-dimensional smooth rarefaction wave and possible time-periodic states. For the proof of stability,
the essential issue is to obtain the dissipation rate of the temporal energy in order to further control the non-linear
conservative term. In fact, the linear non-local dissipative term �Pu in (1.3) can be written in terms of the inverse
Fourier transformation as

�Pu = −
( |ξ |2

1 + |ξ |2 û(ξ)

)∨
. (1.4)

As pointed out in [34,35], Eq. (1.4) can be read in the way that �Pu behaves qualitatively like the usual Navier–
Stokes viscosity �u at the low-ξ , while it may act as the damping force −u at the high-ξ . From the series of work
in [35,19,22,27,8], this characteristic of the linear operator �Pu implies that (1.3) retains many of the properties
exposed by the viscous conservation laws,

∂tu + ∇ · f (u) = �u,

essentially since the high-ξ components to the solutions of (1.3) decay exponentially in time. However, it should
be also noted that the derivative of solutions to (1.3) may blow up in finite time [19] due to the weaker smoothing
property of �Pu. We remark on the other hand that the non-local term �Pu was also derived by Rosenau in [34] as
the corresponding extension of the Navier–Stokes equations via the regularisation of the Chapman–Enskog expansion
from the Boltzmann equation, which is intended to obtain a bounded approximation of the linearised collision operator
for both low and high frequencies.

Let us comment on related mathematical models. The model system (1.1)–(1.2) or its equivalent form (1.3)
appears in radiative hydrodynamics [40] and in the context of self-gravitating fluids modelled by the Euler–Poisson
system [44], where the non-local forcing in (1.3) reflects the global influence of heat sources or gravitation fields,
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respectively. In particular for radiative hydrodynamics, the fluid gains or loses energy and momentum by interacting
with electromagnetic radiation through the emission, absorption and scattering of photons, see [30,40]. An underlying
hyperbolic–elliptic system describing the one-dimensional motion of the radiating fluid takes the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tρ + ∂x(ρu) = 0,

∂t (ρu) + ∂x(ρu2 + p) = 0,

∂t [ρ(e + 1
2u2)] + ∂x[ρu(e + 1

2u2) + pu + q] = 0,

−∂2
xq + 3a2q + 4aκ∂xθ

4 = 0,

(1.5)

where the hydrodynamic functions ρ � 0, u, p, e and θ � 0 denotes the mass density, velocity, pressure, internal
energy and absolute temperature of the fluid, respectively, and q is the radiative heat flux, and a > 0, κ > 0 are the
absorption coefficient and the Boltzmann constant, respectively, see [40]. A full mathematical model of radiating
plasma flow is given by the compressible Euler equations as in (1.5) coupled with a linear Boltzmann equation
for radiation density [40]. We also note that non-local models of the above type have also been derived in traffic
simulation [37].

Note that the hyperbolic–elliptic coupled system (1.5) can be written in the following general form:{
∂tU + ∂x(f (U) + M1V ) = 0,

−∂2
xV + M2V + ν(U)∂xg(U) = 0,

(1.6)

where U ∈ Rm and V ∈ Rn are unknown functions of the single spatial variable x ∈ R, and f : Rm → Rm,
g : Rm → Rn, ν : Rm → R are given smooth mappings, and M1,M2 are m × n and n × n matrices, see [14,17,18].
Furthermore, by taking the proper approximation of (1.5), Hamer in [13] derived a simplified model system in the
form: {

∂tu + ∂x(
1
2u2 + q) = 0,

−∂2
xq + q + ∂xu = 0,

(1.7)

which as far as we know, is the simplest model for the hyperbolic–elliptic coupled system appearing in the study of
radiation hydrodynamics. We refer also to [7] for the existence theory and the large time analysis of non-linear variants
of (the second equation of) (1.7) replacing ∂xu by a non-linear gradient ∂xB(u). A typical choice is B(u) = σu4 with
σ > 0, which is derived from Planck’s law of black body radiation and corresponds to the non-linearity appearing
in the equation of the temperature in (1.5). A similar system with general non-decreasing B(u) has been derived in
[4,5] as a simplified model for describing non-local energy transports in a radiation fluid. We refer to [33] for an
investigation of this special model as the non-relativistic limit.

Concerning higher dimensions, [13] proposed the model system (1.1)–(1.2) as a simplification of the multi-
dimensional version of (1.5); see [11] for the formal derivation from (1.5) in the case of several dimensions to
(1.1)–(1.2).

There is extensive mathematical work on the macroscopic systems at the different levels mentioned above, and in
what follows let us review some of results related to them. Firstly, the global well-posedness and large-time behaviour
of solutions to the Cauchy problem of the one-dimensional model system (1.7) are well-established. In fact, (1.7) was
first studied in [35], where the propagation of smoothness of solutions with small initial data, existence of travelling
waves, existence of entropy solutions with BV initial data and zero relaxation limit were considered. The further
investigations of the existence and uniqueness of entropy solutions were made by Ito [16] for BV data and by Lattanzio
and Marcati [25] for L1 ∩ L∞ data, see also the recent work [36]. In addition, a series of work was done by Kawashima
et al. to study the stability of wave patterns such as travelling wave and rarefaction wave in [19–22], see also Liu and
Tadmor [29]. Recently, a sharp rate of solutions to the travelling wave was given in [31] through the weighted energy
method, and also the optimal L1 time-decay rate of solutions to the diffusion wave defined by the viscous Burgers’
equation,

∂tu + u∂xu = ∂2
xu,

was given in [8] by means of entropy production method. For the system (1.5) or its generalised form (1.6), the large-
time behaviour and singular limit of solutions for different types of initial data were considered in [17] and [18,32],
and later [14] exposed the pointwise estimate of solutions by using the Green’s function method; see also the recent
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work [41]. Lin et al. [28] considered the existence and regularity of smooth travelling waves, and [26] proved the
existence of admissible radiative shock wave. The system (1.1)–(1.2) or (1.3) has been also extensively studied in the
past few years. Di Francesco [6] generalised the previous result [25] to the case of several dimensions. The stability
and convergence rate of solutions near the planar rarefaction waves were obtained in [11,12] for the case of the space
dimension 2 � n � 5. In this context we also mention more general results on the stability of viscous shock waves, see
e.g. [45] and the reference therein. The local- and global-in-time well-posedness of solutions in L1 was given by [2,1].

Finally, we mention [42,23] about the studies of stability of planar rarefaction waves in the context of the viscous
conservation laws and [43,33] for the BV estimates on solutions via a discrete difference scheme. For the general
information about the hyperbolic conservation laws, refer to [3].

The results of this paper are organised as follows: In Section 2 we consider (1.3) without external source S. The
main result Theorem 2.1 shows stability and optimal convergence rates of smooth solutions near a constant state. The
proof employs an energy method in the setting of smooth perturbations based on the following Plancherel-identities,∫

Rn

∂α�Pu∂αudx = −
∫
Rn

|ξ |2ξ2α

1 + |ξ |2 |̂u |2 dξ,

which (by taking a suitable linear combination over all α with |α| = k for any integer k � 0) sum up to yield the
desired energy dissipation of u: ∫

Rn

|ξ |2+2k

1 + |ξ |2 |̂u |2 dξ.

It remains to control the non-linear conservative term ∇ · f (u), for which we derive first a zero-order (k = 0) energy
equality and, subsequently, high-order energy inequalities. While the zero-order equation is closed (see Lemma 2.1),
the high-order estimates (see Lemma 2.2) require to assume an a priori smallness to control the derivatives of ∇ · f (u)

in terms of the energy dissipation. We remark that the here presented way of estimating the conservative flux term can
also be applied to related physical models.

Moreover in Section 2, we prove in Lemma 2.4 an interpolation inequality for the lowest-order term of the energy
dissipation rate via a frequency decomposition argument. Since solutions to (1.3) are contractive in L1, we conclude
time-decay rate in L2 of perturbed solutions in a typical way via time-weighted estimates on the energy (see the end
of Section 2 for the proof of Theorem 2.1).

In Section 3 the energy method is subsequently applied to study stability and convergence rates of smooth planar
waves. In contrast to the recent works [11,12], we are here able to demonstrate a unified proof of stability of smooth
planar waves for any spatial dimension n � 2. As firstly considered in [15], the main difficulty comes from the
degeneration of planar wave profile in the transversal directions which can be overcome by the time-decay of the
planar wave profile itself, see the proof of Theorem 3.1.

Finally in Section 4, we consider (1.3) with a time-periodic source. In Theorem 4.1, we construct time-periodic
solutions via an iterative scheme using (1.3) with linearised flux term, which passes to the limit provided that the time-
periodic source term is small in sufficiently high Sobolev spaces. One of the main ideas, initially developed in [38]
and later in [39,10], is to write the equation with time-periodic coefficients as the mild form containing an infinite
time integral.

