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The generalized eigenvalue problem for an arbitrary self-adjoint operator is 
solved in a Gelfand triple consisting of three Hilbert spaces. The proof is based on a 
measure theoretical version of the Sobolev lemma, and the multiplicity theory for 
self-adjoint operators. As an application necessary and suffkient conditions are 
mentioned such that a self-adjoint operator in L,(R) has (generalized) eigen- 
functions which are tempered distributions. 0 1985 Academic PESS, IW. 

A natural problem in a theory of generalized functions is the so-called 
generalized eigenvalue problem. A simplified version of this problem can be 
formulated as follows. Consider the Gelfand triple @ c Xc !P, in which X is 
a Hilbert space, @ is a test space, and Y the space of generalized functions. 
Let 9 be a self-adjoint operator in X, and let I be a number in the spec- 
trum of 9 with multiplicity m,. The question is whether there exist ml 
(generalized) eigenfunctions in ‘Y. 

Such a problem has been studied by Gelfand and Shilov (cf. [S]) in the 
framework of countable Hilbert spaces and also by the authors of the 
present paper in the setting of analyticity spaces and trajectory spaces 
(cf. [4]). Here we discuss a more general approach. In a separate section 
we show how the theory of this paper fits into the functional analytic set-up 
of a special type of countable Hilbert spaces. In fact, this set-up is a 
generalization of the theory of tempered distributions. 

The present paper is built up in such a way that each section contains 
one fundamental topic and finally those separate topics culminate in the 
proof of the main result in Section 4. This result can be loosely formulated 
as follows: 

Let there be given n commuting self-adjoint operators 9i, 4,..., Pm in a 
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separable Hilbert space X Then there exists a positive self-adjoint 
Hilbert-Schmidt operator $? such that the operators W@%‘-‘, 1= l,..., n, 
are closable. Denote their closures by W$E’. Then to almost all 
A= (1 i,..., 2,) in the joint spectrum a(@,,..., Pn) with multiplicity m, there 
exist m, vectors in X, say e,,l ,..., el,,, such that 

where j = l,..., m and I = l,..., n. 
The proof of the above stated theorem involves three important 

ingredients, discussed in three separate sections. In the first section the 
commutative multiplicity theory for self-adjoint operators is discussed. By 
this theory the spectrum of a self-adjoint operator is split into components 
each of which is of uniform multiplicity. In the second section we show that 
there exists an orthonormal basis in X such that each operator of the com- 
muting n-set (P1 ,..., Pn) has a column finite matrix with respect to this basis. 
Section 3 contains a general Sobolev lemma. The greater part of this sec- 
tion follows from our paper [S], but also some new results are derived. 

As already remarked the last section contains a discussion of generalized 
eigenfunctions. It is worthwhile to mention one of its consequences here. 
Let Y be a self-adjoint operator in 2JR). Suppose the operator 
Z-“YX” is closable for some c1> 4, where 2 = -d*/dx* +x2. Then Y 
has a complete set of generalized eigenfunctions in ~P(2!,([w)) and is 
closable in .x?( f!,( R)) c Y’(R). 

1. COMMUTATIVE MULTIPLICITY THEORY 

This section gives the commutative multiplicity theory for a finite num- 
ber of commuting self-adjoint operators. In the case of bounded operators 
the proof can be found in [l or 93. The unbounded case is a trivial 
generalization. 

Throughout this paper n E N will be taken fixed. Let ,u denote a finite 
nonnegative Bore1 measure on R”. Then the support of p, notation 
supp(p), is the complement of the largest open set in UV’ of p-measure zero. 
It can be shown that 

where B(x, r) denotes the closed ball {YE WI [Ix--y/l,, -<I}. For the proof 
of this statement, see [3, p. 1533. As usual, two Bore1 measures ,u(‘) and 
P ~2) are called equivalent, pL(‘)wp (*), if for all Bore1 sets N #‘)(N) =0 
iff P(~)(N) = 0. The measures $‘I and CL(*) are disjoint p(‘)I$‘), if 
,u(‘) (supp(p(“) n supp(p’*‘)) = pC2) (supp(p”‘) n supp(~‘~))j= 0. Now let 
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(PI,,..., Pn) be an n-set of commuting self adjoint operators in a separable 
Hilbert space X, i.e., their spectral projections mutually commute. The 
notion of uniform multiplicity for (Pi ,..., YR) is defined as follows. 

