
Science of Computer Programming 74 (2009) 702–722

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

On the collective sort problem for distributed tuple spaces
Matteo Casadei ∗, Mirko Viroli, Luca Gardelli
Alma Mater Studiorum–Università di Bologna, via Venezia 52, 47023 Cesena, Italy

a r t i c l e i n f o

Article history:
Received 29 June 2007
Received in revised form 15 May 2008
Accepted 15 September 2008
Available online 24 February 2009

Keywords:
Self-organizing systems
Tuple spaces
Stochastic simulations
Collective sort

a b s t r a c t

In systems coordinated with a distributed set of tuple spaces, it is crucial to assist agents in
retrieving the tuples they are interested in. This can be achieved by sorting techniques that
group similar tuples together in the same tuple space, so that the position of a tuple can be
inferred by similarity. Accordingly, we formulate the collective sort problem for distributed
tuple spaces, where a set of agents is in charge of moving tuples up to a complete sort has
been reached, namely, each of the N tuple spaces aggregate tuples belonging to one of the
N kinds available. After pointing out the requirements for effectively tackling this problem,
we propose a self-organizing solution resembling brood sorting performed by ants. This is
based on simple agents that perform partial observations and accordingly take decisions
on tuple movement. Convergence is addressed by a fully adaptive method for simulated
annealing, based on noise tuples inserted and removed by agents on a need basis so as to
avoid sub-optimal sorting. Emergence of sorting properties and scalability are evaluated
through stochastic simulations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Amongmany scenarios relying on coordination models and languages, the most popular is based on the idea that agents
in a distributed system can interact with each other through tuple spaces spread over the network, where tuples can be
inserted and retrieved relying on so-called generative communication [17,18,32]. This approach has been shown to support
time and space decoupling, as well as to promote a clear separation between the computational part of the system, which
should stay inside agents, and the coordination part of the system, implemented through tuple spaces.
In open systems, however, due to the unpredictability of agents’ behavior, it is often difficult to know in which tuple

space a certain tuple may occur. As a consequence, when an agent needs to retrieve tuples matching a given pattern, the
only strategy would be to randomly select one tuple space among the available ones, and try another one in the case the
tuple is not found—leading to obvious performance issues. Accordingly, a strategy is required to assure that agents have some
knowledge about the location of the tuples of interest, so that such tuples can bemore quickly retrieved. A general solution to
this problem is to devise approaches for moving tuples to the most proper tuple space, and locate them accordingly. Works
like the TOTAmiddleware [24], SwarmLinda [29], and stochastic KLAIM [30], though starting from different perspectives, all
develop the idea of extending the basic tuple space model of Lindawith features related to tuples’ repositioning by moving
or copying.
Along this idea, in this article we envision a sorting technique for tuple spaces, where a set of sorting agents is in charge

of moving tuples until each space holds only tuples of the same kind. To support this behavior, sorting agents – which are
part of the infrastructure providing the coordination service – must be designed so as to agree on what to sort (the set of
N tuple spaces subject to ordering), and how to sort (a clustering relation that groups the tuples of interest into N kinds,
so that 1 kind can be exactly associated to 1 space). Similarly to sorting in standard data structures like e.g. arrays, such

∗ Corresponding author. Tel.: +39 0547 6 34710; fax: +39 0547 3 39219.
E-mail addresses:m.casadei@unibo.it (M. Casadei), mirko.viroli@unibo.it (M. Viroli), luca.gardelli@unibo.it (L. Gardelli).

0167-6423/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2008.09.018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82474158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:m.casadei@unibo.it
mailto:mirko.viroli@unibo.it
mailto:luca.gardelli@unibo.it
http://dx.doi.org/10.1016/j.scico.2008.09.018

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 703

an aggregation technique – a case of segregation in the context of collective robotics [26] – can be regarded as an approach
with the ultimate goal of simplifying the process of finding tuples: if a certain tuple is eventually found in a tuple space,
then any tuple of the same kind can be found in the same space. Note that even if full sorting is not completely reached,
partial sorting may still improve performance of tuple retrieval since the probability of finding the tuple at the first attempt
becomes higher than 1/N . This technique is hereafter referred to as collective sort for distributed tuple spaces.
Such a sorting service is meant to work in the ‘‘background’’ to the standard activity of tuple spaces, that is, ordering

of tuples proceeds while user agents coordinate their activity by inserting and retrieving tuples. In other words, it is an
online service. Unlike standard sorting techniques, hence, here sorting should effectivelywork in dynamic and unpredictable
scenarios where user agents keep moving, inserting, and dropping tuples. Therefore, the tuple space that will eventually
aggregate a certain kind of tuples is not known statically: it is chosen implicitly and probabilistically as tuples start
aggregating in a space rather than another as a consequence of multiple tuple movements. Hence, we are concerned with
robustness and reactiveness to changes other than moving rate: we need sorting to be a property emerging in spite of
external interactions—of course, themore the external environment keeps altering a tuple configuration, themore resources
must be devoted to sorting if convergence is to be achieved.
By looking at existing systems, we see that interesting related behaviors already manifest in Nature. Ants use a self-

organizing technique called brood sorting to solve a similar problem [5]: they move items (brood or larvae) based on local
and partial criteria, and sorting emerges as a global system property. Inspired by brood sorting, we develop a solution to the
collective sort problem. Interestingly, we show that full sorting can be achieved by requiring sorting agents with neither
computational ability (intelligence or memory), nor complete observations of tuple spaces—though, such aspects of course
impact on the performance of ordering. The proposed solution is based on the following ingredients: (i) probabilistic access
to tuples in tuple spaces; (ii) local decision on tuple movement based on a couple of observations (two read operations, on
two spaces); and (iii) avoidance of non-optimal sorting by a fully adaptive approach in the style of simulated annealing [20].
As for any self-organizing technique, probability is a key aspect. Not only small variations on tuple configuration can

lead to completely different system behaviors, but the same can also happen in different system ‘‘runs’’ from the same
initial conditions—since tuples are retrieved probabilistically. Therefore, we shall rely on stochastic simulation tools in order
to check whether the proposed solution meets our expectations in terms of quality. To this end, we adopt the stochastic
simulation library we developed in theMaude term rewriting system [9]—of course other tools like e.g. SPIM [33], SWARM
[2] and REPAST [1], could be used as well.
The remainder of this article is organized as follows: Section 2 motivates and formulates the collective sort problem,

Section 3 describes the proposed solution and its design choices, Section 4 evaluates the approach by stochastic simulations,
Section 5 discusses related work, and Section 6 concludes providing final remarks. This article is an extended version of
previous material appeared in [9,38], providing a new and refined solution to the collective sort problem, along with an
extensive evaluation concerning convergence, scalability and reactiveness to external interactions.