We also remark that the time-decay estimate on the linearised solution operator plays a key role in obtaining the
uniform bounds of the iterative solution sequence, see Lemmas 4.1 and 4.2. In order for the time-decay rate to be
integrable over all times we have to assume spatial dimension n � 5 in Theorem 4.1. The remaining dimensions
1 � n � 4 are left open. The asymptotic stability of the time-periodic solution is discussed in Theorem 4.2. The proof
of stability is analog to perturbations of constant states, whereas the convergence rate is obtained on the basis of the
energy-spectrum method recently developed by [10,9].

Notations. Through this paper, for integer m � 0, we use Hm denotes the Sobolev space with norm ‖ · ‖Hm . As usual,
we use L2 = H 0 for m = 0 with norm ‖ · ‖ and 〈·,·〉 to denote the inner product in L2. The notion û(ξ) denotes the
Fourier transformation of u(x). We use,

∇ = (∂x1 , . . . , ∂xn),
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and for any integer m � 0, ∇mu denotes all m-order derivatives of the function u. For the multiple index
α = (α1, . . . , αn), we denote:

∂α = ∂α1
x1

· · · ∂αn
xn

, ξα = ξ
α1
1 · · · ξαn

n .

The length of α is |α| = α1 +· · ·+αn. β � α means βi � αi for all 1 � i � n. In addition, C denotes a generic positive
(generally large) constant and λ denotes a generic positive (generally small) constant.

2. L2 energy method for smooth perturbations

In this section, we consider the Cauchy problem of Eq. (1.3) in the absence of sources,

∂tu + ∇ · f (u) = �Pu, t > 0, x ∈ Rn, (2.1)

for smooth flux function f (u) and with given initial data,

u(0, x) = u0(x), x ∈ Rn. (2.2)

We moreover introduce the operator
√

P by:

√̂
Pu(ξ) = 1√

1 + |ξ |2 û(ξ),

in order to state the main result of this section:

Theorem 2.1. Let n � 1 and N � 2[n/2]+2. Then, there are constants ε0 > 0, λ > 0 and C such that for ‖u0‖HN � ε0
the Cauchy problem (2.1)–(2.2) admits a unique smooth solution u(t, x) satisfying:

∥∥u(t)
∥∥2

HN + λ

t∫
0

∥∥∇u(s)
∥∥2

HN−1 ds + λ

t∫
0

(∥∥∇√
Pu(s)

∥∥2 + ∥∥∇N+1
√

Pu(s)
∥∥2)

ds � C‖u0‖2
HN , (2.3)

for any t � 0. Moreover, if ‖u0‖L1 is bounded, then the obtained solution u enjoys the time-decay estimate,∥∥u(t)
∥∥� C‖u0‖L2∩L1(1 + t)−

n
4 . (2.4)

Proof. Theorem 2.1 will be proven by continuing a unique local solution using a uniform a priori estimate
in the setting of small data. Recalling that the non-local term on right-hand side of (1.3) can be written as
�K ∗ u = −u + K ∗ u and K being the bounded, integrable Bessel potential, the local existence of a unique smooth
solution on a time interval [0, T ] for T > 0 follows from a standard fix-point argument, see e.g. [24]. Moreover, due
to the construction of the fix-point Banach space, we have:

sup
0�t�T

∥∥u(t)
∥∥

HN � ε, (2.5)

for the constant 0 < ε � 1 small enough, and u ∈ C([0, T ];HN) is the unique solution to the Cauchy problem
(2.1)–(2.2) on [0, T ].

In what follows, we show that in the setting of small data the norm ‖u(t)‖HN is actually subject to an energy
estimate and, thus, non-increasing in time, which permits to continue the solution u(t) globally. Notice that by Sobolev
embeddings, it holds that

sup
0�t�T

∥∥u(t)
∥∥

Wm,∞ � Cε, (2.6)

for any integer 0 � m � N − [n/2] − 1.
In the following two lemmas we are concerned with the energy estimates on solutions of zero-order and high-order,

respectively. �



R. Duan et al. / J. Math. Pures Appl. 93 (2010) 572–598 577
Lemma 2.1. Let u be the solution to the Cauchy problem (2.1)–(2.2) over [0, T ]. Then it holds that

1

2

d

dt

∥∥u(t)
∥∥2 +

∫
Rn

|ξ |2
1 + |ξ |2

∣∣̂u(t)
∣∣2 dξ = 0, (2.7)

for any 0 � t � T .

Proof. The zero-order energy estimate gives:

1

2

d

dt

∥∥u(t)
∥∥2 +

n∑
j=1

〈
fj (u)xj

, u
〉= 〈�Pu,u〉.

It follows from the Plancherel theorem that

〈�Pu,u〉 = 〈�̂Pu, û 〉 = −
∫
Rn

|ξ |2
1 + |ξ |2 |̂u |2 dξ,

and also from the integration by part that

〈
fj (u)xj

, u
〉= −〈fj (u) − fj (0), uxj

〉= −
∫
Rn

[ u∫
0

(
fj (η) − fj (0)

)]
xj

dx = 0,

for each 1 � j � n. Then Lemma 2.1 is proved. �
Lemma 2.2. Let u be the solution to the Cauchy problem (2.1)–(2.2) over [0, T ] which satisfies (2.5). Then, for any
1 � k � N , it holds that

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂u(t)

∣∣2 dξ � Cε
∑

1�m�N

∥∥∇mu(t)
∥∥2

, (2.8)

for any 0 � t � T , where Ck
α = k!

α! = k!
α1!α2!···αn! for α = (α1, α2, . . . , αn).

Proof. Fix k with 1 � k � N . The high-order energy estimate gives:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

n∑
j=1

∑
|α|=k

Ck
α

〈
∂xj

∂αfj (u), ∂αu
〉= ∑

|α|=k

Ck
α

〈
�∂αPu, ∂αu

〉
.

Similarly before, it follows from the Plancherel theorem that∑
|α|=k

Ck
α

〈
�∂αPu, ∂αu

〉= −
∑
|α|=k

Ck
α

∫
Rn

|ξ |2
1 + |ξ |2 |iξ |2α |̂u |2 dξ = −

∫
Rn

|ξ |2+2k

1 + |ξ |2 |̂u |2 dξ,

where we used the identity (ξ2
1 + ξ2

2 + · · · + ξ2
n )k = ∑

|α|=k

Ck
αξ

2α1
1 ξ

2α2
2 · · · ξ2αn

n . Then, one has:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2 |̂u |2 dξ =
n∑

j=1

∑
|α|=k

Ck
αIj,α, (2.9)

where

Ij,α = 〈
∂xj

∂αfj (u),−∂αu
〉
.

Next, we estimate Ij,α for a fixed j with 1 � j � n and |α| = k. From the Taylor expansion,

fj (u) = fj (0) + f ′
j (0)u + Fj (u)u2,
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with

Fj (u) ≡
1∫

0

(1 − θ)f ′′
j (θu)dθ,

it holds that

Ij,α = f ′
j (0)

〈
∂xj

∂αu,−∂αu
〉+ 〈

∂xj
∂α
[
Fj (u)u2],−∂αu

〉
,

where the first term vanishes from the integration by part. Let β = α + ej with ej = (0, . . . ,0,1,0, . . . ,0), and then it
further holds that

Ij,α = 〈
∂xj

∂α
[
Fj (u)u2],−∂αu

〉
=

∑
β1+β2+β3=β

C
β
β1,β2,β3

〈
∂β1Fj (u)∂β2u∂β3u,−∂αu

〉
, (2.10)

where C
β
β1,β2,β3

= C
λ1

(γ 1
1 ,γ 1

2 ,γ 1
3 )

C
λ2

(γ 2
1 ,γ 2

2 ,γ 2
3 )

. . .C
λn

(γ n
1 ,γ n

2 ,γ n
3 )

with β = (λ1, λ2, . . . , λn) and βi = (γ 1
i , γ 2

i , . . . , γ n
i ),

i = 1,2,3.
For the later use, let us give a complete proof for the estimates on Ij,α as follows:

Claim.

Ij,α � Cε
∑

1�m�N

∥∥∇mu
∥∥2

. (2.11)

Proof of claim. We prove (2.11) by two cases.

Case 1. β1 = 0.
Subcase 1.1: β2 = β or β3 = β . In this case, without loss of generality, one can suppose β2 = 0 and β3 = β . Then

one has: 〈
∂β1Fj (u)∂β2u∂β3u,−∂αu

〉= 〈
Fj (u)u∂xj

∂αu,−∂αu
〉

= 1

2

〈
Fj (u)∂xj

u,
(
∂αu

)2〉+ 1

2

〈
F ′

j (u)u∂xj
u,
(
∂αu

)2〉
� Cε

∥∥∂αu
∥∥2

,

where (2.6) can be used since N − [n/2] − 1 � [n/2] + 1 � 1 by the assumption of Theorem 2.1.
Subcase 1.2: β2 < β and β3 < β . In this case,

1 � |β2| � |α| = k � N, 1 � |β3| � |α| = k � N.

