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a b s t r a c t

Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in
turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β
production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists
and to study their suppressive function, viral coding sequences for the entire structural and nonstructural
proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14,
nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein
ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to
inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation
but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A
further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demon-
strate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs
expression.

& 2015 Elsevier Inc. All rights reserved.
Introduction

Porcine epidemic diarrhea (PED) is a highly contagious acute
enteric disease characterized by vomiting, watery diarrhea, and
severe dehydration of up to 80–100% mortality in suckling piglets
(Song and Park, 2012; Sun et al., 2012a; Debouck and Pensaert,
1980; Junwei et al., 2006). PED was first reported in England in
feeder and fattening pigs during 1970s (Wood, 1977), and ree-
merged in Asia since 2010 with greater virulence and economic
losses (Chen et al., 2013; Li et al., 2012; Puranaveja et al., 2009;
Yang et al., 2013). In the US, PEDV appeared for the first time in
2013 and severely affected most pig-producing states (Chen et al.,
2014; Marthaler et al., 2013; Mole, 2013; Stevenson et al., 2013).
The causative agent is porcine epidemic diarrhea virus (PEDV),
which belongs to the Alphacoronavirus genus in the family Cor-
onaviridae (http://ictvonline.org/virustaxonomy.asp). PEDV is an
enveloped virus with a single-stranded positive-sense RNA gen-
ome of approximately 28 kb in length with the 50-cap and the 30-
polyadenylated tail. The PEDV genome is arranged with ORF1a,
ORF1b, S, ORF3, E, M, N, in order with both termini flanking with
the 50- and 30-untranslated regions (UTRs) (Duarte et al., 1993).
ease Control and Prevention,
ORF1a codes for the large polyprotein PP1a, while ORF1b is always
expressed as a fusion protein PP1a/b with PP1a through a ribo-
somal frameshifting. PP1a and PP1a/b are further processed to 16
nonstructural proteins, nsp1 through nsp16. ORF3 codes for an
accessory protein which is likely an additional nonstructural pro-
tein, whereas S, E, M and N genes code for four structural proteins
(Song and Park, 2012).

During viral infection, the sensing of foreign nucleic acids in the
cytosol leads to the activation of an innate immune response to
produce type I interferons (IFN-α/β) and establishes an antiviral
state. The type I IFNs and IFN-mediated response provide a first
line of defense against viral infection. The host innate immune
system deploys the pattern-recognition receptors (PRRs) to sense
and respond to the pathogen-associated molecular patterns
(PAMPs) of virus (Kawai and Akira, 2011). This recognition triggers
the activation of retinoic acid-inducible gene I (RIG-I) or mela-
noma differentiation gene 5 (MDA5), which further binds to the
mitochondrial adapter protein MAVS/IPS-1 and recruits TNF
receptor-associated factor 3/6 (TRAF3 and TRAF6). TRAF3 activates
IκB kinase (IKK)-related kinases such as TANK-binding kinase 1
(TBK1) and IKKε for phosphorylation of interferon regulatory
factors 3 and 7 (IRF3/IRF7) and type I IFN production (Fitzgerald
et al., 2003; Sharma et al., 2003). TRAF6 leads to TANK1 activation,
followed by NF-kB activation and cytokine production (Rajsbaum
and Garcia-Sastre, 2013). Upon TBK1 activation, phosphorylated
IRF3 undergoes homodimerization and unveils the nuclear locali-
zation signal leading to the nuclear translocation, where it forms a

http://ictvonline.org/virustaxonomy.asp
www.sciencedirect.com/science/journal/00426822
www.elsevier.com/locate/yviro
http://dx.doi.org/10.1016/j.virol.2015.12.010
http://dx.doi.org/10.1016/j.virol.2015.12.010
http://dx.doi.org/10.1016/j.virol.2015.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.virol.2015.12.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.virol.2015.12.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.virol.2015.12.010&domain=pdf
mailto:dyoo@illinois.edu
http://dx.doi.org/10.1016/j.virol.2015.12.010


Q. Zhang et al. / Virology 489 (2016) 252–268 253
complex with the transcription co-activator CREB (cAMP respon-
sive element binding)-binding protein (CBP)/p300 (Dragan et al.,
2007; Lin et al., 1998; Panne et al., 2007). The IRF3-CBP/p300
complex further binds to the positive regulatory domain (PRD) I–
IV regions of the IFN-β promoter to assemble the enhanceosome
together with NF-κB and other factors to turn on the transcription
of type I IFN genes (Honda and Taniguchi, 2006). The IRF3–CBP/
p300 interaction is crucial for IFN transcription. Following pro-
duction and secretion, IFN molecules bind to the cell surface
receptors and trigger the activation of Janus kinase–signal trans-
ducers and activators of transcription (JAK–STAT) signaling
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Fig. 1. PEDV infection in Vero and MARC-145 cells. (A and B) Immunofluorescence show
PEDV-infected cells. Vero and MARC-145 cells were infected with PEDV at an MOI of 0.1
monoclonal antibody (mAb) or rabbit anti-M polyclonal antibody (pAb). Arrows showmu
cells. Cell lysates were prepared at 24 h post-infection, and Western blots were conduc
cascade. Phosphorylated STAT1 and STAT2 associate to form a
heterodimer, which in turn recruits the IFN-regulatory factor 9
(IRF9) to form the IFN-stimulated gene factor 3 (ISGF3). ISGF3
translocates to the nucleus and induces genes regulated by IFN-
stimulated response elements (ISRE), resulting in expression of
hundreds of antiviral genes and establishment of an antiviral state
(Stark and Darnell, 2012).

In turn, many viruses have evolved to counteract the host
innate immune defense and such viral functions are often
redundant. For nidoviruses, eleven and six viral proteins have been
described as IFN antagonists for severe acute respiratory syndrome
      - +  -
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lti-nucleated cells by fusion. (C) Detection of the N and M proteins in PEDV-infected
ted using antibodies against N and M proteins.
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coronavirus (SARS-CoV) and porcine reproductive and respiratory
syndrome virus (PRRSV), respectively (Huang et al., 2014; Kindler
and Thiel, 2014; Shi et al., 2014; Sun et al., 2012b; Totura and Baric,
2012). For Betacoronaviruses, nsp1 has been reported as a multi-
functional viral antagonist for innate immune response (Huang
et al., 2011b; Narayanan et al., 2008; Wang et al., 2010). For PEDV,
the viral modulation of innate immune signaling is poorly
understood. PEDV infects Vero cells, but these cells are type I IFN-
deficient due to a chromosomal deletion (Desmyter et al., 1968). In
the present study, we identified MARC-145 cells as a suitable line
of cells for PEDV infection and for study of innate immune mod-
ulation. We showed that PEDV suppressed the type I interferon
production and ISGs expression in these cells, and identified nsp1,
nsp3, nsp7, nsp14, nsp15, nsp16, E, M, N and ORF3 as the viral IFN
antagonists. We showed that PEDV nsp1 caused the CBP degra-
dation by the proteasome-dependent pathway. The CBP degrada-
tion is a novel mechanism of coronavirus nsp1 for IFN suppression
and our study provides a new insight into the immune modulation
and evasion strategy of PEDV.
Results