1.1. DEFINITION. The n-set (P1 ,..., Yn’,) is of uniform multiplicity m if 
there exist m finite nonnegative equivalent Bore1 measures p(‘),..., pcrn) on 
R” and a unitary operator G: X -+ !&( KY, p(l)) @ . . 0 Q!,( R”, p(“‘)) such 
that each self-adjoint operator @q@*, 1= l,..., n., equals m-times mul- 
tiplication by the function q,: XHX, in this direct sum. 

In a finite dimensional Hilbert space E each commuting n-set of self- 
adjoint operators (~3~) 4&,..., a,,) has a complete set of simultaneous eigen- 
vectors. An element 1 E I&!” is called an eigentuple of the n-set (9& ,..., &$,) if 
there exists a vector e, E E such that 

gIelel = I,el, 1= l,..., n. 

The set of all eigentuples of gI,..., 93,, may be called the joint spectrum of 
@% ,..., ?&) denoted by ~(3?~,..., ~3~). In order to list all eigentuples in a well- 
ordered manner one can list all eigentuples of multiplicity one, two, etc. In 
fact, this is precisely the outcome of the following theorem. 

1.2. THEOREM (Commutative Multiplicity Theorem). The Hilbert space 
X can be split into a (countable) direct sum 

X=X,@X,@X,@ .‘.) 

such that the following assertions are valid 

- The n-set (YI ,..., Pn) restricted to X,, m= CO, 1,2 ,..., acts 
invariantly in A’,,, and has untform multiplicity m. 

- The equivalence classes (p,) of finite nonnegative Bore1 measures 
corresponding to each X,,, (cf. Definition 1.1) are mutually disjoint, i.e., for all 
PI E (PI > and ~2 E (~2 > we have PIJ-PLZ~ etc. 

In this paper we always consider the following standard splitting of X 
with respect to (9, ,..., YR). As in the previous theorem X= X, @ 
x, @X2@ . ..* In each equivalence class (pm) we choose a fixed measure 
P By %,,, we denote the unitary operator from X,,, onto ~!,(lR”, p,) 0 
. :‘@ &(W, p,,,) (m-times). Then Q!,,J$ r X,) %!z equals m-times mul- 
tiplication by the function q,. Let (&f)),, R denote the respective spectral 
resolution of the identity corresponding to 3. Then we define the joint 
spectrum as 

ilEIR”(Ve,~: fi d”)([I,-E,A,+E])#O 
I= I 
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where 0 denotes the null operator. We mention the following simple asser- 
tion, 

44 >..., %‘,) = rj SUPP(&J. 
m=l 

2. COLUMN FINITE MATRICES 

Let 9, ,..., 9n be n densely defined linear operators in A’. Then we define 
their joint &“-domain as follows. 

2.1. DEFINITION. The joint Cm-domain of Y1 ,..., &, denoted by 
c5”(9~ )...) &) is defined as 

V(Y, )...) %I= ~~~mLNL{I ,_.., .}N:UEa(~n(1)049,(*,...~,,,)}. 

(The set (1, 2,..., n}’ consists of all mappings from N into { 1, 2,..., n}; 
W%,%,2, . . . YXCs,) denotes the domain of the operator between ( )). 

For the commuting n-set (PI,..., 9”) the joint &“-domain is given by the 
intersection CCm(P,)n ..* nC”(9Q Hence C:“(P1,..., Pn) is dense in X. 

2.2. THEOREM. Suppose that C’( 9, ,..., Yn) is a dense subspace of X. 
Then there exists an orthonormal basis in X such that each operator Y,;, 
I = I,..., n, has a column finite matrix representation with respect to this basis. 