Moreover, since

|β2| + |β3| = k + 1 � N + 1,

and the symmetry of β2 and β3, one can suppose |β2| � N/2 for even N , and |β2| � (N + 1)/2 for odd N . We only
consider the case of even N since for odd N , N � 2[n/2] + 2 implies N � 2[n/2] + 3 and thus the estimates can be
similarly made. Therefore, it holds that〈

∂β1Fj (u)∂β2u∂β3u,−∂αu
〉= 〈

Fj (u)∂β2u∂β3u,−∂αu
〉

�
∥∥Fj (u)

∥∥
L∞
∥∥∂β2u

∥∥
L∞
∥∥∂β3u

∥∥ · ∥∥∂αu
∥∥

� Cε
∥∥∂αu

∥∥2 + Cε
∑

1�m�N

∥∥∇mu
∥∥2

,

where (2.6) can be still used since |β2| � N/2 � N − [n/2] − 1, and also |β2| � 1, |β3| � 1 were used.
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Case 2. |β1| � 1. In this case, |β2| � k and |β3| � k. One can write:〈
∂β1Fj (u)∂β2u∂β3u,−∂αu

〉= 〈[
∂β1Fj (u) − F ′

j (u)∂β1u
]
∂β2u∂β3u,−∂αu

〉
+ 〈

F ′
j (u)∂β1u∂β2u∂β3u,−∂αu

〉
. (2.12)

For the second term on the r.h.s. of (2.12), one can estimate it as in Case 1 by considering β1 = β = α + ej and
β1 < β , and hence it holds that〈

F ′
j (u)∂β1u∂β2u∂β3u,−∂αu

〉
� Cε

∥∥∂αu
∥∥2 + Cε

∑
1�m�N

∥∥∇mu
∥∥2

.

On the other hand, for the first term, one can suppose |β1| � 2 since it vanishes for |β1| = 1. Notice that

∂β1Fj (u) − F ′
j (u)∂β1u =

|β1|∑
m=2

F
(m)
j (u)

∑
γ1+···+γm=β1
γ��1,1���m

Cγ1,...,γm

m∏
�=1

∂γ�u,

which by (2.6) gives: ∣∣∂β1Fj (u) − F ′
j (u)∂β1u

∣∣� Cε
∑

1�m�|β1|−1

∣∣∇mu
∣∣.

Then, one has:〈[
∂β1Fj (u) − F ′

j (u)∂β1u
]
∂β2u∂β3u,−∂αu

〉
� Cε

∑
1�m�|β1|−1

∫
Rn

∣∣∇mu
∣∣ · ∣∣∂β2u

∣∣ · ∣∣∂β3u
∣∣ · ∣∣∂αu

∣∣dx

� Cε
∥∥∂αu

∥∥2 + Cε
∑

1�m�N

∥∥∇mu
∥∥2

,

where (2.6) can be used again since |β1| + |β2| + |β3| � N + 1 and |β1| � 2 imply that at most one of the following
inequality holds,

|β1| − 1 � N −
[
n

2

]
− 1, |β2| � N −

[
n

2

]
− 1, |β3| � N −

[
n

2

]
− 1.

Therefore, combining Case 1 and Case 2, (2.11) follows. �
It follows from the above estimates that

n∑
j=1

∑
|α|=k

Ck
αIj,α � Cε

∑
1�m�N

∥∥∇mu
∥∥2

which together with (2.9) gives (2.8). This completes the proof of Lemma 2.2.
To obtain the time-decay rate of solutions, we need the following two lemmas about the estimates of solutions in

L1 and the interpolation inequality for the low-order.

Lemma 2.3. Let u be the solution to the Cauchy problem (2.1)–(2.2) over [0, T ]. If ‖u0‖L1 is bounded, then it holds
that ∥∥u(t)

∥∥
L1 � ‖u0‖L1 (2.13)

for any 0 � t � T .

Proof. Let ϕ be the standard mollifier and ϕδ(x) = 1
δ
ϕ( x

δ
) for δ > 0. Furthermore, let sgn be the sign function over

R and its mollified function sgnδ = ϕδ ∗ sgn for δ > 0. Multiplying (2.1) by sgnδ(u) and taking integration over Rn,
one has:
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d

dt

∫
Rn

u∫
0

sgnδ(η) dη dx +
∫
Rn

sgnδ(u)∇ · f (u)dx +
∫
Rn

sgn′
δ(u)∇Pu · ∇udx = 0. (2.14)

Notice that

sgnδ(u)∇ · f (u) = ∇ · [sgnδ(u)
(
f (u) − f (0)

)]− ∇ ·
[ u∫

0

sgn′
δ(η)

(
f (η) − f (0)

)
dη

]
.

Thus the second term on the l.h.s. of (2.14) vanishes, and hence one has:

d

dt

∫
Rn

u∫
0

sgnδ(η) dη dx +
∫
Rn

sgn′
δ(u)∇Pu · ∇udx = 0. (2.15)

Now, (2.13) follows from (2.15) by taking time integration over [0, t] for any 0 � t � T and passing to the limit
δ → 0, see [15] for the details. This completes the proof of Lemma 2.3. �
Lemma 2.4 (Interpolation inequality). Let n � 1. It holds that∫

Rn

1

1 + |ξ |2 |̂u |2 dξ � C

( ∫
Rn

|ξ |2
1 + |ξ |2 |̂u |2 dξ

) n
n+2 ‖û‖

4
n+2
L∞ (2.16)

for some constant C.

Proof. For R > 0 to be chosen we split the integral
∫

Rn = ∫
|ξ |�R

+ ∫|ξ |�R
and estimate:∫

Rn

1

1 + |ξ |2 |̂u |2 dξ � 1

R2

∫
|ξ |�R

|ξ |2
1 + |ξ |2 |̂u |2 dξ + ‖û‖2

L∞

∫
|ξ |�R

1

1 + |ξ |2 dξ

� A

R2
+ CBRn,

where

A =
∫
Rn

|ξ |2
1 + |ξ |2 |̂u |2 dξ, B = ‖û‖2

L∞ . (2.17)

Hence, (2.16) follows by choosing R such that A/B = CRn+2. �
Continuation of the proof of Theorem 2.1. As mentioned before, for the global existence of solutions, we only have
to obtain the uniform a priori estimates under the assumption (2.5). In fact, notice that

2|ξ |2
1 + |ξ |2 +

N∑
k=1

2|ξ |2+2k

1 + |ξ |2 = |ξ |2
1 + |ξ |2 +

N∑
k=1

( |ξ |2+2(k−1)

1 + |ξ |2 + |ξ |2+2k

1 + |ξ |2
)

+ |ξ |2+2N

1 + |ξ |2

= |ξ |2
1 + |ξ |2 +

N∑
k=1

|ξ |2k + |ξ |2+2N

1 + |ξ |2 .

Thus, adding up (2.7) and (2.8) over 1 � k � N gives:

d

dt

∑
k�N

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

N∑
k=1

∫
Rn

|ξ |2k |̂u |2 dξ +
∫
Rn

( |ξ |2
1 + |ξ |2 + |ξ |2+2N

1 + |ξ |2
)

|̂u |2 dξ

� Cε
∑ ∥∥∇mu(t)

∥∥2
.

1�m�N
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By noticing, ∑
1�m�N

∥∥∇mu(t)
∥∥2 � C

∑
1�m�N

∫
Rn

|ξ |2m |̂u |2 dξ,

and taking ε > 0 small such that Cε � 1/2, then it follows that

d

dt

∑
k�N

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 + 1

2

N∑
k=1

∫
Rn

|ξ |2k |̂u |2 dξ +
∫
Rn

( |ξ |2
1 + |ξ |2 + |ξ |2+2N

1 + |ξ |2
)

|̂u |2 dξ � 0.

One can take the further time integration and use the following equivalent relations:∑
k�N

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 ∼ ∥∥u(t)

∥∥2
HN ,

and

|ξ |2m ∼
∑

|α|=m

(iξ)2α,

for any integer m. Therefore, (2.3) follows for any 0 � t � T , which gives the uniform a priori estimates and hence
the global existence is proven.

To obtain the decay rates, let us suppose that ‖u0‖L1 is bounded in the sequel. Take a � 0 to be determined later
and then it follows from (2.7) that

(1 + t)a
∥∥u(t)

∥∥2 + 2

t∫
0

∫
Rn

(1 + s)a
|ξ |2

1 + |ξ |2 |̂u |2 dξ ds � ‖u0‖2 + a

t∫
0

∫
Rn

(1 + s)a−1 |̂u |2 dξ ds. (2.18)

To estimate the r.h.s. integral term of (2.18), one can write it as

I = I1 + I2, (2.19)

with

I1 = a

t∫
0

∫
Rn

(1 + s)a−1 |ξ |2
1 + |ξ |2 |̂u |2 dξ ds,

I2 = a

t∫
0

∫
Rn

(1 + s)a−1 1

1 + |ξ |2 |̂u |2 dξ ds.