Infection of PEDV in Vero and MARC-145 cells

PEDV replicates in the cytoplasm of villous epithelial cells of
the small and large intestines (Debouck and Pensaert, 1980;
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Fig. 2. Suppression of IFN-β production by PEDV. (A) Inhibition of IFN-β gene transcription
12 h in 12-well plates. Cells were transfected with poly(I:C) (0.5 μg/well) for 12 h, and qR
are presented. (B and C), Regulation of IFN-β and IRF3 activities by PEDV. MARC-145 cells
well plates for 6 h followed by PEDV infection at an MOI of 1 for 12 h. Cells were then s
reporter assay. Results from three independent experiments were expressed as mean
triplicate. Asterisks indicate statistical significance calculated by the Student's t test. *Po
cells were infected with PEDV in 6-well plates at an MOI of 1 for 12 h and stimulated wi
30 min. Fresh MARC-145 cells were grown in 96-well plates and incubated with super
infected with VSV–GFP at an MOI of 0.1 for 16 h. GFP expression was assessed by fluore
Sueyoshi et al., 1995). The viral antigen is also detectable in the
macrophages that infiltrated the lamina propria (Lee et al., 2000).
Histological studies showed that PEDV replicates in the porcine
respiratory tract in vivo and transformed alveolar macrophages
(3D4) in vitro (Park and Shin, 2014). Vero cells are widely used for
PEDV for diagnosis, virus isolation, and research, but these cells are
type I IFN-deficient due to the chromosomal deletion (Desmyter
et al., 1968). To study a possible regulation of innate immune
signaling by PEDV, various cell lines were examined for suscept-
ibility. Cells were infected with PEDV at an MOI of 0.1 in various
trypsin concentrations and CPE was examined daily for up to
5 days. In Vero and MARC-145 cells, apparent CPE of multi-
nucleation was observed by 24 h post-infection (Fig. 1A and B, left
panel). Trypsin activates the cleavage of S protein and induces
membrane fusion to trigger infection (Park et al., 2011; Wicht et
al., 2014). PEDV infection was characterized by syncytia formation
(Hofmann and Wyler, 1988) and infection foci were visualized by
anti-PEDV M and N antibodies, indicating the susceptibility of both
cell types for PEDV infection (Fig. 1A and B, middle and right
panel). The viral proteins were detected using specific antibodies
by western blot and the specific bands were corresponding to the
M and N proteins, further confirming the productive infection of
these cells by PEDV (Fig. 1C). The optimal trypsin concentration for
PEDV propagation was 5 μg/ml and 2 μg/ml for Vero and MARC-
145 cells, respectively. MARC-145 cells have been used to study
type I IFN signaling of porcine arterivirus (Kim et al., 2010; Over-
end et al., 2007; Patel et al., 2010), and thus infection of these cells
0

5

10

15

20

25

30

35

40

Mock PEDV poly(I:C) PEDV+ 
poly(I:C)

(fo
ld

 c
ha

ng
e)

** *

k

(I:C)

V+
(I:C)

V

1/1       1/2       1/4       1/8      1/16     1/32           

IFN-β-Luc [poly(I:C)]

in virus-infected cells. MARC-145 cells were infected with PEDV at an MOI of 1 for
T-PCR was conducted for IFN-β mRNA. Relative quantitation values for IFN-β mRNA
were co-transfected with pIFN-β-Luc (B), or pIRF3-Luc (C) along with pRL-TK in 12-
timulated with poly(I:C) for 12 h, and cell lysates were prepared for dual-luciferase
relative luciferase with standard deviation. Each experiment was carried out in
0.05, **Po0.01, ***Po0.001. (D) VSV–GFP bioassay for IFN production. MARC-145

th poly(I:C) for 12 h. Cell culture supernatants were collected and UV-irradiated for
natants of 2-fold serial dilutions of up to 1:32. After 24 h of incubation, cells were
scent microscopy. Each dilution was tested in triplicate.
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Fig. 3. Cloning of PEDV genes and identification of viral proteins antagonizing type I IFN cascade. (A) Genome organization of PEDV. The PEDV genome is organized as 50 UTR-
ORF1a-ORF1b-S(S1þS2)-ORF3-E-M-N-30UTR in order. Sixteen nonstructural proteins encoded in ORF1a and ORF1b are depicted. (B and C) Confirmation of cloned gene
expression. One μg of each of the cloned genes was transfected to HeLa cells in 12-well plates, and protein expression was determined by immunofluorescence (B) and
Western blot (C) for each gene using anti-FLAG antibody. (D and E) Regulation of poly(I:C)-induced IFN-β promoter activity by individual PEDV proteins. HeLa cells were
seeded in 12-well plates and co-transfected with pIFN-β-Luc along with individual PEDV genes and pRL-TK at a ratio of 1:1:0.1. Since the expression levels of nsp3 and nsp16
were low, three-times more plasmids were transfected for these genes to ensure the comparable level of protein expression. PRRSV nsp1α (P-nsp1α) is a known type I IFN
suppressor, and the IFN-suppression of its mutant P-nsp1α(m) was lost. Both constructs were included as controls. At 24 h post-transfection, cells were stimulated with poly
(I:C) (0.5 μg/ml) for 12 h and the luciferase activities were measured. The reporter experiments were repeated three times, each time in triplicate. Asterisks indicate the
statistical significance. Statistical analysis was performed by Student's t test using GST as a control. nPo0.05, nnPo0.01 and nnnPo0.001. (F) VSV–GFP bioassay. The cell
culture supernatants for IFN-β promoter luciferase assays were collected and diluted serially by 2-folds up to 1:64. Fresh MARC-145 cells were grown in 96-well plates and
incubated with each dilution of supernatants for 24 h, and then infected with VSV–GFP at an MOI of 0.1 for 16 h. VSV replication was measured by monitoring the
fluorescence by GFP expression using fluorescent microscopy. Data were presented as log2 sample dilution folds. (G) Inhibition of IRF3 promoter activation by PEDV proteins.
The IFN antagonists were further examined for IRF3 activities by luciferase reporter assays. Statistical analysis was performed by Student's t test using GST as a control.
nPo0.05, nnPo0.01 and nnnPo0.001.
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by PEDV allowed us to study IFN modulation and signaling
cascade.

Suppression of IFN-β production in PEDV-infected cells

To determine whether PEDV infection antagonized the type I
IFN response, IFN-β mRNA was determined in virus-infected cells.
MARC-145 cells were infected with PEDV and stimulated with poly
(I:C) followed by qRT-PCR for IFN-β mRNA using total RNA. As
shown in Fig. 2A, PEDV infection did not induce the level of IFN-β
mRNA expression whereas poly(I:C) alone induced the IFN-β gene
expression effectively, indicating the suppression of IFN-β
response by PEDV. To further evaluate the IFN-β response in
PEDV-infected cells, a dual luciferase assay was performed. The
results showed the suppression of IFN-β promoter activity in
PEDV-infected cells upon poly(I:C) stimulation (Fig. 2B), demon-
strating the modulation of IFN production by PEDV infection. IRF3
was additionally examined for its role for PEDV-mediated IFN-β
suppression. The IRF3 promoter activity was found to be inhibited
(Fig. 2C). The suppression of IFN-β production was confirmed by
bioassay using VSV–GFP. VSV is sensitive to type I IFN treatment
and thus commonly used for IFN bioassays. Culture supernatants
were collected from PEDV-infected cells and were UV-irradiated,
followed by incubation with MARC-145 cells and infection with
VSV–GFP. VSV grew normally (Fig. 2D), whereas it did not grow
with supernatants collected from poly(I:C)-treated cells for up to
1:8 dilution. VSV–GFP also grew normally with supernatants from
both PEDV-infected cells with or without poly(I:C) stimulation,
confirming the suppression of type I IFN production by PEDV.

