
P E R G A M O N  

An International Journal 

computers & 
mathematics 
with applications 

Computers and Mathematics with Applications 44 (2002) 263-276 
www.elsevier.com/locate/camwa 

Heuristic Genetic  Algori thms 
for General Capacitated 

Lot-Sizing Problems 

J INXING XIE* AND J I E F A N G  D O N G  
Department of Mathematical Sciences 

Tsinghua University, Beijing 100084, P.R. China 
j xi e~mat h. t s inghua, edu. cn 

(Received January 2001; accepted February 2001) 

A b s t r a c t - - T h e  lot-sizing problems address the issue of determining the production lot-sizes of 
various items appearing in consecutive production stages over a given finite planning horizon. In 
general capacitated lot-sizing problems, the product structure can be a general acyclic network, the 
capacity constraints can be very sophisticated, and all the known parameters can be time-varying. 
This paper proposes heuristic genetic algorithms for these problems by designing a domain-specific 
encoding scheme for the lot-sizes and by providing a heuristic shifting procedure as the decoding 
schedule. The main contribution of these genetic algorithms is the presentation technique that encodes 
only the binary variables for the setup patterns but derives other decision variables by making use 
of the problem-specific knowledge. Some results from the computational experiments are also given. 
@ 2002 Elsevier Science Ltd. All rights reserved. 
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1.  I N T R O D U C T I O N  

The widespread and popular use of material  requirements planning (MRP) systems in industry 

h ~  resulted in increased interest in the topic of decision making in capaci tated mult istage man- 

ufacturing systems. However, the lot-sizing procedures used by currently awfilable MRP systems 

are quite limited in their ability to coordinate production plans of various stages of the manu- 

facturing processes and various capacity constraints. As firms have incorporated MRP concepts 

into their  production planning and distribution systems, the capaci tated mult istage lot-sizing 

decision problem has become a problem of prime importance. 

The  lot-sizing problem addresses tile issue of determining the production lot-sizes of various 

items appearing in consecutive production stages over a given finite planning horizon. The  

object ive of the problem is to reduce the total  manufacturing cost (including setup cost, inventory 

holding cost, overt iming cost, etc.) while trying to satisfy the customers '  requirements with the 

l imited capacity. This kind of problem can be classified into different categories according to 
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the product structures (e.g., single level system, serial, assembly, and general systems) and the 
capacity structures (e.g., uncapacitated, capacitated single resource, and capacitated multiple 
resources). Many researchers have studied the lot-sizing problems and designed a lot of optimal 
or heuristic lot-sizing procedures (e.g., references [1 9] are some excellent reviewing papers on 
lot-sizing problems). 

Table 1 gives a brief review of some important or reviewing literatures for the different categories 
of the capacitated lot-sizing problems. Because the problems are NP-hard and even the feasibility 
problems with setup times are also NP-hard [3], most of the lot-sizing procedures and algorithms 
use heuristic techniques to solve the problems. However, the heuristic lot-sizing techniques for 
capacitated production systems usually concentrate on optimizing the production operations 
stage by stage, and/or only consider some simple product structures and/or simple capacity 
constraints. For example, the capacitated lot-sizing problems for general product structures and 
multiple resources are seldom considered. This is obviously an obstacle to the application of these 
lot-sizing techniques in real productioii planning and scheduling environments. 

Table 1. Different capacitated lot-sizing problems and some important/reviewing 
literature. 

Product Structure Uncapacitated Single Resource Multiple Resources 

Single Level [2,10,11] [12-16] 

Serial [2,17] [17] 

Assembly [2,18-20] [3,21 23] 

GenerM [2,24,25] [6,261 [27,28] 

In the last decade, the genetic algorithm (GA), which is a search technique based on the me- 
chanics of natural selection and natural genetics, is recognized as a powerful and widely applicable 
optimization method, especially for global optimization problems and NP-hard problems [29-31]. 
Recently, a lot of researchers studied the applications of GA for solving the lot-sizing problems 
with unlimited capacity [32-34] and with capacity constraints [35-42}. Numerical results ob- 
tained using these methods show that GA (probably combined with other meta-heuristics) is an 
effective approach to deal with the lot-sizing problems. 

Before using GA to solve an optimization problem, there are two important points which 
must be addressed clearly: the first is the encoding (representation) scheme for the decision 
variables of the optimization problem, and the second is the evaluation scheme for the specific 
individual (chromosome) of the problem. These two schemes are interrelated and their improper 
combination can make GA unable to deal with the optimization problems efficiently, especially 
for the optimization problems with nontrivial constraints as in the general capacitated lot-sizing 
problems. For the capacitated lot-sizing problems, constraints that cannot be violated can be 
implemented by the penalty method and the decoder method. The penalty method imposes 
penalties on individuals that  violate the constraints, while the decoder method creates decoders 
of the representation that avoid creating individuals violating the constraints [31]. Since each 
optimization problem has its own features, it is also recognized that better performance can 
be obtained when the problem-specific knowledge is incorporated into the simple GA [31]. In 
fact, there are some fundamental limitations to genetic algorithms according to the so-called 
No-Free-Lunch theorem [43-45]. One of the most significant implications of the No-Free-Lunch 
theorem is that algorithms should be matched to the search problem at hand. "If no domain- 
specific knowledge is used in selecting an appropriate representation, the algorithm will have 
no opportmfity to exceed the performance of an enumerative search" [43]. Generally speaking, 
a better solution can be gained with deeper domain-knowledge being incorporated. However, 
the domain-knowledge of a specific optimization problem is usually too vast to be considered 
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completely with a single algorithm. Even worse; there may be some domain-knowledge which is 
difficult to be considered explicitly when designing an evolutionary algorithm. These difficulties 
reveal tha t  when designing a specific evolutionary algorithm for a specific problem domain, a 
critical issue is how to exploit the domain-specific knowledge and how to incorporate it into the 
common logic and the general structure of the evolutionary algorithms. 