For I1, we claim that

I1 � η

t∫
0

∫
Rn

(1 + s)a
|ξ |2

1 + |ξ |2 |̂u |2 dξ ds + Ca,η‖u0‖2, (2.20)

for any η > 0, where Ca,η � 1. In fact, if 0 � a � 1, it holds that

I1 �
t∫

0

∫
Rn

|ξ |2
1 + |ξ |2 |̂u |2 dξ ds � ‖u0‖2

2

by using (2.18) for the case of a = 0. On the other hand, if a > 1, it follows from the Young inequality
(a − 1)/a + 1/a = 1 that

I1 � η

t∫ ∫
n

(1 + s)a
|ξ |2

1 + |ξ |2 |̂u |2 dξ ds + Ca,η

t∫ ∫
n

|ξ |2
1 + |ξ |2 |̂u |2 dξ ds,
0 R 0 R
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for any η > 0. Thus (2.20) follows again by using (2.18) for a = 0. For I2, it holds that

I2 � C

t∫
0

(1 + s)a−1A
n

n+2 B
2

n+2 ds

� η

t∫
0

(1 + s)aAds + Ca,η

t∫
0

(1 + s)a− n+2
2 B ds

� η

t∫
0

(1 + s)aAds + Ca,η‖u0‖2
L1

t∫
0

(1 + s)a− n
2 −1 ds

� η

t∫
0

∫
Rn

(1 + s)a
|ξ |2

1 + |ξ |2 |̂u|2 dξ ds + Ca,η‖u0‖2
L1(1 + t)a− n

2 , (2.21)

where we used the same notation (2.17) for A and B , and also we used Lemmas 2.4, 2.3 and the Young inequal-
ity n/(n + 2) + 2/(n + 2) = 1, and a > n/2 was chosen. Therefore, putting (2.20) and (2.21) into (2.19) together
with (2.18), one has:

(1 + t)a
∥∥u(t)

∥∥2 + λ

t∫
0

∫
Rn

(1 + s)a
|ξ |2

1 + |ξ |2 |̂u |2 dξ ds � C‖u0‖2
L2 + C‖u0‖2

L1(1 + t)a− n
2

for a > n/2 and any t � 0. Then (2.4) follows. This completes the proof of Theorem 2.1. �
3. Stability of smooth planar rarefaction waves in dimensions n��� 2

In this section, we still consider the Cauchy problem of Eq. (1.3) without sources:

∂tu + ∇ · f (u) = �Pu, t > 0, x ∈ Rn. (3.1)

As we are interested in planar rarefaction waves, we shall additionally suppose the condition that the first component
of the flux f1(·) is uniformly convex over R, i.e., there is κ > 0 such that

f ′′
1 (u) � 2κ > 0 (3.2)

for any u ∈ R, and that the solution is subject to initial data,

u(0, x) = u0(x), x ∈ Rn, (3.3)

where u0 may have the different end states at infinity along the x1-direction:

u0(x) → u± as x1 → ±∞.

Throughout this section, we are interested in the case when u− < u+. In this case, it is well known (see e.g. [22,11])
that there exists the 1-D smoothed rarefaction wave φ(t, x1) which is determined by:

∂tφt + ∂x1f1(φ) = (
1 − ∂2

x1

)−1
∂2
x1

φ,

φ(t, x1) → u± as x1 → ±∞,

φx1(t, x1) � 0, u− < u+.

Moreover, φ(t, x1) enjoys the following time-decay estimates.

Proposition 3.1. (See [22,11].) Let 1 � p � ∞ and integer k � 1. Then it holds that∥∥∂k
x1

φ(t)
∥∥

Lp � C|u+ − u−|(1 + t)
− 1

2 (k− 1
p

) log(2 + t),

for any t � 0.
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The goal of this section is to prove the stability of the above 1-D smoothed rarefaction wave and further obtain the
rate of convergence of solutions to it by using the energy method developed in Section 2. For this purpose, let us set
the perturbation v by:

u(t, x) = v(t, x) + φ(t, x1).

The Cauchy problem (3.1)–(3.3) is reformulated as

vt + ∇ · [f (φ + v) − f (φ)
]= �Pv, t > 0, x ∈ Rn, (3.4)

v(0, x) = v0(x), x ∈ Rn. (3.5)

The main result of this section improves the previous stability results for dimensions up to n = 5 [15,11,12] by
providing a unified proof for all dimensions n � 2.

Theorem 3.1. Let n � 2, N � 2[n/2] + 2, and δ = |u+ − u−| with u− < u+. Assume that the first component of the
flux f1 is strictly convex as in (3.2). Then, there are constants ε0 > 0, λ > 0 and C such that if ‖v0‖HN + δ � ε0 then
the Cauchy problem (3.4)–(3.5) admits a unique smooth solution v(t, x) satisfying:

∥∥v(t)
∥∥2

HN + λ
∑
k�N

t∫
0

∫
Rn

φx1(t, x1)
∣∣∂kv(s, x)

∣∣2 dx ds + λ

t∫
0

∥∥∇v(s)
∥∥2

HN−1 ds

+ λ

t∫
0

(∥∥∇√
Pv(s)

∥∥2 + ∥∥∇N+1
√

Pv(s)
∥∥2)

ds � C
(‖v0‖2

HN + δ2), (3.6)

for any t � 0. Moreover, if ‖v0‖L1 is bounded, then the obtained solution v enjoys the time-decay estimate:∥∥v(t)
∥∥� C‖v0‖L2∩L1(1 + t)−

n
4 . (3.7)

Proof. Similar to Section 2, the existence of local smooth solutions follows by standard arguments, and we are left to
give a proof of (3.6) and (3.7) for solutions satisfying:

sup
0�t�T

∥∥v(t)
∥∥

HN � ε, |u+ − u−| � δ,

for constants 0 < ε � 1 and 0 < δ � 1 small enough, where v(t) is the solution to the Cauchy problem (3.4)–(3.5)
over [0, T ] for T > 0.

Step 1. The first step of the energy method is to obtain the zero-order estimate:

1

2

d

dt

∥∥v(t)
∥∥2 + κ

∫
Rn

φx1(t, x1)
∣∣v(t, x)

∣∣2 dx +
∫
Rn

|ξ |2
1 + |ξ |2

∣∣̂v(t)
∣∣2 dξ � 0. (3.8)

In fact, as before, the energy integration gives:

1

2

d

dt

∥∥v(t)
∥∥2 + 〈∇ · [f (φ + v) − f (φ)

]
, v
〉= 〈�Pv,v〉.

We only have to consider the term related to f . One has the following identity,

∇ · [f (φ + v) − f (φ)
]
v = ∇ ·

{[
f (φ + v) − f (φ)

]
v −

v∫
0

[
f (φ + η) − f (φ)

]
dη

}

+
v∫ [

f ′
1(φ + η) − f ′

1(φ)
]
dηφx1(t, x1),
0
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where the uniform convexity of f1(·) implies:

v∫
0

[
f ′

1(φ + η) − f ′
1(φ)

]
dη � κ|v|2.

Thus the non-negativity of φx1(t, x1) gives:〈∇ · [f (φ + v) − f (φ)
]
, v
〉
� κ

∫
Rn

φx1(t, x1)|v|2 dx.

Hence (3.8) is proved.

Step 2. The second step of the energy method is to obtain the estimates for the high-order:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αv(t)
∥∥2 + κ

∑
|α|=k

Ck
α

∫
Rn

φx1(t, x1)
∣∣∂αv(t)

∣∣2 dx +
∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂v(t)

∣∣2 dξ

� C(ε + δ)
∑

1�m�k

∥∥∇mv(t)
∥∥2 + C

∑
m<k

∫
Rn

φx1(t, x1)
∣∣∇mv(t)

∣∣2 dx + Cδ2

(1 + t)σ
, (3.9)

for 1 � k � N for some constant σ > 1. In fact, similarly as before, one has:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αv(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂v(t)

∣∣2 dξ =
n∑

j=1

∑
|α|=k

Ck
αIj,α, (3.10)

where

Ij,α = −〈∂xj
∂α
[
fj (φ + v) − fj (φ)

]
, ∂αv

〉
. (3.11)

Putting the identity,

fj (φ + v) − fj (φ) = f ′
j (φ)v +

1∫
0

(1 − θ)f ′′
j (φ + θv) dθ v2,

into (3.11), one has:

Ij,α = I 1
j,α + I 2

j,α, (3.12)

with

I 1
j,α = −〈∂xj

∂α
[
f ′

j (φ)v
]
, ∂αv

〉
,

I 2
j,α = −

〈
∂xj

∂α

( 1∫
0

(1 − θ)f ′′
j (φ + θv) dθ v2

)
, ∂αv

〉
.

Next, we give the estimates on I 1
j,α and I 2

j,α similarly as before.