Identification of viral IFN antagonists

The viral IFN antagonism is often redundant, and at least 11
viral proteins have been identified as IFN antagonists for SARS-CoV
(Kindler and Thiel, 2014; Shi et al., 2014; Totura and Baric, 2012).
To identify such proteins for PEDV, we cloned PEDV genes repre-
senting nsps 1 through 16, and structural genes for S, E, M, and N
including the ORF3 accessory protein gene (Fig. 3A). Among these,
nsp11 is a small oligopeptide generated from PP1a when riboso-
mal frameshifting does not occur and so was not included in this
study. Each gene was inserted into the pXJ41 expression vector
with the FLAG tag at either N- or C-terminus, and examined for IFN
suppression. The protein expression of cloned genes was exam-
ined by immunofluorescence (Fig. 3B) and western blot (Fig. 3C)
using anti-FLAG antibody. All genes were expressed as anticipated.
HeLa cells were then co-transfected with an individual gene along
with pIFN-β-Luc and pRL-TK, and reporter assays were conducted.
PRRSV nsp1α (P-nsp1α) is known as an IFN-β suppressor, and its
cystine mutant P-nsp1α(m) (C28S) is an IFN suppression revertant
(Han et al., 2013; Song et al., 2010), and so they were included as
positive and negative controls, respectively. Poly(I:C) upregulated
the IFN-β transcription in cells expressing pXJ41, GST, and P-nsp1α
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(m), while P-nsp1α suppressed the IFN-β promoter activity as
expected (Fig. 3D and E). Of the nsps, nsp1, nsp3, nsp7, nsp14,
nsp15 and nsp16 were shown to down-regulate the IFN-β activity
(Fig. 3D). For structural proteins, E, M, and N were found to sup-
press the IFN induction (Fig. 3E), and ORF3 was additionally
identified as an IFN suppressive protein (Fig. 3E). The findings from
the reporter assays were validated by VSV–GFP bioassays. The
dilution corresponding to 50% of cells exhibiting GFP expression
was determined as the end-point inhibition. For pXJ41, GST, and
nsp9, GFP expression was evident and their end-point inhibitions
were determined as 1:64 (Fig. 3F). In contrast, the viral proteins
identified as the luciferase suppressors showed an apparent inhi-
bition of VSV–GFP replication and their end-points were deter-
mined to be 1:4 to 1:16 (Fig. 3F). These titers represent 4- to 16-
fold lower than those of controls. Taken together, these data
demonstrate that PEDV has the ability for IFN suppression, and
nsp1, nsp3, nsp7, nsp14, nsp15, nsp16, ORF3, E, M and N are the
viral IFN antagonists.

To determine the target for IFN inhibition, the IRF3 pathway
was examined for individual viral proteins using the IRF3 lucifer-
ase reporter constructs. Upon stimulation, the IRF3-dependent
luciferase expression was reduced by nsp1, nsp3, nsp7, nsp14,
nsp15, nsp16, ORF3, E, M, and N, comparing to those of pXJ41 and
GST (Fig. 3G). This suggests that the IRF3 signaling pathway was
interfered by these viral proteins for the suppression of the IFN-β
production.

PEDV nsp1 antagonism is a nuclear event

SARS-CoV is a betacoronavirus and its nsp1 triggers inhibition
of type I IFN induction and downstream signaling, host mRNA
decay and cleavage, and inhibition of protein translation (Huang
et al., 2011b; Lokugamage et al., 2012; Narayanan et al., 2008;
nsp1 DAPI

nsp1

ER

Mito

Fig. 4. Subcellular localization of PEDV nsp1. HeLa cells were seeded on slides in 6-well
pDsRed2-ER or pDsRed2-Mito (B). At 24 h post-transfection, cells were fixed and permea
followed by Alexa Fluor 488-conjugated goat anti-mouse (green) secondary antibody t
mitochondria targeting sequence (Clontech) and so directly visualized (red). Nuclei (b
confocal laser-scanning microscope and processed with the LSM image browser (Zeiss)
Tanaka et al., 2012). Transmissible gastroenteritis virus (TGEV) is
an alphacoronavirus and its nsp1 inhibits host protein expression
(Huang et al., 2011a). Nsp1 of alphacoronavirus and betacoronavirus
lacks the overall sequence similarity (Narayanan et al., 2015), and
thus alphacoronavirus nsp1 may have a distinct basis for its bio-
logical function. Since nsp1 appeared the most potent suppressor
in our study on PEDV, nsp1 was chosen to study the molecular
basis for the IFN suppression. The subcellular localization was first
examined by confocal microscopy in transiently expressing cells.
The nsp1 distribution was evident in the both nucleus and cyto-
plasm (Fig. 4A), which is consistent with TGEV nsp1 (Narayanan
et al., 2015). Co-expression of nsp1 with either the endoplasmic
reticulum or mitochondrial marker showed the site for cyto-
plasmic nsp1 in the endoplasmic reticulum (Fig. 4B). Quantitative
RT-PCR was conducted to evaluate IFN-β suppression in nsp1-gene
transfected cells. The expression of nsp1 significantly suppressed
the IFN-βmRNA transcription (Fig. 5A), further validating the nsp1
antagonism against IFN-β production. Subsequently, the IFN-
mediated antiviral gene expression was examined for ISG15 and
ISG56 by qRT-PCR. PEDV nsp1 reduced the poly(I:C)-stimulated
mRNA levels of both ISG15 (Fig. 5B) and ISG56 (Fig. 5C), indicating
the suppression of IFN signaling by nsp1. The suppression of IFN-β,
IRF3, and NF-κB activations raises a possibility that nsp1 may
target a component of the RIG-I like receptor (RLR) signaling
pathway. To examine this premise, nsp1 was co-expressed with
one of the main components in the RLR signaling pathway, and IFN
luciferase activities were determined at 24 h post-transfection.
The over-expression of IPS-1, or IRF3 led to the robust activation of
the IFN-β promoter as anticipated, whereas the activation was
significantly inhibited by nsp1 (Fig. 6A and B). Collectively, it
suggests that nsp1 targets the RLR pathway downstream of the
IRF3 activation.
Merge                        

DAPI Merge

plates and transfected with PEDV nsp1 gene (A), or co-transfected with nsp1 and
bilized with Triton X-100. Cells were then incubated with rat anti-FLAG mAb for 1 h,
o visualize nsp1. The ER and mitochondrial proteins were fused with the ER and
lue) were stained with DAPI. Images were collected using a Zeiss LSM-510 META
.
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IRF3 is a resident protein in the cytoplasm. When stimulated, it
is phosphorylated and homodimerized, leading to the transloca-
tion to the nucleus (Dragan et al., 2007). To determine whether
PEDV nsp1 targeted the IRF3-dependent pathway, the IRF3 phos-
phorylation was first examined. nsp1-gene transfected cells were
stimulated with poly(I:C), and the IRF3 phosphorylation was
examined by western blot. As anticipated, the poly(I:C) stimula-
tion led to IRF3 phosphorylation in pXJ41-transfected cells, and
similarly, in nsp1-expressing cells, the IRF3 phosphorylation was
evident and comparable to that of control (Fig. 7A, top panel, lane
4), suggesting that PEDV nsp1 exerts its suppression downstream
of the IRF3 phosphorylation. Thus, the nuclear translocation of
IRF3 was next examined. PRRSV nsp1α is known not to block the
IRF3 nuclear localization, and so was used as a control in this
study. Endogenous IRF3 was normally diffused and distributed in
the cytoplasm, but translocated to the nucleus when stimulated by
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Fig. 5. Inhibition of IFN-β and ISG expression by nsp1. HeLa cells were seeded in 12-well p
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Fig. 6. Disruption of IRF3-mediated IFN signaling by nsp1. HeLa cells were seeded in 12-we
gene, pRL-TK, and IFN-β-Luc reporter for 24 h. Cells were harvested to measure the firefly
the firefly luciferase to renilla luciferase activities. Data are presented as mean value7
performed by Student's t test. nPo0.05, nnPo0.01, and nnnPo0.001.
poly(I:C) (Fig. 7B, second panel). Similarly to PRRSV nsp1α-
expressing cells (Fig. 7B, fourth panel), IRF3 also localized nor-
mally in the nucleus after stimulation in PEDV nsp1-expressing
cells (Fig. 7B, bottom panel), suggesting that the IFN suppression
by PEDV nsp1 may be a nuclear event. The IRF3 nuclear translo-
cation in nsp1-expressing cells was further confirmed by cell
fractionation and western blot analyses. While IRF3 was phos-
phorylated and localized in the nucleus after stimulation, PEDV
nsp1 did not inhibit the IRF3 phosphorylation and nuclear trans-
location (Fig. 7C), further indicating that the nsp1-mediated IFN
suppression was a nuclear event.
Interruption of IRF3 and CBP association by nsp1