Prooj Since P(9, ,..., Yn) is dense in X and since X is separable, there 
exists an orthonormal basis (u~)~. N in X which is contained in 
ci:“(Lz* )...) Yn). We introduce the orthonormal basis (u~)~~ N as follows. 

Set o1 = ui. Then there exists an orthonormal set (Us,..., u,,}Iul with 
n, 6 n + 2 such that the span 

wlu,,..., =%U1,%> = (u,,..., u,,). 

There exists an orthonormal set {u,, + 1 ,..., u”,}l. (u, ,..., u,, } with n2 < 2n + 3 
such that 

(%uo,,..., -%u*, 4) c (u,,..., UrtZ). 
In general, for k E N having produced {u I)...) Unk}, nk 6 k(n + 1) + 1, there 
eXiStS an orthonormal set {u,,+ ,,..., u,~+,}~{u~ ,..., u,~} with nk+l d 
(k+l)(n+ I)+ 1 such that 

<% uk,-., -%“k, uk+ 1 > c c”, ,..., u,,k+, >* 
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We thus obtain inductively an orthonormal basis (u~)~~ l$l. The basis 
(%)kc WI is complete since uk E (u 1 ,..., u,~). Furthermore, by construction 
for each I= l,..., n, the matrix (Z+j, ui)i,JE N is column finite. [ 

The n-set (4p ,..., Pn,) has a dense joint CC”-domain. So by Theorem 2.2, 
there exists an orthonormal basis (uJk E wI such that the operators gI ,..., Pn 
have a column finite (and hence row finite) matrix representation with 
respect to this basis. 

We define the positive Hilbert-Schmidt operator 9 by WV, = pkuk, 
where (pk)ke hl can be any fixed &sequence with positive components. 
Then the operator W9$9-‘, I= l,..., n is well defined on the span 
({u,)kE N}). Let I= l,..., n. For the domain of %‘@%V’ we take 
%(99@-‘) = a(D(q)). Since %! is injective and self-adjoint, D(%‘@%-‘) 
is dense in X. Further, for all f~ D(5@9-‘) and all k E N we have 

Hence, the adjoint of %!g$?%- ’ is densely defined. Recapitulated, 

2.3. THEOREM. Let F, ,..., & be n mutually commuting self-adjoint 
operators in the separable Hilbert space X. Then there exists a positive 
Hilbert-Schmidt operator 9 such that each operator W%g-‘, I = l,..., n, is 
densely defined and closable. 

3. A MEASURE THEORETICAL SOBOLEV LEMMA WITH APPLICATIONS 

Our paper [S] contains a generalization of the well-known Sobolev 
lemma. Here we use the results of that paper in the following concrete case: 
the measure space M is the disjoint countable union of copies 88; of UP, i.e., 
M= upm,l ‘w;; the nonnegative Bore1 measure on M is given by 
v = @,“= , vP where each vP is a finite nonnegative Bore1 measure on Iw”. We 
note that !i!!,(M, v) = @;= 1 !&( [w”, vP). On M we introduce the metric d as 
follows 

4(x, PI), (Y, ~2)) = 1 ifp, fh 

4(x, P), (Y, P)) = Ilx -YII R”. 

Now, let B((x, p), r) denote the closed ball in M with center (x, p) E IR; and 
radius r > 0, and let B(x, r) denote the closed ball in Iw” with center x and 
radius r > 0. Then from [6, Theorem 2.8.181, we obtain 
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3.1. THEOREM. Let f: M -+ C be integrable on bounded Bore1 sets. Then 
there exists a null set N, such that the limit 

&w) = Fi ~(B((x,P), r))-’ f f dv 
W(X,P)J) 

exists for all (x, p) E supp(v)\Nf. Moreover, f =f a.e. (p). 