Estimate on I 1
j,α . We claim that

I 1
j,α � −κδ1j

∫
Rn

φx1

∣∣∂αv
∣∣2 dx + C

∑
m<k

∫
Rn

φx1

∣∣∇mv
∣∣2 dx + Cδ

∑
1�m�k

∫
Rn

∣∣∇mv
∣∣2 dx, (3.13)

where δij denotes the Kronecker Delta symbol.
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In fact, from the integration by part, I 1
j,α can be further written as

I 1
j,α = 〈

∂α
[
f ′

j (φ)v
]
, ∂xj

∂αv
〉

= 〈
f ′

j (φ)∂αv, ∂xj
∂αv

〉+ ∑
β<α

〈
∂α−βf ′

j (φ)∂βv, ∂xj
∂αv

〉
= I

1,1
j,α + I

1,2
j,α . (3.14)

Here, from the uniform convexity of f1(·) and non-negativity of φx1 , one has

I
1,1
j,α = −1

2

〈
∂xj

f ′
j (φ),

(
∂αv

)2〉= −1

2
δ1j

〈
f ′′

j (φ)φx1 ,
(
∂αv

)2〉
� −κδ1j

∫
Rn

φx1

∣∣∂αv
∣∣2 dx. (3.15)

On the other hand, for I
1,2
j,α , it holds that

I
1,2
j,α = −δ1j

∑
β<α

〈
∂α−βf ′′

j (φ)φx1∂
βv, ∂αv

〉−∑
β<α

〈
∂α−βf ′

j (φ)∂β∂xj
v, ∂αv

〉
,

where one further has:

−δ1j

∑
β<α

〈
∂α−βf ′′

j (φ)φx1∂
βv, ∂αv

〉
� C

∑
β<α

∫
Rn

φx1

(|∂βv|2 + |∂αv|2)dx

� C
∑
m<k

∫
Rn

φx1

∣∣∇mv
∣∣2 dx + Cδ

∫
Rn

∣∣∇kv
∣∣2 dx,

and

−
∑
β<α

〈
∂α−βf ′

j (φ)∂β∂xj
v, ∂αv

〉
� C

∑
β<α

∫
Rn

∣∣∂α−βf ′
j (φ)

∣∣(∣∣∂β∂xj
v
∣∣2 + ∣∣∂αv

∣∣2)dx

� Cδ
∑

1�m�k

∫
Rn

∣∣∇mv
∣∣2 dx.

Here we used,

|φx1 | � Cδ,
∣∣∂α−βf ′

j (φ)
∣∣� Cδ, (3.16)

since β < α implies that the l.h.s. of (3.16) takes zero or contains the derivatives of φ(t, x1).
Therefore, for I

1,2
j,α , it holds that

I
1,2
j,α � C

∑
m<k

∫
Rn

φx1

∣∣∇mv
∣∣2 dx + Cδ

∑
1�m�k

∫
Rn

∣∣∇mv
∣∣2 dx. (3.17)

Then, (3.13) follows from (3.15) and (3.17) together with (3.14).

Estimate on I 2
j,α . This estimate contains the key argument of the proof to control the transversal directions of the

x1-directed rarefraction wave φ(t, x1). Similar to (2.10), I 2
j,α can be written as

I 2
j,α =

∑
β1+β2+β3=β

C
β
β1,β2,β3

Iβ1,β2,β3,

with
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Iβ1,β2,β3 =
〈
∂β1

( 1∫
0

(1 − θ)f ′′
j (φ + θv) dθ

)
∂β2v∂β3v,−∂αv

〉
,

where β = α + ej with |α| = k and 1 � k � N . We claim that

I 2
j,α � C(ε + δ)

∑
1�m�N

∫
Rn

∣∣∇mv(t)
∣∣2 dx + Cδ2

(1 + t)σ
, (3.18)

for some constant 2 > σ > 1. In fact, when β1 = 0, Iβ1,β2,β3 is bounded similarly to before by the first term of the r.h.s.
of (3.18). The main trouble lies in the case of |β1| � 1 since φ depends only on x1 and thus it is not integrable over
Rn with n � 2. However, these bad terms have good time-decay estimates. Next, we consider the case of |β1| � 1. If
|β2| � 1 or |β3| � 1 which leads to |β1| � N , then Iβ1,β2,β3 is still bounded by the first term of the r.h.s. of (3.18) from
the Sobolev inequality. Therefore, we are left the case β1 = α + ej and β2 = β3 = 0, for which one can compute:

Iβ1,β2,β3 =
〈
∂xj

∂α

( 1∫
0

(1 − θ)f ′′
j (φ + θv) dθ

)
v2,−∂αv

〉

= δ1j

〈
∂α

( 1∫
0

(1 − θ)f
(3)
j (φ + θv) dθ φx1(t, x1)

)
v2,−∂αv

〉

+
〈
∂α

( 1∫
0

(1 − θ)f
(3)
j (φ + θv)θ dθ ∂xj

v

)
v2,−∂αv

〉
. (3.19)

For the second term on the r.h.s. of (3.19), it can be rewritten as follows:〈
∂α

( 1∫
0

(1 − θ)f
(3)
j (φ + θv)θ dθ ∂xj

v

)
v2,−∂αv

〉

=
〈( 1∫

0

(1 − θ)f
(3)
j (φ + θv)θ dθ

)
2
(
∂xj

∂αv
)
v2,−∂αv

〉

+
∑
γ<α

Cα
γ

〈
∂α−γ

( 1∫
0

(1 − θ)f
(3)
j (φ + θv)θ dθ

)(
∂xj

∂γ v
)
v2,−∂αv

〉

= 1

2

〈
∂xj

( 1∫
0

(1 − θ)f
(3)
j (φ + θv)θ dθ v2

)
,
(
∂αv

)2〉

+
∑
γ<α

Cα
γ

〈
∂α−γ

( 1∫
0

(1 − θ)f
(3)
j (φ + θv)θ dθ

)(
∂xj

∂γ v
)
v2,−∂αv

〉
,

which is again bounded by the first term of the r.h.s. of (3.18) from the Sobolev inequality since 1 � |α| = k � N .
For the first term on the r.h.s. of (3.19), if ∂α contains transversal x�-derivative for some 2 � � � n, it is also bounded
by the first term of the r.h.s. of (3.18) similarly, and hence we only have to consider the case of ∂α = ∂

|α|
x1 to obtain the

estimates:

δ1j

〈
∂k
x1

( 1∫
(1 − θ)f

(3)
j (φ + θv) dθ φx1(t, x1)

)
v2,−∂αv

〉
.

0
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The above term can be written as

δ1j

〈
∂k−1
x1

{ 1∫
0

(1 − θ)f
(4)
j (φ + θv) dθ

[
φx1(t, x1)

]2}
v2,−∂αv

〉

+ δ1j

〈
∂k−1
x1

{ 1∫
0

(1 − θ)f
(3)
j (φ + θv) dθ φx1x1(t, x1)

}
v2,−∂αv

〉

+ δ1j

〈
∂k−1
x1

{ 1∫
0

(1 − θ)f
(4)
j (φ + θv)θ dθ φx1(t, x1)∂x1v

}
v2,−∂αv

〉
,

where the third term is bounded by the first term of the r.h.s. of (3.18), and the sum of the first and second terms is
bounded by:

C

∫
Rn

|∂αv|2 dx + C

∫
Rn

∣∣∣∣∣∂k−1
x1

{ 1∫
0

(1 − θ)f
(4)
j (φ + θv) dθ

[
φx1(t, x1)

]2}∣∣∣∣∣
2

|v|2 dx

+ C

∫
Rn

∣∣∣∣∣∂k−1
x1

{ 1∫
0

(1 − θ)f
(3)
j (φ + θv) dθ φx1x1(t, x1)

}∣∣∣∣∣
2

|v|2 dx

� Cε

∫
Rn

∣∣∂αv
∣∣2 dx + Cεδ2

(1 + t)σ

∫
Rn

|v|2 dx,

by using Proposition 3.1, for 2 > σ > 1. Thus, (3.18) holds for the case of ∂α = ∂
|α|
x1 . Collecting the estimates for all

cases, (3.18) is proved.

Therefore, from (3.12), putting the estimates (3.13) and (3.18) into (3.10) yields (3.9).

Step 3. The linear combination of the energy estimates (3.8) for the zero-order and (3.9) for the high-order gives the
uniform energy inequality (3.6) after taking time integrations. In fact, one can first take a suitable linear combination
of (3.9) for 1 � k � N so that the second terms on the r.h.s. of (3.9) are dominated by the second terms on the l.h.s.
for all orders m < k, except for m = 0 and the r.h.s. takes the form,

C(ε + δ)
∑

1�m�N

∥∥∇mv(t)
∥∥2 + C

∫
Rn

φx1(t, x1)
∣∣v(t)

∣∣2 dx + Cδ2

(1 + t)σ
,

for 2 > σ > 1. The obtained energy inequality can further be made the proper linear combination with (3.8) so that
one has,

d

dt
E
(
v(t)

)+ λD
(
v(t)

)
� C(ε + δ)

∑
1�m�N

∥∥∇mv(t)
∥∥2 + Cδ2

(1 + t)σ
, (3.20)

for 2 > σ > 1, where E (v(t)) and D(v(t)) are the equivalent energy functional and dissipation rate, respectively,
which as in the proof of Theorem 2.1 take:

E
(
v(t)

)= ∥∥v(t)
∥∥2

HN ,

D
(
v(t)

)=
∑
k�N

∫
Rn

φx1(t, x1)
∣∣∂kv(t, x)

∣∣2 dx

+ ∥∥∇√
Pv(t)

∥∥2 + ∥∥∇v(t)
∥∥2

N−1 + ∥∥∇N+1
√

Pv(t)
∥∥2

.