2. Collective sort

In this section we formulate the collective sort problem, analyze motivations, define architectural and behavioral
constraints, provide requirements for an effective solution, and finally outline an example scenario of application.

2.1. Motivation

We assume a network composed of tuple spaces and agents, where agents address tuple spaces by identity. Agent
interaction relies on so-called generative communication, namely, agents put tuples (records of primitive values) in tuple
spaces and later retrieve such tuples by content, that is, using a partial specification known as tuple template.
The presence of a tuple in a particular spacemay affect the behavior of the overall system since it reifies the occurrence of

an event related to system coordination. Such events may include: (i) agents requesting services of some kind provided by
another agent; (ii) agents providing the outcome of the execution of a service; (iii) agents depositing data values which are
part of the overall system state; (iv) agents publishing part of their internal state and knowledge; and (v) agents updating
some shared-variable upon which other agents synchronize their activity. When storing a tuple, the choice of the tuple
space to be used is critical. If an agent knows the identifier of the tuple space where a specific tuple is stored, the tuple can
be retrieved by only one read operation; however, if this is not the case, the agent may end up trying different tuple spaces
until finding the right one. Therefore, an agent needs to be aware of the location of the tuples it is interested in; if it is not
possible to know their location, even some kind of awareness could be helpful.
In standard data structures, like e.g. arrays, access to data is simplified – i.e. made quicker – by keeping information

sorted: typically, a sorting algorithm is exploited alongwith insertions and removals that preserve sorting, and fast searching
operations are conceived so as to leverage sorting. Sorting itself is based on a total order relation over data that is predefined
and static.
Our idea is to take a collection of tuple spaces, initially hosting tuples stored in a completely randommanner, and apply a

similar approach. Since a tuple space is an unstructured and unbounded bag (i.e., a multiset), the only relevant information
for an agent is in which tuple space a tuple is located—there is no notion of the ‘‘position’’ of a tuple within a tuple space.

704 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 1. Array sorting vs. collective sorting.

Accordingly, our goal is to devise a sorting procedure that moves tuples from one space to another until each space holds
only tuples of the same kind. If a tuple of kind k is known to reside in space s, all tuples of the same kind can be expected to
be located in s, thus simplifying searches.
Given the goal of ordering N tuple spaces, we hence assume that the tuples to be sorted (which might be a subset of all

the tuples in the system) are clustered into N kinds, and that sorting agents are aware of such clustering. As for the total
order relation used in standard structures like arrays, our order relation may be predefined, that is, conceived at design-
time and before actually powering on the sorting service. On the other hand, it would be possible to also change the sorting
configuration dynamically – due to changes in the set of spaces, or if a more symmetric clustering relation is to be used –
provided sorting agents are all aware of this change. Hence, we do not focus on how kinds are formed: in principle, tuples
which are ‘‘similar’’ according to some metric, depending on the coordinated system at hand, should belong to the same
kind—however, as far as tuple retrieval is concerned, a kind is better formed by all tuples that match one or more template.
See Fig. 1 for a pictorial comparison between standard array sorting, and collective sorting in tuple spaces.
We call the problem of gathering tuples of the same kind over a set of N tuple spaces as collective sort. It should be clear

from now on that, unlike standard algorithms, collective sort is meant to work at runtime. While it is typically agreed that
the content of an array is frozen during sorting, tuple spaces work in unpredictable dynamic scenarios, so that collective
sort needs to be conceived as a background activity aimed at moving the system towards sorting at the same time as user
agents keep changing the state of tuple spaces.1 Depending on the ratio between rate of changes and resources devoted to
sorting, the system might evolve according to one of three behaviors: (i) full sorting is achieved (modulo a small noise due
tomutations operated by user agents), (ii) a certain level of (partial) sorting can bemaintained, and (iii) the system becomes
more and more unsorted as time passes, until becoming chaotic—in next section we will quantify the degree of order in
terms of entropy. It is worth noting that agents can take advance of a partially sorted system as well, since the probability
of finding a tuple of kind k, where a previous one was found, is indeed higher than in other tuple spaces. Accordingly, the
average retrieving cost is lower than in fully unsorted cases.

2.2. Seeking for a self-organizing solution

Collective sort in distributed tuple spaces is reminiscent of a classical problem in robotics known as segregation, where
robots roam the ground with the goal of finding, grouping, and separating items—for further details refer to Section 5.
In that context, solutions are typically searched in Nature, which is a rich source of simple but robust strategies. The

segregation behavior has already been observed on social insects an referred to as brood sorting [6]. When organizing brood
and larvae, ants tend to group and keep such items separated from an initial situation where they are randomly situated

1 One could think of an analogy with concurrent garbage collection, where users processes keep mutating data while the collector tries to manage
memory in parallel.

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 705

in the ground. Although ants actual ‘‘behavior’’ is still not fully understood, there are several models that are able to mimic
the dynamics of the system. Ants wander randomly on the ground and their behavior is modeled by two probabilities,
respectively, the probability of picking up Pp and dropping Pd an item, which are evaluated with respect to the recently
encountered items. The idea is that an ant (i) picks up an item if its concentration is lowwith respect to previous experience,
(ii) starts wander randomly, and (iii) drops the item where its concentration is higher with respect to where it was picked.
The ant-based solution to brood sorting is intrinsically self-organizing [8], that is: (i) it is a process in which a pattern at

the global level of the system emerges solely as the result of the numerous interactions among the low-level components
of the system, and (ii) where the rules specifying interactions among a system’s components are executed by using only
local information, without any reference to a global pattern. Namely, ants are guided by spatially local observations and
motivated by the only need of picking items up where concentration is low, and dropping them where concentration is
higher: numerous such interactions make full sorting (i.e. the segregation pattern) emerge at the global level!
The above solution to brood sorting (and any self-organization approach in general) manifests interesting features. First,

it is intrinsically robust, since it does not require global information: it promptly reacts to changes in the environment
(e.g. new brood, larvae, or ants are dynamically added or removed), to faults like environment splits (e.g. a barrier splitting
the ground into two parts), and to local malfunctioning (e.g. some ant behaving in a completely different way). Second,
it is intrinsically probabilistic since in the real world small fluctuations always happen which, due to bifurcation effects,
might cause the system behavior to globally change—this is indeed a source of robustness. As for all self-organization
approaches, performance is of course lower than solutions based on global observations, due to the overhead caused by the
need to continuously performpointwise (local) observations. Hence, self-organizing systems stress the tradeoff between the
performance of global approaches and the robustness of local approaches—and considering that global approaches are not
always available, as for distributed systems in general. Such solutions are therefore considered interesting for developing
robust online services that should function in unpredictable environments, and where performance and robustness live
together as key factors.
As a result, it is interesting to seek a solution to collective sort inspired by ants’ brood sorting. However, it should be

noted that the two application scenarios have key differences, that might require a significant adaptation:

• Topological space — Instead of being a continuous environment, or a network of connected subparts of the environment,
our scenario features a flat set of N tuple spaces, each being a conceptually unbounded bag of tuples.
• Agent Mobility — Instead of being performed by mobile agents carrying items with them and wandering randomly in
the environment, the sorting service is executed by an infrastructure composed of software agents, each associated to
a tuple space. Since sending tuples is typically less expensive than moving software agents, such agents should not be
likely or necessary to move.
• Actions and Perceptions – Instead of perceiving items based on a range of locality, such software agents should be able
to look for tuples in either the tuple space they are assigned to (called local tuple space), or a different tuple space (called
remote tuple space) – the latter operation is necessarilymore expensive. Similarly, actions correspond to removing tuples
and inserting them elsewhere.

2.3. Architectural and behavioral constraints

Based on the above considerations, a working solution for the collective sort problem is developed that could achieve the
robustness properties sought by self-organization approaches. First of all, it is important to characterize all the architectural
and behavioral constraints for any candidate solution:

• Service architecture. In a system with N tuple spaces, and multiple user agents coordinating their activity through those
spaces, collective sort needs to be considered as an online service provided by one ormore sorting agents, each assigned to
exactly one of the N spaces. Each agent works at a certain rate, that is, it executes a number of instances of an interaction
protocol per time unit. Of course, it is understood that sorting performance is directly dependent on the sorting rate of
such agents.
• Sorting agent behavior. The behavior of sorting agents, and ultimately of the proposed algorithm, is hence described
in terms of a (possibly probabilistic) protocol to be executed multiple times by each agent—most likely, taking an
observation and accordingly performing some actions, inspired by brood sorting. This protocol is to be the composition
of primitive operations over tuple spaces, that is, reading, removal, and insertion of tuples. Note that tuple counting is
not allowed by standard tuple space systems, hence the only means for observing a space is to repeatedly read single
tuples on it. Somememory and limited symbolic ability might be assumed but this is not mandatory—e.g., the agent may
remember what is the last tuple moved, or have the ability to check whether two tuples belong to the same kind or not.
• Data modeling. We assume there is a strict connection between the notion of kind and tuple template, so that it is easy
for an agent to get a tuple of a certain kind from a tuple space by asking for a tuple matching a template, or get a tuple of
any kind by asking for a more generic template. Whereas Linda does not allow e.g. to look for tuples matching one of n
templates, this is not a conceptual or technological problem per se, and can in fact be implemented over existing tuple-
based infrastructures such as TuCSoN [32,31]—hence, in the collective sort solution we identify the concept of kind with
that of tuple template. Moreover, we assume that reading or removal of tuples matching a given template is a uniform

706 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

operation that yields a probabilistically fair result [38], namely, among the many tuples matching the template all have
the same probability of being chosen.

2.4. Quality attributes

Other than architectural and behavioral requirements, which are meant to shape the structure of a solution, it is also
interesting to point out the quality attributes expected from a successful solution, expressed in terms of qualitative and
quantitative aspects.
As a way of measuring the degree of sorting of a certain configuration of tuples, we rely on Shannon entropy [37], which

represents the uncertainty in the observation of a randomvariable—this is also called information entropy, or simply entropy
from now. This is expressed as K ∗

∑n
i=1 pi log(pi), where K is any constant value and pi is the probability for the variable

to assume the ith of n possible values. In our case, the ordering of a tuple space can be associated with the variable that
represents the kind of a tuple randomly drawn in the space. Given N kinds k1, . . . , kN , if we denote with qk the amount of
tuples of kind k, and with n the total number of tuples in the space, then the probability of a tuple to be of kind ki is qki/n,
which is basically the concentration cki of tuples of kind ki in the space. Accordingly, the entropy associated with tuple space
s can then be computed as:

Hs = K ∗
N∑
i=1

cki log(cki) (1)

while the global system entropy is simply the sum of each space entropy, namely H =
∑N
i=1 Hsi , which ranges from 0 to

K ∗ N log2 N . K is then set to 1/(N log2 N) in order to bound the globally system entropy between 0 and 1, where 0 means
complete sorting (each space holds tuples of only one kind), while 1 means complete unsorting (each space has an equal
number of tuples per kind).
Concerning the outcome of ordering, the quality attribute we seek for the collective sort solution can hence be listed as:

• Full sorting. In the case of a quiescent system – one in which the mutation rate of user agents is zero – complete sorting
(H = 0) must be reached from any initial configuration. Namely, system evolution should never get stuck in unordered
states (where H > 0).
• Reactiveness. Given a certain non-zero mutation rate, and a desired level of sorting HD < 1, there should be a sorting
rate that leads the system to an entropy value constantly lower than HD.

Another key issue concerns the performance which can be achieved in sorting. Being an online service, we note that the
sorting time strictly depends on the resources devoted to sorting. Supposing as fixed the number of network operations
per time unit devoted to sorting, performance can be characterized in terms of the amount of network operations (reading,
removal or insertion of tuples) required to achieve sorting.
As a starting reference, we can consider an initial situation with N spaces and kinds, and T tuples per kind chaotically

inserted in the spaces (H = 1). The optimal algorithm would consider only tuples that are out of place, and accordingly
move such tuples directly to the proper destination space: since each space holds T tuples and T ∗(N−1)/N of them are out
of place, we would have a total of T ∗ (N − 1) tuples moved. However, this result would be accomplished only if mutation
rate is zero and global information is available, but this is an ideal situation that does not fit collective sort.
First of all, we cannot suppose thatmutation rate is zero. In general, the ‘‘reactiveness’’ seen above also highlights the need