(For convenience we note that f= ( fi,f2,...) and f(x,p)=f,(x). 
Moreover, lim,, 0 v(B((x, ~1, r)lp’ JB((x,p),r) f dv = lh10 v,(B(x, r))-’ x 
Jecx,,) f, dvp,) Let X denote a separable Hilbert space and 9 a positive 
Hilbert-Schmidt operator on X. Let (u~)~~ N be the orthonormal basis of 
eigenvectors of 9 with eigenvalues Pk > 0, ke fU Further, let & denote a 
unitary operator from x OntO @,"= 1 f?!,([w", vp). The Series cp= I p:Il%!‘vk(12 
is convergent. So it follows that CF=, &?&k)2 E !t&(M, v). 

Following Theorem 3.1 there exists a v-null set N = UF= r N, (disjoint 
union), i.e., each set N, is a v,-null set, with the following properties: There 
exist functions (Pk,pE (%u,),, ke kJ, PE kI, such that 

(i) V V V k.e N PE N xcsupp(vP)\N,,? 

(ii) V V V ks N PE N x~supp(v~)\N,,, 

,z, P:bk.p’““2=!‘~ V,(B(x, ‘-))-I 1 ( f p;/(@u,),l’) dv,. 
B(*d kc 1 

These conditions on U,“=, Np lead to the proof of the following result (see 
[ 5, Lemma 21). 

3.2. THEOREM. Let p E iW and let x E supp(vp)\NP. Set e$‘) = Cp= 1 pk x 
qk,ptX) uk and e!?(r) = v,(B(x, ‘-)I -’ ckm_, Pk(j-e(x,,) (@uk)p dvp) uk, r > 0. 

Then we haue 

- ep), e?)(r) are members of X, 

- lim,,,lle~)-e!/)(r)IIX=O. 
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Let Z?,, 1= l,..., II, denote the multiplication operator, formally defined by 

%(fi,f2Y)= hrf1, VIf2Y). 

We recall that q, denotes the function q/(x) = x1, x E R’“. It is clear that A!! is 
a self-adjoint operator in @,“=, &( R”, vp). So the operator fl= @*%,% is 
self-adjoint in X. The following lemma says that the vectors ei!‘) are can- 
didate eigenvectors of the operator %?&cE ‘. 

3.3. LEMMA. Let I= l,..., n. Then the linear span ((e?)(r) 1 r > 0, p E N, 
x=uPP(vp)\Np)) 1s contained in D(BP~B!-‘). Further we have for all 
x E suPP(v,)\l\r, 

Proof. Let p E N and let x E supp(v,)\N,. Then for each r > 0 the series 
cr= I &(x,r) (‘@‘vk)p dvp) vk = ckm_ I (fw (A @ ?,@&jp)dvp) vp represents the 
elements @*A(p) B(.x r) in X, where AL&) denotes the characteristic function 
of the ball B(x,;) as an element of Q!,(R”, vp). Hence %*A$&,E B(P[) 
and e(p)(r) = v,,( B(x, r)) ~ ’ 9M*A(P) BCx,rJ E a(D(g,)) = 9(&@V ‘) for all 
I= 1,...,;1. Next we prove that lim,i,(&?$K’) e?)(r) -x/e?‘(r) = 0. Then 
by Theorem 3.2 the proof is complete. To this end, observe that for all 
r > 0, 

(WPI:Wpl) e’,P’(r) - x,eLp)(r) = 

=k!, Pk (‘ptB(*? r))p’ j 
B(.v) 

(~~-~i)v)*pod~pO) vk. 

We estimate as follows 

The first factor in the last expression tends to zero as rJ0. Because of 
assumption (iii) the second factor is bounded by CT= r &IqkJx)I 2 + 1 for 
sufficiently small r > 0. 1 
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4. THE MAIN RESULT 

In the introduction we have given a nonrigorous formulation of the main 
theorem of the present paper. The results of the previous sections culminate 
in the proof of this theorem. 