According to this philosophy, a heuristic genetic algorithm for the general capacitated lot- 
sizing problems is presented in this paper. The general capacitated lot-sizing problems can be 
characterized by the following: 

(1) each stage in the product network may have several predecessors and several successors; 
(2) the capacity constraints may include the capacity limitations of nmltiple resources; 
(3) the capacity of each resource can be adjusted by overtiming; 
(4) besides resulting in setup cost, the setup of each process can also occupy capacity (i.e., 

setup times are included but the setup times are assumed to be sequence-independent in 
this study); 

(5) independent demands can be given to all the items in the product  network; and/or  
(6) all the parameters in the problem can be time-varying. 

This kind of capacitated lot-sizing problem is more general than those currently considered by 
most of the researchers and are more applicable to real production environments. The heuristic 
genetic algorithm proposed in this paper at tempts to incorporate the problem-specific knowledge 
into the conventional genetic algorithms and heuristically optimizes the problem under all the 
constraints simultaneously. In order to do that,  an encoding (representation) scheme for lot-sizes 
and a shifting procedure with penalty considerations are designed by making use of the critical 
properties of the optimal solutions to the problem. This kind of method for dealing with the 
sophisticated constraints can be considered as a fusion of the penalty method and the decoder 
method. 

The remainder of this paper is organized as follows. A mathematical  formulation of the general 
capacitated lot-sizing problems considered in this paper is provided in the next section. Then, in 
Section 3, we present the heuristic genetic algorithms for the problems with and without  overtim- 
ing considerations, respectively. Section 4 gives some results of the computational  experiments. 
Some general conclusions and further research directions are summarized in Section 5. 

2 .  M A T H E M A T I C A L  F O R M U L A T I O N  

Consider the following general capacitated lot-sizing problem (GCLSP). Given the external 
demand for N items over a time horizon of T periods, find a solution which minimizes total 
setup, production, holding, and overtiming costs, satisfying the following conditions. 

• The product  structure can be organized as an acyclic directed network, where every node 
in the network is an item and the arc illustrates the assembly or distribution relation 
between items, and the weight of an arc is the quantity relation between the two terminal 
nodes of the arc. In general production systems, each node can have more than one 
immediate predecessor and more than one immediate successor. (By topological ordering 
for the directed graph, we can assume that  all the nodes are labeled as satisfying the 
condition that  the label of a predecessor is greater than that  of each of its successors.) 

• There are multiple resources with limited capacities tha t  must be respected. When nec- 
essary, the capacity of a resource carl be increased by overtime, which is also limited with 
a maximum value. 

• The backlogging of each item is not allowed. 
• The lead times are assumed to be constant and, without loss of generality, are assumed 

to be zero. 

Mathematically, this problem can be stated as follows. 
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PROBLEM G C L S P .  

N T K T 

min COST(Y, X, I, O) = E E { sit Iit + cit Xit + hi, Iit } + E E oa:,o~,t, 
i = l  t = l  k = l  t = l  

(1) 

s.t. 

Y4.t = { O~ 
1, 

['it, Xit >_ O, 

~t  c {0,1}, 
0 < O~.t _< Ukt, 

where the given parameters  are 

the  number  of items, 

Ii,t-1 4- Xit - I i t  = d,:t -k E r i jXj t ,  
jEs(~) 

N 

E ( a k i t X i t  4- At~.,t}~t) <_ C~-t + Okt, 
i= l  

if X.~t = 0, 

if Xit > O, 

i =  1 , . . . , N ,  t =  1 , . . . , T ,  

k =  1 , . . . , /~ ' ,  

i = 1 , . . , N ,  

i =  1 , . . . , N ,  

i = l , . . . , N ,  

k =  1 , . . . , K ,  

t =  1 , . .  ,T,  

t = 1 , . . . , T ,  

t = l , . . . , T ,  

t = 1 , . . . , T ,  

t = l  . . . .  ,T. 