of promptly reacting to an unpredictable, possibly significant change to the tuple configuration, e.g. a user agent inserting a
significant number of tuples into a single space in a few time units. This means that the sorting service should devote some
network resource to observing spaces (intercepting changing situations) and some other to transferring tuples—as men-
tioned in the previous section. Different policies can be evaluated to trade off the observation rate and transfer rate, so as to
either promote convergence time in the static case or prompt reactiveness to changes. Secondly, in our frameworkwe do not
have global information readily available. As already mentioned, this is because tuple spaces do not allow one to count the
number of tuplesmatching a given template. Accordingly,multiple probabilistic read operations are used to observe a space.
As a result, collective sort is to be run by continuously observing tuple spaces in order to be reactive to changes in tuple

configuration, and by emergently selecting the tuple space that should gather a certain kind of tuple. Hence, this causes an
unavoidable overheadwith respect to the ideal case above. Moreover, it should be noted that, as in array sorting, the relative
overhead obviously increases with the size of the problem, namely with the number of tuples and tuple spaces. As a general
rule, we seek the following result:

• Convergence cost. The average ‘‘cost’’ (network operations) for sorting starting from a chaotic configurationwhereH = 1
has to be at most one order of magnitude greater than the solution based on static, global information. Moreover, the
sorting cost should be expected to scale at most polynomially with the number of tuples and tuple spaces.

2.5. An example scenario

A key scenario of large-scale distributed systems nowadays is based on wireless sensor networks, namely, systems
with a high number of small, wireless devices deployed in the physical world to monitor environmental properties [3].

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 707

Fig. 2. Applicative scenario with a wireless sensor network and multiple sink nodes.

A fundamental issue in this context is to devise effective strategies to gather all the generated data [21]. Recent works like
[10,41] focus on building suitable algorithms for gathering such data into a small set of sink nodes.
Based on this context, we show an application scenario for collective sort, as a way to clarify its main motivations

and applicability. We suppose that sensors are spread over a wide area to monitor a set of environmental properties
(temperature, pressure, humidity, light) and accordingly generate events reporting changes in such properties and/or faults.
Such sensors form a highly dynamic set, for they may fail, or move – e.g. since they are deployed on board of a vehicle or a
mobile device – or unpredictably hibernate to save energy. A proper infrastructure like that envisioned in [10] is exploited
to gather all the generated events into a set of N sink nodes, reliably connected to a stable network—e.g. they can be thought
of as environmental stations connected through a WAN. Each sink node is associated with a tuple space that unpredictably
receives from sensors tuples of the kind:

event(sensor_id,sensor_position, time,property_name,property_value).

Hence, sensors will play the role of user agents. Additionally, other user agents – called manager agents – are connected
to sink nodes, and are in charge of properly managing all the generated data, executing the following tasks: generating a
global map of a certain property, looking for peak values of a certain property, gathering general statistics of faults, erasing
old events when updated data arrives, erasing duplicated events if the same one arrives to different sinks, and so on. See
Fig. 2 for a pictorial representation of this application scenario.
Whereas having multiple sinks enhances the efficiency of data gathering [10,41], this clearly introduces implementation

issues since manager agents are forced to look at the tuples they are interested in throughout the set of spaces: themanager
agent in charge of gathering the globalmap of temperaturewould look for the templateevent(?,?,?,temperature,?),
the agent looking for faults would look for event(?,?,fault,fault,fault), and so on. In order to avoid the overhead
induced by the need of looking for tuples in all the N tuple spaces, it is helpful to set up a collective sort service that at
runtime keeps all the generated data sorted in an emergent way. Note that the particular settings of this application are such
that it may be hard to assign tuples to spaces statically, basically because the space where certain tuples will be deposited
cannot be known at design time—the routing algorithm for sinks may be probabilistic, sensors can move, faults can occur in
unpredictable places, certain properties may rapidly evolve only in certain places of the network, and so on.
Accordingly, after setting up a finite set of tuple templates of interest and deciding how they should be clustered into N

kinds, N sorting agents can be deployed in the environmental stations, working at a certain sorting rate. As an example with
N = 4, tuplesmodeling faults can go to space 1, tuplesmodeling peak values to space 2, tuples with updates on temperature
and pressure on space 3, and finally tuples with updates on humidity and light to space 4. If during sorting, it became clear
that one space is gathering many more tuples than others, kinds might be redesigned and sorting agents can be accordingly
updated—in the context of this article we treat this aspect as orthogonal to the sorting behavior, though.
As the sorting service is powered on and reaches the desired level of sorting, each manager agent will shortly find the

tuple space gathering the tuple it is interested in, thus improving the execution performance of its task.

3. A solution to the problem

In this article we present a solution that satisfies the quality attributes outlined in the previous section. In particular, we
aim at showing that this can be obtained without relying on agent’s intelligence – as many self-organization approaches
highlight – but by devising an agent’s behavior based on very simple protocols of basic tuple operations.

708 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 3. Architecture for collective sort—The agent on left-bottom should eventually relocate tuples C and D to different tuple spaces.

For presentation purposes, and to make our design choices clearer, this section incrementally introduces the solution
conceived for collective sort. An intermediate approach is discussed, along with some preliminary results that required a
design improvement, ultimately leading to the solution fully evaluated in Section 4.

3.1. Basic strategy

Given the general architecture for collective sort, we start describing a basic strategy for the solution inspired by ants’
brood sorting.
Similarly to ants, each sorting agent performs a partial system observation, namely, an observation on the local tuple

space (where an item is possibly picked up) and an observation on some remote tuple space randomly chosen (where the
item may be dropped). According to such observations, if it can be inferred that some tuple is better sent to a remote tuple
space s, then the agent locally removes the tuple and inserts it in s. This observation–action cycle is executed by each agent
with a fixed rate r , so that the global sorting rate is N ∗ r—which is the number of moving attempts per time unit. This
scenario is depicted in Fig. 3.
Therefore, each agent has the general goal ofmoving away tuples from its local tuple spacewhenever they are not forming

a collection. In particular, the agent protocol we consider is as follows:

• FIRE: a remote tuple space R is drawn randomly;
• LOCAL-OBS: a uniform read operation is performed on local space L, yielding a tuple of kind KL;
• REMOTE-OBS: a uniform read operation is performed on R, yielding a tuple of kind KR;
• MOVE: if KL 6= KR a tuple of kind KR is moved from L (if any exists there) to R.