Again, let (Yi,..., 9”) denote an n-set of commuting self-adjoint operators 
in X. Following Section 1 there exists a standard splitting 

X=X,@X,@X,O . ..) 

and disjoint finite nonnegative Bore1 measures pL,, pL1, p2,..., on R” such 
that each X, is unitarily equivalent to the direct sum @J’= i f?,( KY, p,). 
Furthermore, the n-set (Pi ,..., Pn,) acts invariantly in each Hilbert summand 
X, and is unitarily equivalent to the n-set (Z?i,..., 4). Here 9, restricted to 
@J’!! , g2(R”, ,u,) is the operator of m-times multiplication by the function 
?I. 

Following Section 2, there exists an orthonormal basis (u~)~~ N such that 
each operator in (Pi,..., Pn) has a column finite matrix representation with 
respect to (u~)~~ N. Let &? denote the positive Hilbert Schmidt operator 
defined by .%?v, = pAvk, where (pk)kE N is a fixed sequence in I, with pk > 0. 
Then the operators 9&Z+%-’ are closable in X for each I= l,..., n. We 
denote the respective closures by ~~K’. 

Following Section 3 there exist null-sets N,,,J, j= l,..., m, with respect to 
P m, m = co, 1, 2,..., such that the limit 

(42u,)f” dp 
J m 

exists for all x E supp(~,)\N,~. Moreover, (P&!)E (a~,),!“). Here 

(4h,)‘“‘= ((a!!Uk)(lm), (ml p k 2 ,..‘> (avk)(m))E & -%tRn, p ) m m. 
/=I 

In addition, for all m = 00, 1,2 ,..., and 1 <j < m + 1, the series 

and 

with Y > 0, x E supp(~,)\N~~, converges in X. 
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By Theorem 3.2 and Lemma 3.3, Lemma 4.1 follows. 

4.1. LEMMA. Let m = 00, 1, 2 ,..., andletjEN with lGj<m+l. Thenfor 
all x E ~~PP(P,)\N,,+ 

- limrl,( Ile@)(r) - e(“)ll) = 0. XJ 

- for each I= l,..., nznd all i > 0, eiy)(r) E 3(99,9V’), and 

Since the operator 99[9- ’ is closable, we obtain from the previous 
lemma. 

4.2. COROLLARY. Let m = CD, 1,2 ,..., and let j E N, 1 d j < m + 1. Then 
for all x E supp(~,,,)\N,,,~ and for all I= l,..., n, 

- e(‘?) is in the domain of &3$9- ‘. X,J 3 

- Bfl9-' e$) = x,ek!?J). 

We observe that for each m = 00, 1,2 ,..., the set N,,, = lJJ”’ i N,,,j is a 
p,,,-null set. Now we are in a position to formulate the main theorem. 

4.3. THEOREM. Let (9,) Y* ,..., pn’,) be an n-set of commuting self-adjoint 
operators. Then there exists a positive Hilbert-Schmidt operator such that 
the operators WP,:W-’ are closable. 

Let X=X,@X,@X,@ ..., be the standard splitting of X, and 
p,, p,, p2 ,..., be the corresponding multiplicity measures. Let m = co, 1, 2 ,.... 
Then there is a uL,-null set N, with the following property: for all 
XE supp(p,,,)\N,,, there exist m independent vectors e$j E X, 1 <j< m + 1, 
satisfying .5?9,9 -‘e$) = x,ei!J), I= l,..., n. 

Proof The proof of this theorem is a compilation of the results given in 
the beginning of this section. 1 

Remark. Let 9 be a self-adjoint operator in X and let W be a positive 
Hilbert-Schmidt operator such that 99%” is closable. The spectrum of 
!9P’wP’ can be larger than the spectrum of 9. An interesting example is 
the following. In &(R) take 9 = i(d/dx), then a(9) = R. Further take 
B=epcx with 2 =$(x2-d2/dx2 + 1) and r >O. Then WBR-‘= 
i cash z(d/dx) + ix sinh z. Each 2 E @ is an eigenvalue of this operator. 
Its eigenvector is xH exp( ( - iA/cosh z) x - f( tanh z) x2) which is an 
2!,(R)-function. This continuous set of eigenvectors is closely related to 
the so-called coherent states. 
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4.4. COROLLARY. Let W-‘(X) denote the completion of X with respect to 
the inner-product (u, u)- 1 = (&I, A%),. Employ the notation of the previous 
theorem: 

- Each operator # is closable in 93 - ‘(X). 