(2) 

(3) 

(4) 

(5) 
(6) 
(7) 

N 

f the number  of t ime periods in the planning horizon, 

I (  the  number  of resources, 

dit the external  demand  for i tem i in period t, 

S( i )  the  set of immedia te  successors of i tem i (S(i)  = (0 if i is an end item), 

ri.j the  number  of units of i tem i required to produce one unit  of i tem j ,  

sit the  se tup cost for i tem i in period t, 

cit the  product ion  cost for unit i tem i in period t, 

hit the  holding cost for unit end-of-period inventory of i tem i in per iod t, 

o~,t the  overt ime cost for unit resource k in period t, 

Ckt the  available normal  capaci ty  of resource k in period t, 

U~.t the  available maximum overt ime of resource k in period t, 

akit the  capaci ty  needed on resource k to produce one unit of i tem i in period t, 

At.it the  fixed loss of resource k incmTed tbr product ion prepara t ion  of i tem i in per iod t, 

and the decision variables are 

Xit the amount  of i tem i produced in period t (lot-size), 

~ t  a b inary  variable indicat ing where product ion is Mlowed for i tem i in per iod t, 

Iit the inventory of i tem i at  the end of period t, 

Okt the  overt ime of resource k in period t. 

The  object ive function (1) means to minimize the to ta l  cost which includes setup, product ion,  
holding, and overt iming costs. The constraint  (2) is the conservation equation for materials ,  
and the const ra int  (3) enfbrces the  capaci ty  feasibility. The constraints  (4) and (6) imply tha t  
the  se tup corresponding to an i tem must be paid before producing the item. The nonnegative 
res t r ic t ions for inventory and product ion quanti t ies in constraint  (5) assure no backlogging occurs, 
~md the last  inequal i ty  (7) s tates  the lower and upper  bounds available for overt iming for each 
resource at  different t ime periods. Mos~ of the concepts mentioned above can be found in many 
other  papers  on capac i ta ted  lot-sizing problems. For example,  the mathemat ica l  formulat ion 
given in [3] is very similar to our model  GCLSP except tha t  t hd  overtimes of resources are not 
included in it. 
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3.  H E U R I S T I C  G E N E T I C  A L G O R I T H M  

3.1. T h e  E n c o d i n g  S c h e m e  

A genetic algorithm of an optimization problem is an iterative procedure a t tempting to heuris- 
tically search the optimal solution of the problem. Three basic genetic operators included in the 
procedure are known as reproduction, mutation, and crossover [29-31]. All these operators op- 
erate on the chromosomes (representations of the decision variables), While designing a genetic 
algorithm to solve a problem, we must first give an encoding (representation) scheme for the 
decision space (space of the decision variables) of the problem, 

The decision variables in GCLSP are Xit, ~t ,  I~t, and Okt, among which Y/t is a 0-1 integer 
variable and the others are positive variables of real numbers. In order to design a computat ionally 
efficient genetic algorithm, in this study we only encode the setup patterns (variables. Kit) as 
chromosomes. The other real number variables Xu, Iit, and Oat will be virtually considered as 
being dependent on Y/t, and thus, they wili be computed from Y/t and the known parameters 
of the problem. The most important  thing when designing such an encode>decoder scheme to 
GCLSP is how to obtain the values of these variables fi'om Y~t and the known parameters. In 
the following paragraphs, we will show how these variables can be heuristically worked out by 
making use of the problem-specific knowledge of the lot-sizing problems. 

Denote the population size in a genetic algorithm as MAXPOP (assume to be an even number) 
and the maximum iterations (i.e., maximum generations) as MAXGEN. The jth individual (i.e., 
decision variable) in the gth generation/iteration is encoded as follows: 

yg,J = f yg , J  }/~g,J vg,J  vy ,J  ~g,J ~g,a g,J Y~2,g'J " ,Y~T9'J) 
~, 11 , 12 ~ ' ' ' ~ * l T ~ * 2 1  ~ 22 , ' ' ' ,  2 T , ' ' ' , Y ~ v I ~  "" - , 

j = 1 , 2 , . . . , M A X P O P ,  g = 1 , 2 , . . . , M A X G E N .  
(s) 

According to Afentakis and Gavish [25], there exists the following property (usually named "zero- 
switch" property) for uncapacitated lot-sizing problem, a simplified version of GCLSP. 

PROPOSITION. There is an optimal solution to uncapacitated lot-sizing problem (the problem 
GCLSP without resources constraints) in which X i t X i , t _  1 ~- O. 

Making use of this important  property, we can heuristically clarify the relationships between the 
decision variables of real numbers, and the binary decision variables }'it and the known parameters 
of the problem. Given a production pattern (setup sequence), i.e., the binary decision variables 

{Yit, i = 1 , . . , N ,  t = l , . . . , T } ,  

the production lot-sizes can be determined according to the "zero-switch" property as follows. 

(i) For any item i and any period r,  if gi~ = 0, then Xi~ = 0. 
(ii) For any item i and any periods rl < r2 _< T, if E>, = Y/-2 = 1, and Y/,~ = 0 for all 

r l  < r < 7-2, then 

X%T1 ~- E diT ~- E "['ijXjw " (9) 
r = ' q  j6S(i) 

That  is to say, whenever a setup is introduced for an item, we produce enough quanti ty for this 
item to satisfy the demands of an integer number of periods, until the period immediately before 
the next setup for this item. However, when no setup is activated in period 1 for a product  
(item), this processing method may lead to backlogging in the first few periods for this product  
and its successive parent products. In order to assure the feasibility, the penalty method is used 
to deal with the constraints tha t  no backlogging is allowed. That  is to say, we can change the 
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object ive  function to include penalt ies  for backlogging. Thus, the fitness value for each individual  

is ca lcula ted according to the following object ive function: 

N T N T 

(10) 

where ;~ is the  pena l ty  coefficient (a large enough positive number).  