Uniform read operation, also called urd, is the operation explode by sorting agents to read any tuple from the tuple space—
remember that any tuple has the same probability of being retrieved. If urd operation on a tuple space yields a tuple of kind
K , it means that – probabilistically – tuples of kind K are those mostly occurring and hence, K becomes the best candidate
for finally aggregating on that space. Accordingly, once task REMOTE-OBS is executed, the agent knows that space L is
aggregating KL while space R is aggregating KR. The rationale of task MOVE is hence that if KR and KL are different, then
the agent can fruitfully send a tuple of kind KR from L to R, so that both KR in R and KL in L will correspondingly aggregate
more.
The observation and then the decision taken by the agent are however affected by probability, hence the correctness of

this distributed algorithm is to be checked by simulation, in order to verify, first of all, whether complete ordering is reached
starting from any initial situation, and then, to evaluate its quality attributes.

3.2. Simulation method

As far as collective sort evaluation is concerned, system evolution can be modeled as a Continuous-Time Markov Chain
(CTMC), namely a stochastic transition systemwhere transitions are labeled with rates, representing the average frequency
at which the transition can occur [9].2 Let r be the rate of each sorting agent, the basic CTMC model of a collective sort

2 If modeling time passing is not of interest, but one only cares about counting events, Discrete-Time Markov Chains could be used instead.

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 709

run initially selects the next sorting agent that fires, through N transitions labeled with rate r: this gives each sorting
agent the same probability of being selected, while keeping the global sorting rate fixed to N ∗ r . Then, the steps of the
sorting agent’s protocol are executed through transitions with very high rates (namely, those transitions should ideally
occur instantaneously), but taking into account probability when executing urd operations—each matching tuple has same
probability of being returned. This process is either executed t times, where t characterizes the duration of the simulation,
or until convergence is reached (H = 0). The state of system configuration is basically a matrix (q)ik of natural numbers,
where qik is the amount of tuples of kind k into space i.
There are many simulation tools that could be used to experiment with collective sort, all providing different language

expressiveness, but of course yielding the same simulation results—examples include SPIM [33], SWARM [2] and REPAST
[1]. Following the work in [9] we adopted a simulation engine written in the Maude term-rewriting system [11]. The
main reasons for this choice are that Maude (i) allows – thanks to term-rewriting paradigm – to flexibly structure a
system behavior as a typed operational semantics in Plotkin’s style [34], (ii) executes transitions and computations with
high performance thanks to advanced matching algorithms, (iii) is equipped with a full-fledged library for mathematical
computations; and (iv) supports interaction with external tools—which could be built to control simulations and draw
results.Maude allows one to set up the syntax of a system configuration in a flexible way bymeans of sorts and constructors
(i.e., functions). For instance, the following code

sort Tuple TupleMSet Space
DataSpace . op _[_] : Qid Nat -> Tuple [ctor] . subsort Tuple <
TupleMSet . op _|_ : TupleMSet TupleMSet -> TupleMSet [ctor assoc
comm] . op <_@_> : Nat TupleMSet -> Space [ctor] . subsort Space <
DataSpace . op _|_ : DataSpace DataSpace -> DataSpace [ctor assoc
comm]

defines the sort Tuple (a[100] represents 100 copies of tuple a), TupleMSet (multisets of tuples separated by associative
and commutative composition operator ‘‘|’’), Space (<1@M> is space 1 with multiset of tuples M), and DataSpace (a
composition of spaces, again by operator ‘‘|’’). As a result, an initial configuration where each tuple space has the same
number of tuples of any kind, for instance T = 100 and N = 4, is described as:

< T1 @ (K1[25])|(K2[25])|(K3[25])|(K4[25]) > |
< T2 @ (K1[25])|(K2[25])|(K3[25])|(K4[25]) > |
< T3 @ (K1[25])|(K2[25])|(K3[25])|(K4[25]) > |
< T4 @ (K1[25])|(K2[25])|(K3[25])|(K4[25]) >

Transition rules are written in our framework as a unary postfixed function ==> associating a system state with the set
of all possible target states, each with its own rate. As an example, equation

eq (init | DS)==> = (0.25->[[0]|DS]); (0.25->[[1]|DS]);
(0.25->[[2]|DS]); (0.25->[[3]|DS]).

associates an initial state including the init term with four possible states (meaning a sorting agent has yet to be
designated), where init is substituted with term [i] (i is the selected sorting agent), each labeled by rate 0.25 (global
sorting rate is set to 1).3 Once the entire transition system is defined, the simulation is executed by a Maude command of
the kind:

rewrite < [5000 : (SS) @ 0.0] > .

which produces on standard output a trace of 5000 system states, starting from configuration SS and from time 0.0: such
a trace is then used to draw a chart showing the system evolution.
An example of a simulation trace starting from the above initial state is pictorially represented in Fig. 4(a), reporting

the dynamics of the ‘‘winning’’ tuple in each tuple space—namely, the tuple that eventually aggregates there. Note that
tuples reach their full aggregation level at different points in time, in an unpredictable way. The chart in Fig. 4(b) displays
instead the evolution of tuple space T1 taken as a reference: notice that only tuples of kind K1 aggregate there despite the
initial concentration of K1 in T1 being the same as other tuples. In particular, e.g., at some point around step 1000 there is
a bifurcation which promotes aggregation of K1 tuples instead of K2.
It is interesting to also analyze the trend of the entropy of each tuple space as a way to estimate the degree of order in the

system through a single value: since the simulated strategy is to increase the inner order of the system, entropy is expected
to decrease to zero, as actually shown in Fig. 4(c). Each chart reports the number of protocol instances (moving attempts)
executed by agents: the chart shows that in this simulation full sorting is reached after around 3000 time units—i.e., 3000
executions of an agent protocol.

3 The above code works only with N = 4 just to simplify presentation, but our specification deals with the general case.

710 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 4. Charts of a simulation trace: (a) Winning Tuple; (b) Tuple space T1; (c) Entropy in each tuple space (normalized).

3.3. On convergence

At a first glance, the solution developed so far appears to converge to complete sorting from any initial configuration
of tuples. However, it is easily detectable that there are some stable states attracting the system trajectory and having
positive entropy, that is, characterized by an incomplete degree of sorting. A state of this kind is called a local minimum
(from the standpoint of entropy). An example of such a minimum is the following state, obtained by the traces shown
in Fig. 5:

< T1 @ (K1[100])|(K2[0]) |(K3[0]) |(K4[0]) > |
< T2 @ (K1[0]) |(K2[69])|(K3[0]) |(K4[0]) > |

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 711

Fig. 5. Charts of a simulation trace to a local minimum: (a) Tuple kind K2 aggregating in spaces T2 and T3; (b) Both kinds K3 and K4 aggregating in
space T4.