After nuclear translocation, an IRF3 dimer associates with the
CREB-binding protein (CBP). This complex then binds to the PRD I–III
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regions of the IFN-β promoter to assemble the basal transcription
machinery complex together with NF-κB and other transcription
factors to turn on the transcription of type I IFN genes (Honda and
Taniguchi, 2006). Thus, the IRF3–CBP/p300 interaction for the
assembly of enhanceosome is crucial for IFN expression. Since PEDV
nsp1 did not block the IRF3 phosphorylation and nuclear transloca-
tion in our study, it was hypothesized that nsp1 might disrupt the
formation of enhanceosome in the nucleus. To address this, the IRF3/
CBP association was first examined in nsp1-expressing cells. Cells
were transfected with the nsp1 gene and stimulated with poly(I:C)
followed by co-immunoprecipitation using anti-IRF3 antibody and
immunoblot with anti-CBP antibody. In unstimulated cells, CBP was
undetectable due to the absence of IRF3/CBP association (Fig. 8A, left
lane), but IRF3/CBP association became evident upon stimulation
(Fig. 8A, middle lane). In nsp1-expressing cells however, the asso-
ciation of IRF3 and CBP disappeared even upon stimulation (Fig. 8A,
right lane) and the detectable level of IRF3 remained unchanged
(Fig. 8A, second panel). Absence of the association of CBP/IRF3 may
occur when nsp1 binds to either IRF3 or CBP, or when IRF3 is
unstable in the presence of nsp1. Since PEDV nsp1 was found to be a
nuclear protein (Figs. 4A, B and 7B, C), nsp1 in the nucleus might
interact with either IRF3 or CBP. However, neither the interaction
between IRF3 and nsp1, nor between CBP and nsp1 was observed by
co-immunoprecipitation in our study. IRF3 was also stable in the
presence of nsp1 (Fig. 7A and C), indicating that the absence of IRF3/
CBP association was not due to the instability of IRF3. Interestingly,
the level of CBP was found to decrease in nsp1-expressing cells
(Fig. 8A), leading us to investigate the degradation of CBP by nsp1.

Degradation of CBP by nsp1 is proteasome-dependent

Some viruses including HTLV, adenovirus, and an orthormyx-
ovirus Thogoto interact with CBP to modulate type I IFN induc-
tion, suppress protein expression, or promote virus infection
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(Ferrari et al., 2014; Jain et al., 2015; Jennings et al., 2005; Wurm et
al., 2012; Zhang et al., 2008). Degradation of CBP has been
described for the porcine arterivirus PRRSV as a strategy for IFN
antagonism (Han and Yoo, 2014). Since the level of CBP was found
to decrease in PEDV nsp1-expressing cells (Fig. 8A), CBP expres-
sion was validated in PEDV-infected cells by co-staining using anti-
CBP antibody and anti-PEDV M pAb. In uninfected cells, CBP was
predominately localized in the nucleus in MARC-145 and Vero
cells (Fig. 8B, yellow arrows). In contrast, CBP was depleted in
virus-infected cells (Fig. 8B, white arrows), demonstrating that the
CBP was degraded by PEDV. We further sought to study whether
the CBP degradation by PEDV was mediated by nsp1 protein. CBP
was exclusively nuclear in control cells, whereas it was depleted in
nsp1-expressing cells (Fig. 9A). PRRSV nsp1α is known to degrade
CBP in the nucleus (Han and Yoo, 2014), and in PRRSV nsp1α-
expressing cells, CBP was significantly depleted (Fig. 9A). The CBP
degradation was quantified by examining the ratio of nsp1-
expressing cells showing CBP degradation out of the chosen
number of nsp1-expressing cells (Fig. 9B). Approximately 92% of
PRRSV nsp1α-expressing cells showed more than 80% reduction of
CBP, which is in consistent with the previous report (Han et al.,
2013). For PEDV nsp1-expressing cells, approximately 90% cells
showed more than 80% reduction of CBP, while no CBP reduction
was observed in control cells. This finding was confirmed by
western blot. In PEDV nsp1-expressing cells, CBP degradation was
evident compared to that of control cells (Fig. 9C, top panel, lane
3). To eliminate a possibility that the reduction of CBP might be
due to the short half-life of CBP, cyclohexamide (CHX) treatment
was conducted (Fig. 9D). At 24 h post-transfection, cells were
treated with CHX to shut down the new protein synthesis for
indicated times followed by western blot. In nsp1-expressing cells,
CBP reduction was evident at the beginning of CHX treatment, and
further decreased by 2 h post-treatment. The CBP degradation was
complete by 4 h post-treatment, whereas nsp1 and β-actin
remained stable (Fig. 9D). Together, our data show that PEDV
nsp1 was the viral protein contributing to the CBP degradation.
Unlike PRRSV nsp1α, PEDV nsp1 does not contain a proteinase
activity, and no direct interaction between CBP and nsp1 was
identified in our study. It is thus unlikely that CBP would be a
direct substrate of PEDV nsp1. Therefore, it was of interest to
examine whether the CBP degradation was a proteasome-
dependent process. The treatment with MG132 blocked the CBP
degradation by nsp1. As little as 5 μM of MG132 was sufficient to
inhibit the CBP degradation, and 10 μMwas able to restore the CBP
level back to the control level (Fig. 9E). To eliminate the CBP
degradation by nsp1 was cell-type specific, we further tested the
CBP degradation by nsp1 in pig intestinal epithelial cell line (IPEC-
J2 cells), which reported to be susceptible to PEDV (Zhao et al.,
2014). CBP degradation in nsp1-expressing cells was evident
comparing to control cells (Fig. 9F, top panel). Additionally, The
CBP degradation by nsp1 was also blocked by MG132 treatment in
IPEC-J2 cells (Fig. 9F, bottom panel). This study indicates that the
CBP degradation by PEDV nsp1 was proteasome-dependent in the
nucleus.
Discussion

The innate immune system is the first line of host defense in
response to viral infection. It initiates the production of type I IFNs
and proinflammatory cytokines through the recognition of PAMPs
by PRRs and establishes antiviral states which are highly effective
on resisting and controlling infections. In turn, many viruses have
developed strategies to counteract the host innate immune
response to establish productive infection. Previous studies have
shown that PEDV infection fail to induce the IFN-β promoter
activation and that PLP2 (papain-like proteinase 2) of PEDV
antagonizes the IFN response by deubiquitinating RIG-I and STING
(Xing et al., 2013b). The PEDV N protein suppresses the IRF3 and
NF-κB activities and antagonizes the IFN-β production by dis-
rupting the interaction between IRF3 and TBK1 (Ding et al., 2014).
On the contrary, a recent study shows that PEDV infection induces
NF-κB activation in intestinal epithelial cells with the N protein as
the activator (Cao et al., 2015b). In the present study, we have
identified MARC-145 as PEDV permissive cells, and used these cells
as a model to study the innate immune modulation for PEDV. We
have shown the suppression of type I IFN production by PEDV,
which is consistent with the recent finding in IECs (Cao et al.,
2015a). We also have identified multiple viral proteins responsible
for this suppression. We have further determined PEDV nsp1 as
the viral component promoting CBP degradation in the nucleus via
the proteasome-dependent pathway.