Based on these observations,  the  genetic a lgori thm has been used to solve the uncapac i ta ted  
lot-sizing problems [3>34]. For a capaci ta ted  lot-sizing problem, the "zero-swith" p roper ty  no 
longer holds. However, we can accept the similar methodology to determine  the values of the 

real variables and concurrent ly  include other  procedures to assure the  capaci ty  feasibility. In the  
tollowing, we generalize the  genetic algori thm for the uncapaci ta ted  lot-sizing problems to be 
capable  of solving GCLSP with mult iple  resources constraints  and overt iming considerations.  

3.2. Heuristic Genetic Algorithm for Capacitated Lot-Sizing Problems 
without Overtiming 

For capac i t a ted  lot-sizing problems, the opt imal  solutions may not satisfy the "zero-switch" 

property.  In fact, the decision variables Xi t ,  Zit are not only dependent  on the product ion pa t t e rn  

(setups sequence) ~ t ,  but  also dependent  on the awdlable resources capacit ies Clot. In this 
s i tuat ion,  we can first determine Nit, ~it f r o m  Yit without  considering the resources constraints  
and take this lot-sizes plan as an initial  plan, which will be further modified by considering 
the resources constraints .  In this  paper ,  we will modify this initial  lot-size plan by "shifting" 

techniques tha t  have been widely used in the  heuristics for the lot-sizing problems [22,27]. 
The  shifting procedure  checks the capaci ty  feasibility of the initial  lot-size schedule fl'om the 

last  per iod backwards to period 1. In each period t, a capaci ty  t ightness index, pl,.t, which is 

defined to be the  ra t io  of the to ta l  capaci ty  for a resource needed to produce all the  scheduled 

i tems in this  per iod to the total  aw, ilable capaci ty  for this resource at this period,  is calculated 
for each resource k, 

N 

CNa.,, = E ( a ~ . i t  x Xi t  + Ak,ie x ~ ) ,  k = 1, 2 , . ,  I( ,  (11) 
i=  1 

CN~t k =  1,2, . , K ,  (12) 
P k t -  Ck t , 

where CNIat is the to ta l  capaci ty  for a resource k needed to produce all the scheduled i tems in 
per iod t. The remaining capaci ty  for a resource k in period t can be calculated as 

CRkt = Ckt - CNkt, k = 1, 2 , . . . ,  K. (13) 

It  is obvious tha t  the  resources capacit ies are enough to produce all the scheduled i tems in a 

per iod t if the capaci ty  t ightness indexes are all less than  or equal to one (i.e., Pt.t _< 1 for all 

k = 1, 2 , . . . ,  K )  at  this period. In this case, the shifting procedure moves to period t - 1 and 
begins to check the capaci ty  feasibility in this following period. If in some per iod t the  to ta l  
capac i ty  for a resource needed to produce all t i le scheduled items in this period is larger than  the 
to ta l  available capaci ty  for this resource at the period (i.e., Pt.t _< 1 for some k), an infeasibil i ty 
occurs for this resource k, and thus, one or more of the  scheduled i tem(s) in this period nmst  be 
shifted to tile previous period(s) .  If  there are two or more such kinds of resources, the procedure  
begins with the resource with the largest t ightness index. In order to get a capacity-feasible 
plan more efficiently, we only consider moving the excessive scheduled product ion quant i ty  to 
the  per iod jus t  before this period. In order to reduce as much as possible the possibi l i ty  of any 
infeasibil i ty result ing from the shifting procedure tbr the mater ia ls  between different stages, the 
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items are shifted according to the decreasing order of the labels of the scheduled items in this 
period (i.e., fl'om item N down to 1). This is based on the observation that  the item with a larger 
label will not use an item with a smaller index as its component. That  is to say, beginning with 
item N and down to item 1, we move the excessive production quantity of one or more scheduled 
items in this period to its previous period until the capacity-unfeasibility for this resource in 
this period is eliminated. If there is (are) other infeasible resource(s), we repeat this shifting 
procedure until all the infeasibility is eliminated. When the moving processes are finished, the 
modified lot-size plan will be a feasible plan with respect to the capacity constraints. Hence, the 
only infeasibility of this modified lot-size plan may be the backlogging for some items in some 
periods, and these kinds of infeasibilities will be tackled with the penalty method by using the 
similar penalty cost function (10) for the uneapacitated lot-sizing problem. 