< T3 @ (K1[0]) |(K2[31])|(K3[0]) |(K4[0]) > |
< T4 @ (K1[0]) |(K2[0]) |(K3[100])|(K4[100]) >

Tuple kind K2 is the only one aggregating in both T2 and T3, and at the same time, both kinds K3 and K4 aggregate in space
T4. It is easy to recognize that once this state is reached, no agent will ever move a tuple, since in no space a tuple is found
that aggregates less than elsewhere. Our simulations show that: (i) about 5% of runs from the initial chaotic configuration
with N = 4 ends in a local minimum; (ii) this probability increases with N , e.g., it is more than 15% when N = 7,
since many more local minima exist; (iii) simulations from states that are sufficiently near to a local minimum always
end up in it—local minima are attractors. This makes the approach discussed so far inadequate with respect to the quality
attributes defined in previous section, and thus requires a suitable solution before proceeding with any further evaluation.
The attempt of solving this problem is what led us to the solution actually proposed in this article, as discussed in the
following.
Themain reason that the localminimumanalyzed above cannot be escaped lies in the fact that the strategywe developed

does not explicitly avoid the case where the same tuple aggregates in two different tuple spaces. In fact, due to task MOVE in
sorting agent protocol, nothing is donewhen KL = KR! Hence, it can happen that the same tuple kind fully aggregates on two
different tuple spaces, and dually, two remaining tuple kinds aggregate in the same space as shown in the local minimum
above.
These two issues can actually find a common solution by a more careful analysis of brood sorting in social insects. There,

an ant picks an item and releases it where a new place is found with greater concentration, expressed as quantity of brood
over a unit of space. That is, an ant is implicitly able to compare the amount of brood with a standard quantity, which in that
specific case is represented by the amount of empty space. If a similar notion were defined in collective sort, that could in
principle allow one to solve the two issues above. On the one hand, if space T3 could be recognized as having ‘‘less’’ tuples
K2 than space T2, then movements from space T3 to T2 could be promoted more. Hence, as one of the two spaces stops
aggregating tuples, some tuples K3 or K4 could be moved there from space T4.

712 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

3.4. System annealing by noise tuples

To implement a mechanism supporting this idea, we add to tuple spaces another kind of tuple noise, which – for
simplicity – we initially suppose to have constant concentration (i.e. amount) in all spaces throughout sorting. Such tuples
are not inserted and retrieved by user agents, and are not subject to sorting, but are managed (inserted/retrieved) by sorting
agents only. Now, when a sorting agent performs a uniform read to randomly select a tuple, such an observation gets
‘‘perturbed’’, since there is a probability that the result is noise. Simply, if the tuple space holds, say, 95 regular tuples
(those to be sorted) and 5 noise tuples, there is a 5% of probability of retrieving noise. Following the previous version of the
algorithm, the new interaction protocol is such that a tuple is moved from the local space to the remote space if and only if
the two observations are different—but now one of them could be noise. As an example, if the remote observation is noise
and the local one provides kind k, then the locally observed tuple is moved anyway, even though this does not necessarily
decrease entropy. That is, the role of noise tuples is to alter probabilistically the correctness of agent actions, which now
may increase disorder when observations were perturbed with some noise. As a result, this mechanism causes tuples to be
moved even though the system is in a local minimum, hopefullymaking the system trajectory escape from it. This technique
actually resembles the concept of simulated annealing used in optimization algorithms [20]. There, a perturbation is added in
order to avoid the risk of finding non-optimal solutions: such a perturbation is initially high and ismade to fade continuously
as the system searches solutions, until completely disappearing.
In our case, the occurrence of noise tuples models such a perturbation: what should be the dynamics of noise through

time, then? A feasible approach would be to set an initial amount of noise equal in all tuple spaces, and either leave it
unaltered during system life-cycle or decrease it at a fixed rate. However, this choice would require to set the noise amount
at design-time, but then optimality of this amount would depend on the average occupation of tuple spaces during system
execution [38]: this situation is not appealing since wewant our approach to work independently of the number of tuples in
the system. What we actually look for is a fully adaptive noise mechanism, where noise is initially very low, and it increases
as the system approaches to a local minimum, and decreases when such aminimum is escaped. In this way, we could expect
the system performance to be only slightly affected if the system stays sufficiently far from local minima; on the other hand,
noise production may become significant only in unfortunate cases where local minima are approached.
To achieve this result, we will manage noise as follows:

• As already described, noise alters observations performed by uniform read operations, and hence the pertinence of tuple
movement, since we still move a tuple if the local and remote observations are different—though one of them could be
noise.
• Initially only one noise tuple occurs in each tuple space, hence, perturbation is very low; as a result, sorting performance
is not significantly affected.
• Each time two tuple spaces seem to aggregate the same tuple – two equivalent non-noise observations are made – noise
is increased; in fact, that would mean we are likely approaching a local minimum, hence we have to increase system
annealing.
• When some tuple is transferred due to pertinent observations – two different non-noise observations aremade – noise is
decreased; in fact, thatwouldmeanwe are likely escaping a localminimum, hencewehave to decrease systemannealing.

Accordingly, the agent protocol is changed as follows:

• FIRE: a remote tuple space R is drawn randomly;
• LOCAL-OBS: a uniform read operation is performed on local space L, yielding a tuple of kind KL;
• REMOTE-OBS: a uniform read operation is performed on R, yielding a tuple of kind KR;
• MOVE: if KL 6= KR a tuple is moved from L to R, i.e.:
· if KR = noise, such a tuple has to be of kind KL;
· otherwise, such a tuple has to be of kind KR (if existing in L);

• NOISE: if KL 6= noise and KR 6= noise local noise amount is changed, i.e.:
· if KR = KL then noise is increased by one in L;
· if KR 6= KL then noise is decreased by one in L.