Many viruses in the order Nidovirales are able to modulate the
host innate response, which plays an important role for their
pathogenesis. In the family Arteriviridae, equine arteritis virus
suppresses type I IFN production in equine endothelial cells (Go
et al., 2014), and PRRSV also suppresses IFN production (Albina et
al., 1998). PRRSV is susceptible to type I IFNs in cells and the
suppression of type I IFN varies for different isolates (Albina et al.,
1998; Lee et al., 2004; Overend et al., 2007). Mouse hepatitis virus
(MHV), which is a betacoronavirus, induces a high level of IFN-α
secretion by plasmacytoid dendritic cells (pDCs) during infection
(Cervantes-Barragan et al., 2007). However, other cell types
infected by MHV such as macrophages, microglia, and oligoden-
drocytes produce extremely low-levels of type I IFNs (Li et al.,
2010; Roth-Cross et al., 2008; Zhou and Perlman, 2007). The MHV
ns2 protein is dispensable for virus replication in cells but is
required for induction of hepatitis in mouse (Schwarz et al., 1990).
The 20,50-phosphodiesterase (PDE) activity of ns2 mediates the
cleavage of 20,50-oligoadenylate and prevents the activation of
RNase L, while enhancing viral growth and pathogenesis, thus ns2
is a viral IFN antagonist (Zhao et al., 2012). SARS-CoV, which is
another member virus in the genus betacoronavirus, impairs the
IFN response in virus-infected cells, and an IFN therapy has been
suggested to be efficacious for SARS patients (Cinatl et al., 2004;
Spiegel et al., 2005). MERS-CoV is also a betacoronavirus, and both
MERS-CoV and SARS-CoV do not induce a pronounced IFN-
response in polarized airway epithelial cells (Calu-3), alveolar
adenocarcinoma cells (A549) and human monocyte-derived
macrophages (Lau et al., 2013; Zhou et al., 2014; Zielecki et al.,
2013). Even though the acute infection of TGEV induces a high-
level of IFN-α in newborn pigs (La Bonnardiere and Laude, 1981),
protein 7 counteracts the host antiviral response and influences
viral pathogenesis (Cruz et al., 2011, 2013). The 7a protein of an
alphacoronavirus feline infectious peritonitis virus is a type I IFN
antagonist (Dedeurwaerder et al., 2014). Type I IFNs of chickens
inhibits viral replication and respiratory illness of the gammacor-
onavirus infectious bronchitis coronavirus (IBV) (Pei et al., 2001).
IBV delays the IFN response and the 3a and 3b accessory proteins
have been identified as the IFN antagonists (Kint et al., 2015). Thus,
modulation of type I IFN response seems to be a common evasion
strategy of viruses in the order Nidovirales.

We have shown in the present study the direct evidence that
PEDV indeed downregulates type I IFNs production during infec-
tion. PEDV suppresses the IFN-β and IRF3 activities. Since IRF3 is a
key element in the production of type I IFNs, our finding leads to a
hypothesis that PEDV modulation of type I IFNs production targets
the IRF3 signaling pathway. Interestingly, PEDV normally activates
the NF-κB activity in Vero E6 cells (Xing et al., 2013b). A recent
study confirms that PEDV infection in intestinal epithelial cells
induces NF-κB activation (Cao et al., 2015b). In that study, nuclear
localization of p65 increases by PEDV after 12 h through 48 h.
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However, activation of NF-κB during viral infection is generally an
early event. For PRRSV, NF-κB is activated 30 min after infection
(Fu et al., 2012). Thus, how PEDV modulates NF-κB activation
during early time of infection needs to be further investigated. We
have identified at least ten viral IFN antagonists and all ten pro-
teins inhibit the IRF3 activity. Whether these IFN antagonists
modulate the NF-κB activity needs to be further investigated. The
PEDV N protein suppresses Sendai virus-induced NF-κB activity in
a dose-dependent manner (Ding et al., 2014). In other study, N
protein activates NF-κB in intestinal epithelial cells (Cao et al.,
2015b). A possible explanation is that the NF-κB activation may be
time-dependent and cell type-dependent. Together, the IRF3 sig-
naling is likely the target by PEDV for type I IFNs modulation.

At least eleven viral proteins have been identified as IFN
antagonists for SARS-CoV (Kindler and Thiel, 2014; Shi et al., 2014;
Totura and Baric, 2012), whereas ten proteins have been identified for
PEDV in our study. Thus, coronaviruses seem to arm with multiple
antagonists. A possible explanation for such a functional redundancy
is that coronavirus genomes are the largest RNA known to biology
and undergo continuous genetic evolution. When a functional
mutation occurs in a major antagonist, other antagonists may com-
plement the function to ensure efficient replication and adaptation in
hosts. For SARS-CoV, nsp1 is a multifunctional protein with the
suppressive activity for IFN and blocks the phosphorylation of STAT1
and degrades host cell mRNA (Totura and Baric, 2012). SARS-CoV
nsp14 and nsp15 works as exoribonuclease and endoribonuclease,
respectively, thus specific digestion of dsRNAs and the consequent
removal of RNA–PAMPs may lead to an inadequate activation of IFN
response (Kindler and Thiel, 2014). SARS-CoV nsp16 contains 20-O-
methlytransferase activity andmodifies the cap of viral RNAs in order
to evade the detection by the host immune system (Totura and Baric,
2012). The SARS-CoV M protein impedes the formation of
TRAF3 � TANK � TBK1/IKKϵ complex for suppression of type I IFN
production (Siu et al., 2009, 2014). The PLP2 domain of SARS-CoV
nsp3 negatively modulates type I IFN pathway and functions as a
viral deubiquitinase. In our study, the full length PEDV nsp3 indeed
inhibit the IFN activity. All ten antagonists identified for PEDV cor-
respond to the respected antagonists of SARS-CoV. The correspond-
ing proteins of PEDV may share the similar motifs and functions with
those of SARS-CoV. Additionally, SARS-CoV encodes several accessory
proteins. They are nonessential for viral replication but function as
innate immune antagonists. For PEDV, ORF3 is the sole accessory
protein, and a previous report shows that ORF3 functions as an ion
channel protein and is relevant to infectivity and pathogenicity
(Wang et al., 2012). ORF3 is nonessential for viral replication in vitro
as shown by targeted RNA recombination (Li et al., 2013). In our
study, ORF3 is a potent IFN antagonist. The viral antagonists may
target different pathways of the host innate immune signaling and
their synergistic effects may shut down the host innate immune
response more efficiently during the course of infection.