- W-‘e$)= Cp= 1 g(x) vk E W-‘(X) is a simultaneous generalized 
eigenvector of the n-set (PI,..., gn) with eigentuple x = (x1 ,..., x,), where g[ 
denotes the 92 - ‘(X)-closure of 3, I= l,..., n. 

Proof We only prove the closability of $. We define the domain 
Dam($) of the operator .$ in B-‘(X) by 

FE Dam($) iff 9FE D(B@V’). 

Further, g/F= 9%‘-‘(&9@?-‘) 9?F, FE Dom(@. It is clear that g, extends 
in B--‘(X). We prove that $ is a closed operator in K’(X). To this end 
let (F,L N be a sequence in 9I- ‘(X) with 

lim F,=FeW-‘(X) and lim $F, = GE W-‘(X). 
s-m s-cc 

Then BF, + BF and (WP,,W-‘) %?F, -+ 92G as s --) co. Hence FE Dom(@ 
and G = L$ F, becuase $I?+%-’ is closed in X. 1 

Remark. Since for the eigenvalues of W any positive I,-sequence can be 
taken it is clear that the improper eigenvectors of the operators s,..., Pn lie 
at the “periphery” of the Hilbert space X. 

5. GENERALIZED EIGENFLJNCTIONS IN THE DUAL 
OF A COUNTABLE HILBERT SPACE 

An application of the previous sections is in the field of generalized 
eigenfunctions and countable Hilbert spaces. 

As in Section 4, (Pi,..., 9”) is an n-set of commuting self-adjoint 
operators in X, and W denotes a positive Hilbert-Schmidt operator with 
the property that the operators R$:W-‘, I= l,..., n, are closable in X. The 
countable Hilbert space @X.9 is defined by 

where in each W”(X) the norm is defined by llqll,= Il~%-~~ll~, cp EP(X). 
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With its natural topology, the space @,,, is a nuclear Frechet space. The 
strong dual of @x,m can be represented by the inductive limit 

Y *.J = u 9--“(x). 

St N 

Here g-“(X) denotes the completion of X with respect to the norm (~%‘%v~~, 
wsX. On YX8 the inductive limit topology is imposed. In [2] a set of 
seminorms has been produced which generates a locally convex topology 
equivalent to the inductive limit topology. The Gelfand tripe1 QX,& c Xc 
Y’,,, places the theory of tempered distributions in a functional analytic 
framework. (Take X= f&(R) and 9V1 = - d2/dx2 +x2.) 

From Corollary (4.4) it follows that the operators gI,..., Pn have closed 
extensions in BP’(X). Also, it follows that to almost each eigentuple 
x = (x, ,..., x,) E a(9, ,..., Pn’,) with multiplicity m, there are m, simultaneous 
generalized eigenvectors Et,;), j = I,..., m, in !%‘(X)c Y,,, i.e., @E$‘j)= 
x,Ellf’, I= l,..., n. We observe that ~$9~ ,..., Pfl) = U,“=, supp&,) and 
that ~(9~ ,..., S$)\(U,“=, supp(p,)) has pm-measure zero, m = co, 1,2 ,..., 
(cf. Sect. 1 ). 

Remark. The generalized eigenvectors El!‘J) as constructed in this paper 
can be embedded in a trajectory space [7]. There they constitute a Dirac 
basis. For these concepts and for a rigorous foundation of the genuine 
Dirac-formalism, see [I4 and 31. 

Remark. A self-adjoint operator 9 in Q,( [ - 1, 11) has generalized 
eigenfunctions which are hyperfunctions on [ - 1, 11, if ePr9Pt?lp is den- 
sely defined and closable for each t > 0. Here 9 denotes the positive square 
root of the Legendre operator, i.e., 49 = { - (d/dx)( 1 - x2)(d/dx)}“2, 
cf. [lo]. 
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