In summary, the shifting procedure goes successively from period T down to 1 and from the 
tightest resource to the most flexible one within a period. While the capacity infeasibility occurs 
in some period, move the excessive production of one or more items in this period just before 
current period to assure the capacity feasibility (if the current period is the first period, then 
the production quanti ty for this item in this period will be partly or completely lost). In this 
shifting or moving excessive production backwards procedure, the remaining capacities of all the 
resources in these two successive periods are adjusted through considering the shifted quanti ty 
and the possible eliminated or added setup times (i.e., the setup-consumed capacities). The setup 
pat terns of the shifted items in this two periods will be modified whenever applicable. 

The detailed heuristic genetic algorithm for capacitated lot-sizing problems without overtiming 
(GAC) can be described as follows. 

A l g o r i t h m  G A C  

STEP 1. g : 0. Randomly initialize oldpop = {yo,j, j = 1 , 2 , . . . ,  MAXPOP},  the population 
set in gth generation. 

STEP 2. If g = MAXGEN, print the solution and stop. 

STEP 3. For each y0,3 E oldpop, j = 1, 2 , . . . ,  MAXPOP,  compute its objective function value 
as follows. 

3.1. Construct  the initial lot size schedule according to equation (9) without considering the 
resources constraints. Calculate X j according to yo,j as follows. 

• 0 j 0 , j  For i t ems i  fl'om 1 t o N ,  lfY~,t; = 1 ,~ t2  = 1 (1___ tl < t 2  <_ T + I ) ,  a n d ~ T  = 0  for 

all tl < r < t2 (assume 0j Y~:,T+I = 1), then let 

X~ = E di ,+ E "m~X~T ' X ~ , : 0 ,  l < _ t l < r < t 2 < T + l .  
r = t l  ruES(i) 

3.2. Eliminate the capacity-infeasibility for all the resources by the shifting procedure. The 
processing in period t (from T down to 1) is as follows. 

Calculate the resources tightness indexes p~-t for resource k (from 1 to K) according to 
equation (12). If all pkt are less than one, go to Step 3.3. Otherwise select the tightest 
resource k and calculate CRkt (the remaining capacity of resource k in period t) as 

N 

CRkt = Ckt - Ak.itYit 
i=1 

While CRkt < 0, for item i (from N down to 1), moving part or all of tile production 
quanti ty of item i in period t backwards to period t - 1: 

(i) If CRkt + akitXJt > 0, then move part  of the production quantity of item i in period t 
backwards to period t - 1  and the moved quantity is --CRkt/Ctki t. After this movement, 
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the  remaining capaci ty  of resource k in period t is zero, and the product ion quan t i ty  

of i tem i in period t - 1 is increased by -CR~t/aa-it. That  is to say, we set 

• C R k t  X j = X ,j C R k t  ~ O f J  1 , 
X ~ t  = X~. t 4- - - ,  i , t - 1  i,t-1 - - - ,  = 1, CRa, t = O. 

a k i t  a k i t  

(ii) If CRkt + akitxJt <_ O, then move all of the product ion quant i ty  of i tem i in period t 

backwards to per iod t - 1, and the moved quant i ty  is X/t. After  this movement,  the  

remaining capaci ty  of resource k in period t is increased by A~.it + a,. tXJt, and the 

product ion  quant i ty  of i tem i in period t - 1 is increased by X/t. Tha t  is to say, we 

set 

xj,=0, =xJ  +xJ 5°Z,=1, 50,j=0, i , t--1 i , t - - I  it~ 

CRkt = CRkt 4- A ~  + akitX/t. 

3.3. Determine  I j (inventory) ([~,o(Vi,j)) are known parameters)  according to X j (compute  
from per iod 1 to T for each item), 

I4 = I j X j E Xa l < t < T. %t i,t--1 4- i , t  -- rnt~ 
ruES(i )  

3.4. Compute  the corresponding object ive function value according to (10) from y o , j  X j, ia. 

STEP 4. Genera te  newpop = { y L j  j = 1,2 . . . .  , MAXPOP} ,  the popula t ion  set in (g + 1) th 
generat ion.  

4.1. Calcula te  tile fitness value fit(Y °J)  for each individual  y00  according to tile object ive 

function values obta ined in Step 3.4. 

M A X P O P  
fit ( y o 4 )  = max  COSTU (y0,~) + e _  COSTU (y04)  j = 1 , 2 , . . .  M A X P O P .  

i = 1  ' ' 

where c is a posit ive constant  and COSTU(Y)  - COSTU(Y, X, [) .  
4.2. Reproduct ion/Selec t ion .  Select yO,j~ yO,a2 fl'om the set oldpop according to the  fitness 

values. The probabi l i ty  to select y0, j  is 

pr  ( y 0 d )  = MAXPOP , j = 1, 2 , . . . ,  M A X P O P .  

E fit (Y°,9 
i = l  

4.3. Muta t ion .  If  the  muta t ion  probabi l i ty  is p,> then after the mutat ion,  

v ,0d  ~ K~ d, in probabi l i ty  of 1 - pro, 
"it = [ - 0 j  J = j l , J 2 .  

Yit , in probabi l i ty  of p,~, 

Here, 
f 0, if °,J= 1, 

1, if _- 0. 
4.4. Crossover. If the crossover probabi l i ty  is pc, then after the crossover, 

y,o,j, in probabi l i ty  of 1 - p c ,  

y l , j  = y, ,o,j  in probabi l i ty  ofp~, j = j l , j 2 .  