CBP is a histone acetyltransferase and plays a key role in
transcription regulation. The CBP/p300 coactivators interact with
hundreds of transcription factors including STATs, c-Myc, PIAS1,
p53, NF-κB, and IRF family (Bedford and Brindle, 2012; Goodman
and Smolik, 2000; Long et al., 2004). For IFN expression, the
assembly of an enhanceosome consisting of NF-κB, IRFs, ATF2/c-
Jun, and the architectural protein HMG I(Y) is required in response
to virus infection. The IFN enhanceosome recruits CBP/p300 for
synergistic activation of transcription (Merika et al., 1998). Some
viruses modulate the CBP activity for viral evasion. Two distinct
regions in the simian virus 40 T antigen can independently alter
the levels and loading of CBP/p300 transcripts onto polysomes for
cell immortalization and transformation (Robles et al., 2013).
African swine fever virus nuclear protein A238L inhibits the
expression of TNF-α by displacing the CBP/p300 coactivators
(Granja et al., 2006), and herpes simplex virus 1 (HSV-1) ICP0
protein recruits activated IRF3 and CBP/p300 to the nuclear foci,
which may result in reduced transcription of IFN-β and inhibition
of the host response (Melroe et al., 2007). HSV-1 VP16 protein
inhibits NF-κB activation and interferes the recruitment of IRF3 to
CBP to block the IFN-β production (Xing et al., 2013a). The ML
protein of Thogoto virus interferes with IRF3 function without
blocking its nuclear translocation but interrupts the association of
IRF3 with CBP (Jennings et al., 2005), which is similar to the
function of PEDV nsp1. The ML protein was later found to interact
with the RNA polymerase II transcription factor IIB (TFIIB), how-
ever, this interaction hardly interferes the host general gene
expression but strongly suppresses both the IRF3- and NF-κB-
regulated promoter activities (Vogt et al., 2008). Thus, it is hypo-
thesized that the virus-mediated CBP degradation may play a
specific and key role for IFN modulation with a little impact on
general cellular gene transcriptions. The degradation of CBP is a
novel strategy for IFN modulation and has been extensively stu-
died in the family of Arteriviridae, especially for PRRSV (Han and
Yoo, 2014). For PRRSV nsp1α, CBP degradation is associated with
the zinc-finger motif and is likely the key mechanism for IFN
suppression (Han et al., 2013). For PEDV, nsp1 is the most potent
IFN suppressor among all viral antagonists without affecting the
IRF3 phosphorylation and nuclear localization. In line with this,
PEDV infection depletes the endogenous CBP. Furthermore, PEDV
nsp1 disrupts the association of CBP–IRF3 and degrades CBP in a
proteasome-dependent manner. SARS-CoV nsp1 inhibits type I IFN
production, induces host mRNA degradation, and suppresses host
protein translation (Narayanan et al., 2008). However, the domains
of SARS-CoV nsp1 responsible for suppression of host gene
expression and type I IFN production are absent in PEDV nsp1
(Huang et al., 2011b; Narayanan et al., 2008). Even though nsp1s of
alphacoronavirus and betacoronavirus share similar functions, they
lack an overall sequence similarity and neither conserved motifs
nor domains exist in viruses of alphacoronaviruses. Thus, it is
plausible that nsp1 of alphacoronaviruses may have a distinct
function regulating host innate immune responses and gene
expression. TGEV nsp1 suppresses protein translation in cells and
cell-free extracts. However, the suppression of protein translation
by PEDV nsp1 may not be a general event since the β-actin shows
the similar level of expression after infection and transfection. The
lack of association of CBP-nsp1 and IRF3-nsp1 suggests that the
CBP degradation by nsp1 is an indirect event that needs to be
further determined. Similar to TGEV nsp1, the subcellular locali-
zation of PEDV nsp1 is nuclear–cytoplasmic. The sequence of PEDV
nsp1 does not harbor any known nuclear localization signal, and
thus nsp1 may piggy-bag a nuclear protein to enter the nucleus.
The proteasome-dependent CBP degradation seems a unique viral
tactic utilized to inhibit IFN-β production. It is of interest to study
whether this is a common evasion strategy for coronaviruses.

CBP localizes in the PML nuclear bodies, which are discrete
nuclear foci that are disrupted in acute promyelocytic leukemia
(Boisvert et al., 2001; Doucas et al., 1999; LaMorte et al., 1998). The
PML nuclear bodies dynamically colocalize with numerous pro-
teins including CBP, PML, p53, Rb, sp100, DAXX, eIF4E, and SUMO
(Jensen et al., 2001). Upon inhibition of proteasome activity, PML,
sp100, EBNA-5, SUMO-1, and the 20S proteasome subunit move to
the nucleolus, suggesting that proteasomal degradation occurs at
the nuclear loci (Boddy et al., 1996). HAUSP, the ubiquitin-specific
hydrolase in the PML nuclear bodies, removes ubiquitin moieties
from proteins prior to proteasomal degradation (Everett et al.,
1998). Thus, PML nuclear bodies may represent the sites where
ubiquitinated proteins are processed by enzymes such as HAUSP
prior to degradation in the nucleolus (St-Germain et al., 2008).
Valproic acid, a histone deacetylase inhibitor, could induce CBP
degradation through the ubiquitin–proteasome pathway, while
increasing the colocalization of CBP with ubiquitin nuclear
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speckles and with PML nuclear bodies (St-Germain et al., 2008),
suggesting that PML nuclear bodies may be the sites for the
ubiquitin-dependent degradation of CBP. It is of interest to
examine whether PEDV nsp1 promotes ubiquitination of CBP for
degradation in the nucleus and whether this degradation associ-
ates with PML nuclear bodies.

PEDV infects Vero cells and MARC-145 cells. Porcine amino
peptidase N (pAPN) has been identified as the major cell entry
receptor for PEDV (Li et al., 2007; Nam and Lee, 2010). Transient
expression of pAPN confers PEDV non-permissive canine kidney
cells (MDCK) to be permissive for PEDV infection. pAPN also
increases the PEDV infectivity in porcine small intestine epithelial
cells (IECs) (Cong et al., 2015). The respiratory tract may support
PEDV infection in pigs and the virus infects and replicates in
transformed alveolar macrophages (3D4) in vitro (Park and Shin,
2014). Primate APN or receptor-independent pathways in Vero and
MARC-145 cells may complement the function of pAPN for PEDV
infection (Taguchi and Matsuyama, 2002).

In summary, we have shown the suppression of type I IFN
production by PEDV and have identified specific viral IFN
antagonists. Among these antagonists, nsp1 is the most potent
protein and functions to degrade CBP in the nucleus. Our data
provides a novel insight into the understanding of the immune
evasion strategy of PEDV.
Material and methods

Cells, viruses, antibodies and chemicals

HeLa cells (NIH AIDS Research and Reference Reagent Program,
Germantown, MD) and MARC-145 cells (Kim et al., 1993) were
maintained in minimum essential medium (MEM) and Dulbecco's
modified Eagle's medium (DMEM) (Mediatech, Manassas, VA),
respectively, supplemented with 10% heat inactivated fetal bovine
serum (FBS) (Hyclone, Logan, UT). Vero cells (ATCCs CCL-81TM)
were grown in DMEM supplemented with 10% FBS. The IPEC-J2
cell line is a continuous line of epithelial cells derived from the
jejunum of a 12 h old, unsuckled mixed breed piglet and was
obtained from Dr. Anthony Blikslager (North Carolina State Uni-
versity). IPEC-J2 was maintained in DMEM/F12 with 5% FBS sup-
plemented with 5 mg/ml of insulin/selenium/transferrin (Life
Technologies), and 5 ng/ml of epidermal growth factor (Life
Technologies). PEDV (USA/Colorado/2013; GenBank: KF272920)
was obtained from Agricultural Research Service US Department of
Agriculture (Ames, IA). PEDV was propagated in MARC-145 cells
with DMEM or Vero cells with MEM supplemented with 0.3%
tryptose phosphate broth (Sigma, St. Louis, MO), 0.02% yeast
extract (Teknova, Hollister, CA), and trypsin 250 (Sigma-Aldrich, St.
Louis, MO). The trypsin concentration was 2 μg/ml for MARC-145
cells and 5 μg/ml in Vero cells. The recombinant vesicular sto-
matitis virus expressing green fluorescent protein (VSV–GFP) was
kindly provided by Dr. A. Garcia-Sastre (Mount Sinai Hospital, New
York, NY).