Now both KL and KR could be noise. Task MOVE says that differences in observations in L and R should always cause a transfer:
if KR is not noise, a KR tuple is moved to R, otherwise, a KL tuple is moved to R. Task NOISE increases noise when L and R
are aggregating the same (non-noise) tuple KR = KL, and decreases noise whenever a non-perturbed transfer is actually
executed.
Considering now the worst case of a symmetric local minimum:

< T1 @ (K1[100])|(K2[100])|(K3[0]) |(K4[0]) > |
< T2 @ (K1[0]) |(K2[0]) |(K3[50])|(K4[0]) > |
< T3 @ (K1[0]) |(K2[01]) |(K3[50])|(K4[0]) > |
< T4 @ (K1[0]) |(K2[0]) |(K3[0]) |(K4[100]) >

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 713

Fig. 6. Charts of a simulation trace escaping from a local minimum: (a) Situation in space T2: winning tuple K3 and noise in evidence; (b) Situation in space
T1: kind K1 leaves the space.

we expect that noise starts increasing in both tuple spaces T2 and T3 (NOISE). At some point, a movement of tuples K3will
occur between T2 and T3 since some noise is observed (MOVE). Because of a bifurcation effect, if either space T2 or T3 has
a greater concentration of tuples K3 with respect to noise, that would cause more tuples to be transferred there, and that
space will eventually fully aggregate tuples K3. Accordingly, the other tuple space will be emptied, it will lose noise tuples,
and it will finally become target of tuples of kind K1 and/or K2. This is actually what can be observed from the traces in
Fig. 6(a) and (b), showing how the local minimum is escaped in spaces T2 and T1: in both cases we see that as noise tuples
increase, the system escapes the local minimum configuration, and after that, noise tuples fade.
More simulations performed to evaluate this solution actually show that: (i) using noise slightly affects performance, for

typically systems stay away from local minima and generate little noise; (ii) starting from a local minimum, the system is
always able to escape it; and (iii) full sorting is always eventually reached. This solution hence appears to be a promising
one, so we proceed in next section in more fully evaluating it.

4. Evaluation

According to the quality attributes described in Section 2.4, concerning convergence, scalability, and reactiveness, we
here evaluate the proposed approach. To this end, standard analysis techniques for distributed systems usually include
automatic machine checking or hand-written proofs.
In the first case, analysis would be obtained e.g. by a probabilistic model checking technique [22,36]. There, the graph of

all possible states and transitions is constructed and annotated with probabilities and rates, so that queries in a probabilistic
logic like PTL can be checked by navigating the entire graph: e.g., for collective sort we could ask what is the probability that
from an initial state with N = 4, T = 100,H = 1 we reach an ordered state (H = 0) within 3000 time units. However, this
technique suffers from state-space explosion problem, so that even the construction of the entire graph is a very expensive
operation—finding proper optimizations and developing this idea are however interesting subjects for future work.
In the second case, we should try to find proofs that the proposed algorithm converges, and in general, that the quality

requirements are met. However, this is particularly complex, and very few examples exist in the literature that apply this

714 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 7. Sorting from different configurations: winning tuples and noise.

approach to self-organizing systems. A recent exception is the work in [39], which focusses on a very straightforward
self-organization scenario, in which a chain of cellular-like components is subject to a repeated applications of local
transformation rules. Necessary and sufficient conditions are provided for the emergence of a certain global pattern
of cellular states—similarly to what happens in certain stages of embryogenesis. This research direction, although very
interesting, is still in its infancy and cannot be applied to generally analyze systems like ours.
On the other hand, computer-based simulation techniques have gained growing attention over the past years as an

important tool for studying complex systems [40,4], especiallywhen previous analytic results are not available [40]—e.g. due
to analytical intractability of the target system. Accordingly, simulation is the approach we adopt for evaluating collective
sort.

4.1. Full convergence

In our solution, on the one hand, non-perturbed tuplemovements cause entropy to decrease; on the other hand, the noise
mechanism successfully perturbs those configurations that approach localminima. Fig. 7 shows examples of how the system
can come to full sorting starting from different initial configurations—these are taken as samples of several simulations we
ran, all of which reached full sorting. Interestingly, we can observe that in these cases – differently from the one shown in

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 715

Fig. 8. Different sorting result from the same configuration.

Fig. 6 – total noise is typically very low: this is mainly because here the system stays sufficiently far from local minima. In
all the three cases, the system dynamics is highly probabilistic, and hardly predictable.
Moreover, it is typically the case that the same system shows different dynamics in different runs. As another illustrative

example, we consider the starting configuration shown in Fig. 8, which apparently seems to always lead to the full sorted
configuration in chart (a). Many cases – about 20% of the times – show that the system actually converges to a different final
state, where one or more kinds actually aggregate in spaces with an initial smaller concentration than other kinds. This,
again, highlights the true unpredictable character of our self-organizing solution to collective sort.
As a further measure for evaluating collective sort convergence, we considered the variability of sorting time throughout

a large series of 1000 simulationswithN = 4 and T = 400 tuples per kind. Fig. 9 shows how sorting time distributes over the
executed simulations. It is easy to recognize a peak centered around 2500 time units, meaning that most of the simulation
runs (∼220) led to a sorting time value close to 2500 time units, while 92.2% of the simulation runs led to a sorting time
≤ 5000 time units. In addition, a few percentage of simulations led to a high value of convergence time (up to 40000 time
units): this is due to evolutions of collective sort that approached one or iteratively more states of a local minimum, which
usually require amuch higher amount of time to achieve full sorting due to the perturbation effect generated by noise tuples.
This chart shows the influence of noise on convergence:most of the times it does not affect convergence time, while in other
cases where sorting approaches a local minimum, noise starts working ultimately leading to convergence.

716 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 9. Total-sorting-time distribution over 1000 simulation runs executed with N = 4 and 400 tuple per kind.