H
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Thus, the first term on the r.h.s. of (3.20) is absorbed by the dissipation D(v(t)) since ε, δ are small enough. Then, the
time integration of (3.20) gives (3.6) since 2 > σ > 1. This completes the proof of the uniform a priori estimates and
hence the global existence.

Step 4. To the end, let ‖v0‖L1 be bounded. Notice that (3.4) can be rewritten as

∂tv + ∇ · [f (φ + v) − f (φ) − ∇Pv
]= 0,

which is in the form of the conservation. Thus the same argument as in Lemma 2.3 leads to∥∥v(t)
∥∥

L1 � ‖v0‖L1,

for any t � 0. Hence, (3.7) follows from the zero-order estimate (3.8) by using the completely same proof as for (2.4).
This completes the proof of Theorem 3.1. �
4. Time-periodic solutions

In this section, we consider the time-periodic problem:

∂tu + ∇ · f (u) = �Pu + S, t ∈ R, x ∈ Rn, (4.1)

where S = S(t, x) is time-periodic in time with period T � 0. We will prove the existence and stability of the
time-periodic solutions under some conditions. Without loss of generality, we suppose:

fi(0) = f ′
i (0) = 0, 1 � i � n. (4.2)

Otherwise, one can take change of variables:

t̃ = t, x̃i = xi − f ′
i (0)t,

and denote f̃ (·) by

f̃ (u) = f (u) − f (0) − f ′(0)u,

so that the form of (4.1) remains unchanged but (4.2) still holds for f̃ . In what follows, for simplicity we use
Cper([0, T ];HN) to denote the Banach space of functions which are time-periodic with period T and have weak
derivatives up to N -order, and we also define the triple norm ||| · |||HN

per
by:

|||u|||HN
per

= sup
0�t�T

∥∥u(t)
∥∥

HN

for any u ∈ Cper([0, T ];HN).

4.1. Existence of time-periodic solutions

The main result of this subsection is stated as follows.

Theorem 4.1. Let T � 0, n � 5 and N � 2[n/2] + 2 be given, and let (4.2) hold. Suppose that S = S(t, x) is
time-periodic with period T . Then, there are δ > 0, ε > 0 such that if,

sup
0�t�T

∥∥S(t)
∥∥

HN+1∩L1 � δ, (4.3)

then Eq. (4.1) admits a unique solution u∗(t, x) ∈ Cper([0, T ];HN), with

|||u∗|||HN
per

� ε. (4.4)
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From now on we devote ourselves to the proof of Theorem 4.1. We first consider the Cauchy problem on the
linearised equation:

∂tu − �Pu = 0, t > 0, x ∈ Rn, (4.5)

u(0, x) = u0(x), x ∈ Rn. (4.6)

Let us formally denote the solution to the Cauchy problem (4.5)–(4.6) by:

u(t) = e�P tu0.

One has the following lemma about the time-decay estimates on the linear solution semigroup e�P t .

Lemma 4.1. Let k � 0 and n � 1 be integers and 1 � p � 2. Then, it holds that∥∥∇ke�P tu0
∥∥� C(1 + t)

− n
2 ( 1

p
− 1

2 )− k
2
(‖u0‖Lp + ∥∥∇ku0

∥∥), (4.7)

for any t � 0.

Proof. In fact, let us denote u(t) = e�P tu0, and then it follows from (4.5)–(4.6) that

û(t) = e
− |ξ |2

1+|ξ |2 t
û0.

Thus for k � 0, it holds that∥∥∇ku(t)
∥∥2 � C

∫
Rn

|ξ |2k
∣∣̂u(t)

∣∣2 dξ � C

∫
Rn

|ξ |2ke
− 2|ξ |2

1+|ξ |2 t |̂u0|2 dξ.

From the usual proof by dividing the integration domain by {|ξ | � 1} ∪ {|ξ | � 1} and using the Hölder and Young
inequalities, one has: ∫

Rn

|ξ |2ke
− 2|ξ |2

1+|ξ |2 t |̂u0|2 dξ � C(1 + t)
− n

p
+ n−2k

2 ‖u0‖2
Lp + Ce−νt

∥∥∇ku0
∥∥2

,

for some constant ν > 0 and for any t � 0 and 1 � p � 2. Then (4.7) holds from the above estimate. This completes
the proof of Lemma 4.1. �

Next, we extend Lemma 4.1 to the case of the linear equation with variable coefficients for later use. Precisely,
we will use the energy-spectrum method to obtain the time-decay estimates on the linear solution operator Av(t, s),
−∞ < s � t < ∞ for fixed v which is small in some Sobolev space. Here, Av(t, s) is defined in the way that for any
u0 ∈ H�, Av(t, s)u0 is the solution to the Cauchy problem

∂tu +
n∑

j=1

f ′
j (v)uxj

= �Pu, t > s, x ∈ Rn, (4.8)

u|t=s = u0, x ∈ Rn, (4.9)

where v ∈ Cb(Rt ;H�
x ) is given, and � � 0 is an integer. It should be pointed out that if v = 0, the linear solution

operator Av(t, s) reduces to e�P(t−s) due to the assumption (4.2). One has the following:

Lemma 4.2. Let n � 3 and � � 2[n/2] + 2. There is ε� > 0 small enough such that if,

‖v‖L∞
t (H�

x ) � ε�, (4.10)

then it holds that ∥∥Av(t, s)u0
∥∥

H� � C∗(ε�)(1 + t − s)−
n
4 ‖u0‖H�∩L1, (4.11)

for any −∞ < s � t < ∞ and any u0 ∈ H� ∩ L1, where C∗(·) is a non-negative and non-increasing function in the
argument.
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Proof. Fix v with (4.10) holding for small ε� > 0. Without loss of generality one can suppose s = 0.
Let u(t, x) = Av(t,0)u0 be the solution to the Cauchy problem (4.8)–(4.9) for brevity. Similarly as before, from
(4.8)–(4.9), for each 1 � k � �, one has the high-order energy estimate:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂u(t)

∣∣2 dξ =
∑
|α|=k

n∑
j=1

〈−∂α
[
f ′

j (v)uxj

]
, ∂αu

〉
,

where the general term on the r.h.s. can be rewritten as〈−∂α
[
f ′

j (v)uxj

]
, ∂αu

〉= 〈−f ′
j (v)∂αuxj

, ∂αu
〉+ ∑

β<α

Cα
β

〈−∂α−βf ′
j (v)∂βuxj

, ∂αu
〉
. (4.12)

For the first term on the r.h.s. of (4.12), it follows from integration by part and (4.10) that〈−f ′
j (v)∂αuxj

, ∂αu
〉= 1

2

〈
f ′′

j (v)vxj
,
(
∂αu

)2〉� C‖vxj
‖L∞

∥∥∂αu
∥∥2 � Cε�

∥∥∂αu
∥∥2

.

For the general one of the second term on the r.h.s. of (4.12), one can use the Sobolev inequality and (4.10) to estimate,∣∣〈−∂α−βf ′
j (v)∂βuxj

, ∂αu
〉∣∣� ∥∥∂α−βfj (v)

∥∥
L2

∥∥∂βuxj

∥∥
L∞
∥∥∂αu

∥∥
L2

� C‖∇v‖H�−1‖∇u‖H�−1

∥∥∂αu
∥∥

� Cε�‖∇u‖2
H�−1,

for the case when |β| � � − [n/2] − 2 which implies |β| + 1 + [n/2] + 1 � �, and∣∣〈−∂α−βf ′
j (v)∂βuxj

, ∂αu
〉∣∣� ∥∥∂α−βfj (v)

∥∥
L∞
∥∥∂βuxj

∥∥
L2

∥∥∂αu
∥∥

L2

� C‖∇v‖H�−1

∥∥∂βuxj

∥∥
L2

∥∥∂αu
∥∥

L2

� Cε�‖∇u‖2
H�−1,

for the case when |β| � �−[n/2]− 1 which together with β < α gives 1 � |α −β| � [n/2]+ 1. Then, from the above
estimates, one has:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αu(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂u(t)

∣∣2 dξ � Cε�

∑
1�m��

∥∥∇mu(t)
∥∥2

, (4.13)

for t � 0.
Next, we combine the above energy inequalities with the spectral analysis result Lemma 4.1 to obtain the time-

decay of u. In fact, by taking the proper linear combination over 1 � k � � and using the smallness of ε�, it follows
from (4.13) that there exists the high-order energy functional Ehigh(u(t)) which is equivalent with ‖∇u(t)‖H�−1 such
that one has:

d

dt
Ehigh

(
u(t)

)+ λEhigh
(
u(t)

)
� C

∥∥∇u(t)
∥∥2

, (4.14)

for any t � 0. Since u can be written as

u(t) = e�P tu0 +
t∫

0

e�P(t−s)

{
−

n∑
j=1

f ′
j (v)uxj

}
ds, (4.15)

it follows from Lemma 4.1 that

∥∥∇u(t)
∥∥� C‖u0‖H 1∩L1(1 + t)−

n
4 − 1

2 +
n∑

j=1

C

t∫
0

(1 + t − s)−
n
4 − 1

2
∥∥f ′

j (v)uxj

∥∥
H 1∩L1 ds

� C‖u0‖H 1∩L1(1 + t)−
n
4 − 1

2 + Cε�

t∫
(1 + t − s)−

n
4 − 1

2 ‖∇u‖H 1 ds. (4.16)
0
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Define:

M(t) = sup
0�s�t

(1 + s)
n
2 +1 Ehigh

(
u(s)

)
.