Polyinosinic:polycytidylic acid [poly(I:C)], DAPI (40, 6-diami-
dino-2-phenylindole), and cycloheximide (CHX), rat anti-FLAG
mAb were purchased from Sigma (St. Louis, MO). Human recom-
binant IFN-β and MG132 were purchased from Calbiochem (San
Diego, CA). Anti-β-actin mAb (sc-47778), anti-CBP mAb (sc-7300),
anti-hsp90 mAb (sc-69703), anti-PARP pAb (sc-7150), and anti-
IRF3 pAb (sc-9082) were purchased from Santa Cruz Biotechnol-
ogies Inc. (Santa Cruz, CA). Anti-phospho-IRF3 PAb (Ser396) were
purchased from Cell Signaling (Danvers, MA). Rabbit anti-PEDV M
pAb was kindly provided by Dr. Y. Fang (Kansas State University,
Manhattan, KS). Mouse anti-PEDV N mAb was purchased from
Medgene (Brookings, SD). Lipofectamine 2000 Transfection
Reagent was purchased from Invitrogen (Carlsbad, CA). QIAamp
Viral RNA mini kit and RNeasy mini kit were purchased from
QIAGEN (Venlo, Limburg). Power SYBR Green PCR master mix was
purchased from Life Technologies (Carlsbad, CA). Alexa Fluor 594-
conjugated (goat anti-rabbit, red) and 488-conjugated (goat anti-
mouse, green) secondary antibodies and Pierce™ ECL Western
blotting substrate were purchased from Thermo Scientific
(Waltham, MA).

Plasmids and gene cloning

The firefly luciferase genes were used as reporters with its
expression under the control of various promoters as indicated
below. The plasmid pIFN-β-Luc contains the entire IFN-β enhan-
cer-promoter. The plasmid p4� IRF3-Luc contains four copies of
IRF3 binding region PRD I–III of the IFN-β promoter. pIFN-β-Luc
and p4� IRF3-Luc were obtained from Dr. Stephan Ludwig at
Heinrich-Heine-Universität, Düsseldorf, Germany (Ehrhardt et al.,
2004). The Renilla luciferase plasmid pRL-TK (Promega) contains
the herpes simplex virus thymidine kinase (HSV-tk) promoter and
was included in all experiments to serve as an internal control.
Active stimulator pMAVS/IPS-1 was obtained from Dr. J. Shisler
(University of Illinois, Urbana, IL). pIRF3 was kindly provided by
Dr. B. Gotoh (University of Fukui, Fukui, Japan). pDsRed2-ER and
pDsRed2-Mito were purchased from Clontech.

Plasmids with the FLAG tag for expression of nsp1 through
nsp16, and the S, S1, S2, ORF3, E, M and N genes were cloned from
the viral genomic RNA by standard reverse transcription and PCR
techniques using indicated primers (Table 1). Twenty-three viral
genes were amplified and cloned into the eukaryotic expression
vector pXJ41 using indicated restriction enzymes. The nsp1 to
nsp16, ORF3, and N genes were expressed as fusion proteins with
the N-terminal FLAG tag, and the S, S1, S2, E, and M genes were
expressed as fusion proteins with the C-terminal FLAG tag to avoid
the functional disruption of the signal sequence. The constructs
were confirmed by sequencing, immunofluorescence, and western
blot. PRRSV nsp1α and its cystine mutant P-nsp1α(m) (C28S) are
described elsewhere (Han et al., 2013; Song et al., 2010).

DNA transfection and luciferase reporter assay

HeLa cells were seeded in 12-well plates and grown to 80%
confluency prior to transfection. Individual viral protein genes,
luciferase reporters, and pRL-TK as an internal control were
transfected at a ratio of 10:10:1 in a total of 1.05 μg/well using
Lipofectamine 2000 according to the manufacturer's instruction
(Invitrogen). At 24 h post-transfection, cells were stimulated by
transfection with 0.5 μg/well of poly(I:C) for 12 h. Cells were then
lysed and luciferase assays were performed using the Dual Luci-
ferease assay system according to the manufacturer's instructions
(Promega). Values were normalized using the Renilla luciferase
activity as the internal control and presented in fold-changes.
Three independent assays were performed with each assay in
triplicate.

Relative quantitative real-time RT-PCR

Total RNA was extracted from HeLa or MARC-145 cells using
RNeasy mini kit according to the manufacturer's instructions
(QIAGEN). The RNA was treated with DNase I to remove con-
taminating genomic DNA. Reverse transcription (RT) reaction was
performed with 1 mg of total RNA using random primers and M-
MLV reverse transcriptase (Invitrogen). SYBR Green real-time PCR
was conducted in the ABI 7500 real-time PCR system according to
the manufacturer's instructions (Life Technologies). The real-time
PCR primers for IFN-β, ISG15, ISG56 and β-actin were listed in



Table 1
Primers used for the cloning of PEDV nonstructural and structural genes (PEDV strain
USA/Colorado/2013).

Primer Sequence (5'-3')

nsp1-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGATGGCTAGCAACCATG
nsp1-R GCCCTCGAGCTAACCACCACGACG
nsp2-F GCCGGATCCACCATGGATTACAAGGATGACGACGATAAGAACATCGTGCCAG
nsp2-R GCCGGTACCCTAACCACCTTTCTTC
nsp3-F AGTCTCGAGACCATGGATTACAAGGATGACGACGATAAGGGTGATGTCAAATTC
nsp3-R GCCAGATCTCTATGCACCCTTCTTATTTG
nsp4-F GCCGGATCCACCATGGATTACAAGGATGACGACGATAAGGGTCTTCCTAGTTTTTC
nsp4-R GCCCTCGAGCTACTGTAGAGTTGAATTG
nsp5-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGGCTGGCTTGCGTAAG
nsp5-R GCCCTCGAGCTACTGAAGATTAACGCC
nsp6-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGAGTGGTTATGTTTC
nsp6-R GCCCTCGAGCTACTGAACGGAAG
nsp7-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGTCTAAACTGACTG
nsp7-R GCCCTCGAGCTACTGCAACATAC
nsp8-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGAGTGTTGCATCTAC
nsp8-R GCCCTCGAGCTACTGGAGCTTGAC
nsp9-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGAATAATGAAATTATTCC
nsp9-R GCCCTCGAGCTACTGCAAGCGTAC
nsp10-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGGCTGGTAAACAAACAG
nsp10-R GCCCTCGAGCTATTGCATAATGGATC
nsp12-F GCCGGATCCACCATGGATTACAAGGATGACGACGATAAGAGCACTGATATGGC
nsp12-R GCCCTCGAGCTATTGTAAAACTGCAG
nsp13-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGTCTGCAGGGCTTTGTG
nsp13-R GCCCTCGAGCTACTGCAAATCAG
nsp14-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGGCTAATGAGGGTTGTG
nsp14-R GCCCTCGAGCTATTGCAAATTGTTAC
nsp15F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGGGTCTTGAGAACATTGC
nsp15R GCCCTCGAGCTACTGAAGTTGCGGAT
nsp16F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGGCCAGTGAATGGAAG
nsp16R GCCCTCGAGTCATTTGTTTACGTTG
S-F GCCGAATTCACCATGAAGTCTTTAACCTAC
S-R GCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCCTGCACGTGGACCTTTTC
S1-F GCCGAATTCACCATGATGAAGTCTTTAACCTAC
S1-R GCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCAATACTCATACTAAAG
S2-F GCCGAATTCACCATGAGGACAGAATATTTACAG
S2-R GCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCCTGCACGTGGACCTTTTC
ORF3-F GCCGAATTCACCATGGATTACAAGGATGACGACGATAAGATGTTTCTTGGAC
ORF3-R GCCCTCGAGTCATTCACTAATTGTAG
E-F GCCGAATTCACCATGCTACAATTAGTG
E-R GCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCTACGTCAATAACAGTAC
M-F GCCGAATTCACCATGTCTAACGGTTCTATTC
M-R GCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCGACTAAATGAAGCAC
N-F GCCGGATCCACCATGGATTACAAGGATGACGACGATAAGATGGCTTCTGTCAG
N-R GCCCTCGAGTCAATTTCCTGTGTCGAAG