Here, r andomly  select a crossover posit ion s (1 < s < NT)  and then let 

( y 1  / v ~ O , J 2  v-~o,j,e w~O,j2 yt~0,jl = o , j l  w l o , j l  W / 0 , ) l  * S T 1  ' * S q - 2  " ' " 1¥T 

y,,O,j2 = f ]5~o,32 y,o,j~ y,o,a2 k 1 , 2 - s ~ v IO"P  wrO'Jl v'tO']~ 

4.5. Add  tile new individuals  y 1 j 1  yLj2 to the set newpop. 

4.6. If all M A X P O P  individuals  are produced,  then go to Step 5; otherwise go to Step 4.2. 

STEP 5. Set  ,9 = v + 1, o ldpop = newpop, i.e., ~0,.# = }~lt.j Vi, t, j ,  and go to Step 2. 
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3.3. Heuristic Genetic Algorithm for Capacitated Lot-Sizing Problems 
with Overtiming 

For capacitated lot-sizing problems with overtiming, we can also use the shifting procedure 
(see [22,27]) to move the lot-sizes backwards to respect the capacity constraints similarly to 
that of the capacitated lot-sizing problems without overtinfing. The only difference is that in 
this situation, the capacity of a resource includes two parts, i.e., normal capacity and overtime 
capacity. Therefore, before moving excessive production backwards from a capacity-infeasible 
period, we first consider eliminating capacity-unfeasibility by overtiming in the current period. 
If the sum of the normal capacity and maximum overtime capacity is still not enough to assure 
the production scheduled, then apply the shifting procedure. 

In order to assure the feasibility, we change the objective function to including penalties as 
follows: 

N T K T 

COSTO(Y,X,I,O) : ~ ~{sitYit  + c~tX~t + h, itIit} + ~ ~ ot:tOkt 
"i=1 t = l  k = l  e= l  (14) 

K T 

+/3 ~ y~'[max{(), -I,t)] )', 
k = l  ~=1 

where/3 is the penalty coefficient (a large enough positive number). 
The heuristic genetic algorithm for capacitated lot-sizing problems with overtinfing (GAO) can 

be described as follows. 

Algorithm GAO 

Only Steps 3 and 4 of the Algorithm GAC need to be changed. 

STEP 3. For each y0,j E oldpop, j = 1,2, . . .  ,MAXPOP, calculate its objective function value 
as follows. 

3.1. Construct the initial lot size schedule according to equation (9) without considering the 
resources constraints (same as in Step 3.1 of the Algorithm GAC). 

3.2. Eliminate the infeasibilities of the resources by shifting procedure similar to Step 3.2 in 
the Algorithm GAC. This procedure goes from period T down to 1 and from the tightest 
resource to the loosest resource within a period. If the normal capacity of a resource is not 
enough to eliminate the infeasibilities in a period, then first consider overtiming with this 
resource in this period. If the total capacity (including normal capacity and the overtime) 
of this resource in this period is still not enough, then shift some or all of the production 
quantities to the period just before current period to assure the capacity-feasibility. (If 
the current period is the first period, then the production for this item in this period 
will be lost.) The shifting procedure goes for item N down to 1. During the shifting 
procedure, the setup times (i.e., the setup-consumed capacities) are also considered, and 
the remaining capacity is adjusted. The corresponding setup patterns y0o,  ~0.1~ 1 are also 

correctly reset. 
3.3. Determine inventory I j (the same as Step 3.3 of the Algorithm GAC). 
3.4. Calculate the corresponding objective function value COSTO according to (14) from y0d,  

Xa, lJ. 

STEP 4. Same as the Step 4 of the Algorithm GAC. However, we use COSTO to evaluate the 
fitness values of individuals in this algorithm instead of using COSTC in the Algorithm GAC. 

4. C O M P U T A T I O N A L  E X P E R I M E N T S  

The performance of the proposed algorithms GAC and GAO described in the previous section 
h ~  been evaluated on a set of testing problems. The algorithms are programmed with C + +  
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r unn ing  on a Pen t ium- I I I .  T h e  expe r imen t s  reveal  t ha t  these  a lgo r i thms  ob ta in  a ve ry  good  

a p p r o x i m a t i o n  so lu t ion  of  G C L S P  in reasonable  c o m p u t a t i o n  t ime.  In the  fol lowing are  some of 

t h e  example s  of the  exper iments .  