Since n � 3 implies n/4 + 1/2 > 1, it follows from (4.16) that∥∥∇u(t)
∥∥� C(1 + t)−

n
4 − 1

2
(‖u0‖H 1∩L1 + ε�

√
M(t)

)
.

Plugging the above inequality into (4.14) and using the Gronwall inequality, one has:

Ehigh
(
u(t)

)
� e−λt Ehigh(u0) + C

t∫
0

e−λ(t−s)
∥∥∇u(s)

∥∥2
ds

� C(1 + t)−
n
2 −1(‖u0‖2

H�∩L1 + ε2
�M(t)

)
,

which implies that

M(t) � C
(‖u0‖2

H�∩L1 + ε2
�M(t)

)
.

Since ε� > 0 is small, it follows that

M(t) � C‖u0‖2
H�∩L1,

that is, ∥∥∇u(t)
∥∥

H�−1 � CEhigh
(
u(t)

)
� C‖u0‖H�∩L1(1 + t)−

n
4 − 1

2 (4.17)

for any t � 0. To obtain the time-decay of zero-order, one again uses (4.15) to get:

∥∥u(t)
∥∥� C‖u0‖L2∩L1(1 + t)−

n
4 + Cε�

t∫
0

(1 + t − s)−
n
4
∥∥∇u(s)

∥∥ds,

which further from (4.17) gives, ∥∥u(t)
∥∥� C‖u0‖H�∩L1(1 + t)−

n
4 (4.18)

due to n � 3. Therefore, (4.11) follows from (4.17) together with (4.18). This completes the proof of Lemma 4.2. �
Proof of Theorem 4.1. Suppose all conditions in Theorem 4.1 hold. Let us define the function sequence {um}∞m=0 by
iteration as follows:

∂tu
m+1 +

n∑
j=1

f ′
j

(
um
)
um+1

xj
= �Pum+1 + S, t ∈ R, x ∈ Rn,

where u0 ≡ 0 and S = S(t, x) ∈ Cper([0, T ];HN+1). We claim that if (4.3) holds for some small constant δ > 0, then
for each m � 1, um is well-defined and satisfies:

(i) um ∈ Cper([0, T ];HN+1);
(ii) there is εN+1 > 0 such that for all m, ∣∣∣∣∣∣um

∣∣∣∣∣∣
HN+1

per
� εN+1. (4.19)

We prove this claim by induction. In fact, suppose that (i) and (ii) hold for m � 0. As in [38], um+1 can be written as
the mild form,

um+1(t) =
t∫

Aum(t, s)S(s) ds.
−∞
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Then, the periodicity of um+1 is proved by the computations:

um+1(t + T ) =
t+T∫

−∞
Aum(t + T , s)S(s) ds

=
t∫

−∞
Aum(t + T , τ + T )S(τ + T )dτ

=
t∫

−∞
Aum(t, τ )S(τ ) dτ = um+1(t),

where the second equality follows from taking change of variable s = τ + T , and the third equality holds since S is
T -periodic and we used,

Aum(t + T , τ + T ) = Aum(t, τ ),

due to the fact that um is also T -periodic. On the other hand, from Lemma 4.2 and the assumption n � 5, one has,

∥∥um+1(t)
∥∥

HN+1 �
t∫

−∞
C∗(εN+1)(1 + t − s)−

n
4
∥∥S(s)

∥∥
HN+1∩L1 ds

� C∗(εN+1) sup
0�t�T

∥∥S(t)
∥∥

HN+1∩L1

t∫
−∞

(1 + t − s)−
n
4 ds

� CC∗(εN+1) sup
0�t�T

∥∥S(t)
∥∥

HN+1∩L1 ,

where C∗(·) is defined in (4.11) and εN+1 > 0 is sufficiently small such that Lemma 4.2 can be applied. Thus,
from (4.3), one can take δ > 0 small such that

CC∗(εN+1)δ � εN+1.

This leads to the uniform bound of um+1 as follows:∣∣∣∣∣∣um+1
∣∣∣∣∣∣

HN+1
per

= sup
0�t�T

∥∥um+1(t)
∥∥

HN+1 � εN+1.

Therefore, (i) and (ii) also hold for m + 1. By induction, (i) and (ii) hold for all m � 1.
Next, let us define the infinite summation,

u0 +
∞∑

m=0

(
um+1 − um

)=: u0 + lim
k→∞

k∑
m=0

(
um+1 − um

)
. (4.20)

We further claim that the above infinite summation is absolutely convergent in Cper([0, T ];HN). Actually, the differ-
ence w = um+1 − um satisfies the equation:

∂tw +
n∑

j=1

f ′
j

(
um
)
wxj

= �Pw −
n∑

j=1

[
f ′

j

(
um
)− f ′

j

(
um−1)]um

xj
,

for any t ∈ R and x ∈ Rn. Thus w also satisfies the following mild form,

w(t) =
t∫

−∞
Aum(t, s)

{
−

n∑
j=1

[
f ′

j

(
um
)− f ′

j

(
um−1)]um

xj

}
ds.

Similarly as before, it follows from Lemma 4.2 that
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∥∥w(t)
∥∥

HN �
n∑

j=1

t∫
−∞

C∗(εN)(1 + t − s)−
n
4
∥∥[f ′

j

(
um
)− f ′

j

(
um−1)]um

xj

∥∥
HN∩L1 ds

� CC∗(εN+1)

t∫
−∞

(1 + t − s)−
n
4
∥∥um − um−1

∥∥
HN

∥∥um
∥∥

HN+1 ds

� CC∗(εN+1)
∣∣∣∣∣∣um − um−1

∣∣∣∣∣∣
HN

per

∣∣∣∣∣∣um
∣∣∣∣∣∣

HN+1
per

,

which from (4.19) implies:

|||w|||HN
per

� CC∗(εN+1)εN+1
∣∣∣∣∣∣um − um−1

∣∣∣∣∣∣
HN

per
.

Since δ can be arbitrarily small and so is εN+1, there is μ < 1 such that∣∣∣∣∣∣um+1 − um
∣∣∣∣∣∣

HN
per

= |||w|||HN
per

� μ
∣∣∣∣∣∣um − um−1

∣∣∣∣∣∣
HN

per
. (4.21)

Therefore, the infinite summation given by (4.20) is indeed absolutely convergent in the Banach space
Cper([0, T ];HN). Let us denote the corresponding limit by u∗(t, x). Then,

u∗ ∈ Cper
([0, T ];HN

)
holds with

|||u∗|||HN
per

� lim inf
m→∞

∣∣∣∣∣∣um
∣∣∣∣∣∣

HN
per

� lim inf
m→∞

∣∣∣∣∣∣um
∣∣∣∣∣∣

HN+1
per

� εN+1.

Furthermore, by passing to the limit, u∗ satisfies the equation:

∂tu +
n∑

j=1

f ′
j (u)uxj

= �Pu + S, t ∈ R, x ∈ Rn.

Hence, Eq. (4.1) admits a solution u∗ in Cper([0, T ];HN) satisfying (4.4). For uniqueness, suppose that ũ∗ is any
other solution in Cper([0, T ];HN) to (4.1) with (4.4) holding instead for ũ∗. Then, the completely same proof as
for (4.21) yields:

|||u∗ − ũ∗|||HN
per

� μ|||u∗ − ũ∗|||HN
per

for some μ < 1. Thus the uniqueness follows. This completes the proof of Theorem 4.1. �
Let us conclude this subsection with a remark to point out how to extend Theorem 4.1 to the case of the usual

viscous conservation laws with a conservative time-periodic source. The corresponding result turns out to hold even
when the spatial dimension n � 3. To be precise, let us consider

∂tu + ∇ · f (u) = �u + ∇ · G, t ∈ R, x ∈ Rn, (4.22)

where f satisfies (4.2) and G is T -periodic. It can be shown that if n � 3, N � 2[n/2] + 2 are supposed, and

T∫
0

∥∥G(s)
∥∥2

HN+1∩L1 ds

is small, then (4.22) admits a unique time-periodic solution uper(t, x) satisfying,

∣∣∣∣∣∣uper
∣∣∣∣∣∣2 =: sup

0�t�T

∥∥uper(t)
∥∥2

HN +
T∫

0

∥∥∇uper(s)
∥∥2

HN ds < C. (4.23)

For the proof, as in [38,10], the idea is to verify the non-linear mapping,
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Ψ (u) =:
t∫

−∞
e�(t−s)∇ · [−f (u) + G

]
ds, (4.24)

satisfies the fixed point theorem in terms of the triple norm ||| · ||| defined in (4.23). The case of 3 � n � 4 can be dealt
with because compared with the case of the weak dissipation term �Pu, the viscosity term �u produces one more
derivative which is time–space integrable, and also because the source term in (4.24) is in divergence form.