Restriction enzyme recognition sequences are underlined. The FLAG tag is italicized and
underlined.

Table 2
Primers used for relative quantitative real-time RT-PCR.

Primer Sequence (5'-3')

IFN-β-F GATTTATCTAGCACTGGCTGG
IFN-β-R CTTCAGGTAATGCAGAATCC
ISG15-F CACCGTGTTCATGAATCTGC
ISG15-R CTTTATTTCCGGCCCTTGAT
ISG56-F CCTCCTTGGGTTCGTCTACA
ISG56-R GGCTGATATCTGGGTGCCTA
β-actin-F ATCGTGCGTGACATTAAG
β-actin-R ATTGCCAATGGTGATGAC
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Table 2. For each sample, the β-actin gene was amplified and used
as an internal control. Specific amplification was confirmed by
sequencing PCR products. The threshold cycle for target genes and
the difference between their Ct values (ΔCt) were determined. The
relative transcript levels of target gene are equal to 2�ΔΔCt

threshold method (Livak and Schmittgen, 2001) and are shown as
fold changes relative to the respective untreated control samples.
VSV–GFP interferon bioassay

HeLa cells were seeded in 6-well plates and transfected with
2 μg of plasmid. At 24 h post-transfection, cells were stimulated by
transfection with 1 μg of poly(I:C) for 12 h. Supernatants were
harvested for bioassay. For PEDV, MARC-145 cells were infected
with PEDV at an MOI of 1 for 12 h prior to poly(I:C) stimulation.
Supernatants from virus-infected cells were UV-irradiated for
30 min to remove infectivity prior to bioassay. The supernatants
were then serially diluted by 2-fold. MARC-145 cells were freshly
grown in 96-well plates and incubated with 100 μl of each dilution
for 24 h. Cells were then infected in 100 μl of VSV–GFP at 104 PFU/
ml for 16 h and GFP expression was examined by inverted fluor-
escence microscopy (Nikon Eclipse TS100, 10�10). Each dilution
was examined twice in triplicate each.

Indirect immunofluorescence assay (IFA) and confocal microscopy

Cells were seeded on coverslips and transfected with plasmids
or infected with PEDV. For transfection of HeLa cells, total 2 mg of
individual plasmids were transfected for 24 h using Lipofectamine
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2000 according to the manufacturer's instructions (Invitrogen).
Cells were then either treated with poly(I:C) for 12 h or IFN-β for
40 min. Cells were fixed with 4% paraformaldehyde in PBS over-
night at 4 °C and permeabilized using 0.1% Triton X-100 for 15 min
at room temperature (RT). After blocking with 1% BSA in PBS at RT
for 30 min, cells were incubated with a primary antibody in PBS
for 1–3 h. Cells were then washed three times with PBS and
incubated with Alexa Fluor 488-labeled anti-mouse secondary
antibody, or Alexa Fluor 594-labeled anti-rabbit secondary anti-
body (Thermo Scientific) for 1 h at RT in the dark. Cells were
incubated with DAPI for 5 min at RT for nuclear staining. After
washing with PBS, cover slips were mounted on microscope slides
using Fluoromount-G mounting medium (Southern Biotech, Bir-
mingham, AL), and visualized by fluorescence microscopy (Nikon
Eclipse TS100). Confocal microscopy was conducted as described
elsewhere (Kannan et al., 2009).

Cell fractionation

HeLa cells were seeded in 6-well plates to 80% confluency and
transfected with 2 μg/well of nsp1 plasmid for 24 h. Cells were
stimulated with 1 μg of poly(I:C) for 12 h and fractionated using
the Nuclear/Cytosol Fractionation kit (BioVision, Milpitas, CA) with
minor modifications. Briefly, cells were washed with cold PBS and
collected using cell scrapers in 1 ml of cold PBS. Cell pellets were
resuspended in 200 μl CEB-A buffer and incubated on ice for
10 min. After addition of CEB-B, tubes were vortexed and incu-
bated on ice for 1 min. The cell lysates were then centrifuged at
4 °C 5 min at 16,000g and supernatants were collected as the
cytosolic fraction. The cell pellets were suspended in NEB buffer
and vortexed for 30 s and repeated 5 times every 10 min. The
nuclear pellets were finally centrifuged for 10 min at 4 °C 16,000g
and kept the supernatants as the nuclear fraction.

Western blot

Cells were harvested in RIPA buffer [20 mM Tris (pH 7.5),
150 mM NaCl, 1 mM EDTA, 1 mM phenylmethanesulphonyl fluor-
ide (PMSF), 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40] con-
taining the proteinase inhibitors cocktail (Promega). Cells were
frozen–thawed, collected in the pre-cold tubes, and centrifuged to
remove insoluble components. Total protein concentration was
determined using Pierce BCA protein assay kit (Thermo Scientific).
Equal amounts of proteins were resolved by SDS-PAGE and blotted
to PVDF membranes (Millipore). After blocking with 5% nonfat dry
milk in TBST (0.05% Tween-20) for 1 h, membranes were incu-
bated with a primary antibody in TBST containing 5% nonfat dry
milk overnight at 4 °C, followed by washing and incubation with
horseradish peroxidase (HRP)-conjugated secondary antibody for
1 h at RT. The membrane was visualized using Pierce ECL Western
Blotting Substrate (Thermo Scientific) and images were taken by
FluorChem™ R System according to the manufacturer's instruc-
tions (ProteinSimple).

Co-immunoprecipitation

Co-immunoprecipitation (co-IP) was performed as described
previously with modifications (Kim et al., 2010). Gene-transfected
cells were lysed in lysis buffer [50 mM Tris (pH 8.0), 150 mM NaCl,
5 mM Na3VO4, 1 mM PMSF, 100 mg/ml leupetin, 1% NP-40, 10% gly-
cerol] supplemented proteinase inhibitors cocktail (Promega). Cell
lysates were clarified by centrifugation at 4 °C for 10 min at 16,000g.
Supernatants were transferred to fresh tubes and incubated with
either FLAG- or IRF3-antibody at 4 °C overnight, followed by incu-
bation with protein G Agarose beads (Fast Flow, Millipore) at 4 °C for
4 h. Pellets were collected by centrifugation and washed for five
times. The final pellets were eluted with Laemmli sample buffer (Bio-
Rad) and were subjected to western blot.

Statistical analysis

Student's t-test was used for all statistical analyses. Asterisks
indicate the statistical significance. *Po0.05, **Po0.01 and
***Po0.001.
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