We have  c o n d u c t e d  a pr i rnary tes t  to inves t iga te  the  impac t  of the  convrol p a r a m e t e r s  of  the  

gene t ic  a lgo r i t hms  on the  pe r fo rmance  of G A C  and GAO.  T h e  a lgor i thms  converge  to a so lu t ion  

wi th in  200 genera t ions  for mos t  of the  small-scale  examples  (e.g., N < 10, K < 2) a.nd wi th in  500 

gene ra t ions  for mos t  of  the  m o d e s t  examples  (e.g., N ~ 20, K ~ 2). T h e  crossover  probabi l i t i es  

be tween  0.6 to 1.0 and the  m u t a t i o n  probabi l i t ies  be tween  0.005 to  0.033 give no s ignif icant  

difference regard ing  the  to ta l  cost per formance .  But ,  the  m u t a t i o n  probabi l i t ies  less t han  0.005 

show worse to t a l  cost  per formance .  In add i t ion  to these control  pa ramete r s ,  t he  el i t is t  s t r a t egy  

can  enhance  t h e  p e r f o r m a n c e  significantly,  and thus, it is i nco rpo ra t ed  into the  a lgor i thms .  

In all of  t he  fol lowing numer ica l  examples ,  we used the  following control  pa r ame te r s  for genet ic  

a lgor i thms:  

• M a x i m u m  genera t ions  M A X G E N  = 500. 

• P o p u l a t i o n  size M A X P O P  = 30. 

• M u t a t i o n  p robab i l i t y  p , ,  = 0.033. 

• Crossover  p robab i l i t y  p~ = 0.6. 

5 7 Bottleneck 

Figure 1. Product structure for Example 1. 

Table 2a. External demands for end item and available capacity for resource (mean 
values* ). 

Period t 1 2 3 4 5 6 

External demand dlt 40 0 100 0 90 10 

Available capacity Ct 10000 0 5000 5000 1000 1000 

Table 2b. Setup costs and marginal holding costs for items (mean values*). 

Item i 1 2 3 4 5 6 7 

Setup cost  sit(= s i )  400 500 1000 300 200 400 100 

Holding cost hit(= hi) 12 0.6 1.0 0.04 0.03 0.04 0.04 

*Average values for ten groups of randomly generated data. 

EXAMPLE 1. CAPAC1TATED LOT-SIZING WITHOUT OVElqTIMING FOR ASSEMBLY SYSTEM. In 

th is  example ,  t he  p r o d u c t  s t ruc tu re  is shown as F igure  1 wi th  N = 7, T = 6. K = 1. On ly  the  

end  i t e m  ( i t em 1) has ex te rna l  demands ,  and the  marg ina l  hold ing  costs and se tup  costs  of  all 

t he  i t ems  are  a s sumed  to  be cons tan t  over  t ime.  Margina l  p roduc t ion  costs are cons tan t  over  

t i m e  and are  assumed to be zero (i.e., cit = 0, V(i , t ) ) .  On ly  the  p r o d u c t i o n  of  i tems 2 and 3 
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are capacitated, and the setup times are assumed to be ignorable ( i . e . ,  Air = 0 ,  V ( i , ~ ) ,  a~t = 0 ,  

Vt,  V i ¢  2, 3, a2t = a2 = 5, aat = a3 = 8). For  t h i s  example, each  t e s t e d  algorithm is r u n  

with ten groups of randomly generated data. The mean demands for the end item (item 1) and 
the mean capacity for the resource (bottleneck) in diKe.rent time periods are shown in Table 2a. 
The mean marginal holding costs and setup costs of different items in different time periods are 
shown in Table 2b. We compared GAC with SA (simulated annealing algorithm [23]), TS (taboo 
search algorithm [23]), and LR (Lagrangean relaxation algorithm [21]). These algorithms are 
programmed by ourselves according to the descriptions in the original papers of Kuik et al. [23] 
and Billington et el. [21], respectively. For each of the randomly generated problems, the three 
probability algorithms (i.e., algorithms GA, TS, and GAC) are run five times using different 
random number seeds, respectively. The final results are surmnarized on Table 3. Examination 
of the results shows that the solutions obtained by GAC are much better than that of SA and TS 
in approximately the same computing time, while GAC obtains approximately the same better 
solutions as LR while in much less time than that, of LR. 

Table 3. GAC compared with other algorithms.* 

Algorithm Mean Optimal Value Compared with GAC Computing Time (s) 

SA 10740.00 1.162 9.90 

TS 9620.00 1.041 8.80 

LR 9239.00 0.999 34.10 

GAC 9245.00 1.000 10.10 

*In this example, each algorithm is tested with ten groups of randomly generated 
data, and the probability algorithms GA, TS, and GAC are run five times using 
different random number seeds. 

Figure 2. Product structure for Example 2. 

EXAMPLE 2. CAPACITATED LOT-SIZING WITtt OVERTIMING FOR GENERAL SYSTEM. In  t h i s  

e x a m p l e ,  t h e  p r o d u c t  s t r u c t u r e  is s h o w n  as F i g u r e  2 w i t h  N = 21, T = 6, K = 2. T h i s  p r o b l e m  

is a s impl i f ied  ve r s ion  of  a rea l -wor ld  p r o d u c t i o n  e n v i r o n m e n t  c o m i n g  f rom a m a n u f a c t u r i n g  

c o m p a n y .  O n l y  t h e  e n d  i t e m s  1 a n d  2 have  e x t e r n a l  d e m a n d s ,  a n d  t h e  q u a n t i t i e s  of d e m a n d s  for 