4.2. Stability of time-periodic solutions

In this subsection, we are concerned with the stability of the time-periodic solution u∗(t, x) obtained in Theo-
rem 4.1. For this, let us consider the Cauchy problem:

∂tu + ∇ · f (u) = �Pu + S, t > t0, x ∈ Rn, (4.25)

with given initial data

u(t0, x) = u0(x), x ∈ Rn, (4.26)

for t0 ∈ R. The goal of this subsection is to prove that whenever u0(x) is a small smooth perturbation of u∗(t0, x),
there exists a unique smooth solution u(t, x) to the Cauchy problem (4.25)–(4.26) which is close to u∗(t, x) for all
the later time t > t0 and moreover, under the additional condition that the initial perturbation is bounded in L1, the
solution u(t, x) tends to u∗ with an algebraic decaying rate when time tends to infinity.

Without loss of generality, we suppose t0 = 0 in what follows. Set the perturbation v = v(t, x) by:

u(t, x) = u∗(t, x) + v(t, x),

and then the Cauchy problem (4.25)–(4.26) is reformulated as

∂tv + ∇ · [f (u∗ + v) − f (u∗)
]= �Pv, t > 0, x ∈ Rn, (4.27)

v(0, x) = v0(x) ≡ u0(x) − u∗(0, x), x ∈ Rn. (4.28)

The main result of this subsection is stated as follows:

Theorem 4.2. Let n � 3 and N � 2[n/2] + 2 and let (4.2) hold. Suppose that u∗(t, x) is a time-periodic solution
satisfying,

sup
t∈R

∥∥u∗(t)
∥∥

HN0 � δ, (4.29)

for a small δ > 0 and for N0 � N . There are constants ε0 > 0, λ > 0 and C such that if ‖v0‖HN � ε0 then the Cauchy
problem (4.27)–(4.28) admits a unique smooth solution v(t, x) satisfying,

∥∥v(t)
∥∥2

HN + λ

t∫
0

∥∥∇v(s)
∥∥2

HN−1 ds + λ

t∫
0

(∥∥∇√
Pv(s)

∥∥2 + ∥∥∇N+1
√

Pv(s)
∥∥2)

ds � C‖v0‖2
HN , (4.30)

for any t � 0. Moreover, if ‖v0‖L1 is bounded, then the obtained solution v enjoys the time-decay estimate,∥∥v(t)
∥∥

HN � C‖v0‖HN∩L1(1 + t)−
n
4 , (4.31)

for any t � 0.

Proof. The proof can be done similarly as before, and hence we only give the proof of the uniform estimate (4.30)
and the time-decay rate (4.31). To the end, suppose that

sup
t�0

∥∥v(t)
∥∥

HN � ε,

for small ε > 0, and (4.29) holds for small δ > 0. We divide the proof by two steps.
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Step 1. The zero-order energy estimate gives:

1

2

d

dt

∥∥v(t)
∥∥2 +

∫
Rn

|ξ |2
1 + |ξ |2

∣∣̂v(t)
∣∣2 dξ � C(ε + δ)

∥∥∇v(t)
∥∥2

. (4.32)

In fact, the zero-order energy integration shows that

1

2

d

dt

∥∥v(t)
∥∥2 +

∫
Rn

|ξ |2
1 + |ξ |2

∣∣̂v(t)
∣∣2 dξ = 〈∇ · [f (u∗ + v) − f (u∗)

]
,−v

〉
.

By using the identity,

fj (u∗ + v) − f (u∗) = f ′
j (u∗)v +

1∫
0

(1 − θ)f ′′
j (u∗ + θv) dθ v2, (4.33)

and also f ′
j (0) = 0 for each 1 � j � n, one has:

〈∇ · [f (u∗ + v) − f (u∗)
]
,−v

〉
� C

∫
Rn

(|u∗| + |v|)|v| · |∇v|dx

� C
∥∥(u∗, v)(t)

∥∥
Ln

∥∥v(t)
∥∥

L
2n

n−2

∥∥∇v(t)
∥∥

� C(δ + ε)
∥∥∇v(t)

∥∥2
,

where the Young inequality 1/n + (n − 2)/(2n) + 1/2 = 1 and the Sobolev inequality were used. Then (4.32) is
proved.

The high-order energy estimates give:

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αv(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2
∣∣̂v(t)

∣∣2 dξ � C(ε + δ)
∑

1�m�N

∥∥∇mv(t)
∥∥2

, (4.34)

for each 1 � k � N . In fact, as before, it follows from (4.27) that

1

2

d

dt

∑
|α|=k

Ck
α

∥∥∂αv(t)
∥∥2 +

∫
Rn

|ξ |2+2k

1 + |ξ |2 |̂v |2 dξ =
n∑

j=1

∑
|α|=k

Ck
α

(
I 1
j,α + I 2

j,α

)
, (4.35)

where I 1
j,α, I 2

j,α take the form:

I 1
j,α = 〈

∂xj
∂α
[
f ′

j (u∗)v
]
,−∂αv

〉
,

I 2
j,α =

〈
∂xj

∂α

( 1∫
0

(1 − θ)f ′′
j (u∗ + θv) dθ v2

)
,−∂αv

〉
.

By using (4.29) and the same proof as before, one has:

I 1
j,α � Cδ

∑
1�m�N

∥∥∇mv(t)
∥∥2

,

I 2
j,α � Cε

∑
1�m�N

∥∥∇mv(t)
∥∥2

,

which yield (4.35).
Therefore, (4.30) follows from taking the proper linear combination of (4.32) and (4.34), further taking time inte-

grations over [0, t] and then using the smallness of ε and δ.



596 R. Duan et al. / J. Math. Pures Appl. 93 (2010) 572–598
Step 2. In this step, we prove the time-decay estimate (4.31). To the end, we suppose that ‖v0‖L1 is bounded. (4.27) can
be written as the mild form:

v(t) = e�P tv0 +
t∫

0

e�P(t−s)∇ · [f (u∗) − f (u∗ + v)
]
ds.

Applying Lemma 4.1 about the time-decay estimates on the linear solution operator e�P t , one has:

∥∥v(t)
∥∥� C(1 + t)−

n
4 ‖v0‖L2∩L1 + C

t∫
0

(1 + t − s)−
n
4 − 1

2
(∥∥Q(s)

∥∥
L1 + ∥∥∇Q(s)

∥∥)ds, (4.36)

where Q is denoted by,

Q = f (u∗) − f (u∗ + v).

It follows from (4.33) that ∥∥Q(s)
∥∥

L1 + ∥∥∇Q(s)
∥∥� C(ε + δ)

∥∥∇v(s)
∥∥. (4.37)

On the other hand, from Step 1, one has:

d

dt
E
(
v(t)

)+ λE
(
v(t)

)
� C

∥∥v(t)
∥∥2

, (4.38)

where E (v(t)) is an equivalent energy with ‖v(t)‖HN . Now, we claim that (4.31) follows from (4.36), (4.37)
and (4.38). In fact, in [10], let us define:

E∞(t) = sup
0�s�t

(1 + s)
n
2 E
(
v(s)

)
. (4.39)

Since n � 3 implies n/4 + 1/2 > 1, it follows from (4.36) and (4.37) that∥∥v(t)
∥∥� C(1 + t)−

n
4
(‖v0‖L2∩L1 + (ε + δ)

√
E∞(t)

)
. (4.40)

Then using the Gronwall inequality for (4.38) and combing it with (4.40), one has:

E
(
v(t)

)
� e−λt E (v0) + C

t∫
0

e−λ(t−s)
∥∥v(s)

∥∥2
ds

� C(1 + t)−
n
2
(‖v0‖2

L2∩L1 + E (v0) + (
ε2 + δ2)E∞(t)

)
,

for any t � 0, which further gives,

E∞(t) � C
(‖v0‖2

L2∩L1 + E (v0) + (
ε2 + δ2)E∞(t)

)
.

Since ε and δ are small, it follows that

E∞(t) � C
(‖v0‖2

L2∩L1 + E (v0)
)
,

which implies (4.31) from the definition (4.39). This completes the proof of Theorem 4.2. �
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