b o t h  end  i t e m s  are  n o n z e r o  on ly  in t h e  las t  p e r i o d  ( these  q u a n t i t i e s  a re  40 u n i t s  a n d  10 u n i t s  for 

i t e m s  1 a n d  2, respect ive ly ,  i.e., dt6 = 40, d26 = 10, dit = 0 for o t h e r  i a n d  t) .  All  t h e  i t e m s  have  

in i t i a l  s t ocks  of five u n i t s  (i.e., Ii0 = 5, Vi). T h e  m a r g i n a l  p r o d u c t i o n  cos t  of  one  u n i t  of  each  

i t e m  is c o n s t a n t  over  t i m e  a n d  is a s s u m e d  to  b e  100 (i.e., cit = 100, Vi, t ) .  T h e  c a p a c i t y  of  b o t h  
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resources occupied by every setup of all the i tems are constant  (i.e., A k i t  = 5 for all k, i, t). All  
the  holding costs, setup cost parameters ,  and capaci ty-consuming para ineters  are constant  over 

t ime and are shown in Table 4. The  available capacity, maximum overtime, and corresponding 

costs are shown in Table 5. 

T a b l e  4, S e t u p  cos t s ,  h o l d i n g  cos ts ,  a n d  c a p a c i t y - c o n s u m i n g  p e r  un i t .  

I t e m  S e t u p  C o s t  H o l d i n g  Cos t  C a p a c i t y - C o n s u m i n g  C a p a c i t y - C o n s u m i n g  

i 8it( = 8i) hit(  = hi) al i t (  = a l i )  a2it( = a2i) 

1 1260 7 6 2 

2 9765 217  6 8 

3 2160 6 5 5 

4 2520 14 7 6 

5 2520 14 3 9 

6 '  1800 10 8 3 

7 1800 10 9 8 

8 1440 1 2 2 

9 360 1 7 6 

10 4680  13 2 3 

11 3240  9 3 7 

12 2160  3 8 4 

13 2160  3 4 6 

14 1440 2 5 5 

15 1440 2 4 6 

16 1440 2 6 2 

17 1440 2 4 2 

18 720 1 9 4 

19 720 1 8 8 

20 720 1 9 7 

21 720 1 5 4 

T a b l e  5. A v a i l a b l e  capac i t y ,  ove r t ime ,  a n d  c o r r e s p o n d i n g  costs .  

P e r i o d  t 1 2 3 4 5 6 

N o r m a l  c a p a c i t y  Clt  2000 1500 2000 3000 2000 3000 

N o r m a l  c a p a c i t y  C2t 2000 1500 1800 2400 2000 3000  

M a z d m u m  o v e r t i m e  Ult 100 300  200 300 180 350  

M a x i m u m  o v e r t i m e  U2t 200 220 180 240 270 320  

O v e r t i m e  cos t  olt 200 200 200 200 200 200 

O v e r t i m e  cos t  o2t 100 100 100 100 100 100 

GAC gives a feasible solution with to ta l  cost of 588826 for this problem within ten minutes.  
Checking the parameters  of the  problem, we can see tha t  the capaci ty  constraint  in this problem is 
very t ight  and GAC gives an acceptable solution. We also tested the lot-sizing problems with the  
same produc t  s t ruc ture  using other  input  data ,  and GAC always obta ined  acceptable  solutions in 
reasonable  comput ing  times. For the  algori thms SA, TS of [23] and LR of [21} cannot  deal with 

the lot-sizing problems with setup times, we have not provided the similar comparison results as 
those provided in Example  1. 

5. S U M M A R Y  

This paper  develops a heuristic genetic algori thm for general capaci ta ted  lot-sizing problems. 
The  p roduc t  s t ructures  and capaci ty  constraints  can be any type,  resources capaci ty  can be ad- 
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justed by overtiming, each item in the system can have external demands, and the cost parameters 
(setup costs, holding costs, production costs, overtiming costs) can be time-varying. The experi- 
ments show that this method is efficient and effective to solve the general capacitated lot-sizing 
problems. However, the computational experiments and theoretical analyses presented in this 
paper are relatively weak, and more computation experiments and theoretical analyses should 
be made to this kind of heuristic genetic algorithm. For exanlple, optimal control parameters 
for genetic algorithms such as crossover probability and nmtation probability can be identified 
by more detailed numericM experiments, and it is very attractive to study the behavior of the 
cost and computation time for the heuristic genetic algorithm as the complexity of the problem 
increases. The heuristic algorithm proposed in this paper (:an also be generalized to solve some 
more complicated lot-sizing problems such as the problems with sequence-dependent setup times 
and/or sequence-dependent cost parameters. Other genetic operators and selection strategies, 
such as the uniform crossover amd the ranking or tournament selection strategy, can be incor- 
porated into this heuristic genetic algorithm.easily. Other more complicated shifting procedures 
can also be incorporated into this algorithm; for example, we can consider shutting the scheduled 
items to the next earlier period that already has setups for that item. Finally, incorporating the 
heuristic genetic algorithm with other metaheuristics to solve the general capacitated lot-sizing 
and scheduling problems is also very attractive. These will be the potential directions for further 
research. 
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