4.2. Sorting cost and scalability

Concerning performance, it should be noted from previous charts that the average time for reaching full sorting is around
2500 time units, considering the basic case with 4 tuple spaces, 4 tuple kinds, and an initial set of 400 tuples. The global
sorting rate considered is 1.0, that is, there is an average of one transfer attempt per time unit, and accordingly a 0.25
sorting agent rate.
The optimal solution to the problem – inwhich a snapshot of the system is taken and agents are accordingly programmed

as how tomove tuples – would require instead around 300 time units (see Section 2.4), which is the time necessary tomove
the tuples that are not already in the right space. Namely, in a basic case of the problem, the system performance is around
one order of magnitude worse than the optimal solution: this is still within the expected range of the quality requirements
sought for the proposed solution.
It is now interesting to see how much our solution scales with the dimension of the problem. First of all, we consider

scalability in the number of tuples, that is, how the size of the set of tuples affects the system behavior. Fig. 10 shows
average performance values (taken from a set of 20 runs), on a system with N = 4, an initially chaotic configuration, and
an increasing number of tuples from 80 to 8000. Two values are depicted: tuple transfers and sorting time. The first one is
simply increased each time a tuple is moved, the second one is instead the elapsed time units—ormoving attempts. Another
interesting value is network usage (or number of remote interactions), which can be directly computed as the sum of tuple
transfers and elapsed time—since other than tuple transfers, we have a remote observation per time unit. As amain result of
these charts (i) the proposed approach scales linearly with the number of tuples, and (ii) the number of transfers is around
1/3 of the number of moving attempts—this parameter somehow representing the pertinence of observations.
A simulation trace showing the evolution of collective sort withN = 4 and 4000 tuples per kind is reported in Fig. 11. It is

easy to see that the evolution of the simulation is not greatly affected by the higher tuple concentration, the only difference
is that system evolution appears much more deterministic than e.g. in Fig. 7(c). In addition, total noise concentration
keeps values which are 2 orders of magnitude lower than the total tuple concentration as in experiments with lower tuple
concentrations. This simulation shows that non-determinism, as well as the need of relying on noise, actually decreases as
the system’s size becomes larger and larger: hence, unexpected situations aremore likely to occur on smaller-scale systems.
Scalability in N , the number of tuple spaces (and kinds), is a more critical issue. Fig. 12 shows the average performance

values (taken from a set of 20 runs), on a systemwith a fixed number of tuples equal to 400, an initially chaotic configuration,
a fixed sorting agent rate equal to 0.25, and an increasing number of tuple spaces, from 3 to 15—the global sorting rate is
0.25 ∗ N . As in the previous case, we measured the number of tuple transfers and elapsed time units. Here we notice that
the proposed solution scales with more difficulty, though the result appears reasonable anyway: while the average time to
full sorting is 2500 with N = 4, it is about 30000 with N = 10—the latter being indeed a more complex problem!
The sorting cost actually appears to be quadratic in the number of tuple spaces. This result seems however a key

characteristic of collective sort, rather than depending on the solution we propose in this article—this is a problem even
in array sorting, which does not scale linearly. In general, if some tuple remains far from where its kind is aggregating, the
time (and network operations) needed by its agent to find the proper remote tuple space is linear in N , and this applies to
all sorting agents/kinds. This appears to be an intrinsic consequence of the fact that a global status is not available to sorting
agents, and observations are necessarily pointwise.

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 717

Fig. 10. Scalability in the number of tuples (N = 4): transfers and elapsed time units.

Fig. 11.Winning tuple (a) and noise (b) evolution for a simulation with N = 4 and 4000 tuples per kind initially distributed in a uniform way.

Fig. 12. Scalability in N (n. of tuple spaces/kinds): transfers and elapsed time units.

In addition to the results shown in Figs. 12 and 13 reports a simulation trace executed with N = 8 and 400 tuples
uniformly distributed among the N available kinds. Again, noise keeps values which are 2 orders of magnitude lower than
tuple concentration even though collective sort operates on a larger set of tuple spaces.

718 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

Fig. 13.Winning tuple (a) and noise (b) evolution for a simulation with N = 8 and 400 tuples per kind initially distributed in a uniform way.

To summarize, even considering scalability, the proposed approach appears to successfully meet the desired
requirements.

4.3. Reactiveness

The main reason that collective sort has been solved by using a self-organizing approach is to tackle unpredictable
interactions with the environment. A typical usage scenario includes user agents that exploit the coordination service
provided by the tuple spaces, that is, they keep inserting and removing tuples. The details of this behavior cannot be fully
known a priori, hence, sorting should be able to react to changes of the surrounding conditions, in an adaptiveway. Providing
a comprehensive and general set of simulations in this context is not easy, since user agents canmanifest an extremely wide
range of different interactive behaviors. This section shows how the ratio between user agent rate and sorting agent rate,
called mutation/sorting ratio, influences the result of sorting. To this end, we keep the global sorting rate fixed to 1.0 and
include in the simulation amutation rate for user agents, that is, at that rate a user agent randomly moves a tuple from one
space to another. Starting from an initially sorted configuration of tuples (400 tuples and N = 4, with H = 0), depending
on mutation rate we easily expect that (i) full sorting is almost always maintained, (ii) a certain level of (partial) sorting can
be maintained, or (iii) the system becomes more and more unsorted as time passes. Evolution through such situations is
reported in Fig. 14, where each chart provides the evolution of entropy over time for different mutation rates.
As shown in the summary Fig. 15, the key factor is the mutation/sorting ratio, which gives a clear indication of the

adequacy of sorting resources, in terms of the maximum level of entropy they can guarantee—a mutation/sorting ratio
smaller than 0.5 seems to be a reasonable trade-off between required sorting resources and achieved sorting level. It is clear
that a form of load-balancing is required to be sure that sorting resources are adequate with respect to the current degree
of disorder, and can self-adapt to it—increasing on a by-need basis and then decrease. Techniques related to prey–predator
approach as studied e.g. in [16,15] could be evaluated in future research.

5. Related works

5.1. Self-organization in social insects

Initially developed in chemistry and physics, self-organization theory describes the emergence of macroscopic patterns
generated from microscopic interactions of a system’s components. In this theory, individual complexity is not excluded,
but at some level of description it is possible to provide an explanation of a complex behavior in terms of simple entities
[5]. This point is also stressed in our work, due to the choice of showing that collective sort can be solved by relying on very
simple agents as well.
Self-organization theory encompasses biological systems, in particular, it is suitable to describe the dynamics observed

in insect colonies. Social insects are well known for their ability to collectively solve problems despite the individual limited
perception and action capabilities. The wide repertoire of behaviors exhibited by insect colonies ranges from cooperative
transport to complex structure building [5,8]. In particular, sorting and clustering phenomena are observed in various forms
and across several insect species. Clustering involves gathering items scattered into the environment and organizing them in
piles [12,5], while sorting involvesmore complex patterns and shapes like concentric rings [14]. As an example of clustering,
consider pile formation in termite colonies: termites wander in the environment, pick up scattered wood chips and arrange
them in clusters. Resnick proposed a simplemodel able to recreate this collective dynamics [35]: individual termite behavior
is specified by two simple rules: (i) if nothing is carried, pick up an item as one is encountered; (ii) if carrying an item, drop

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 719

Fig. 14. Evolution of entropy with different perturbation/sorting ratio.

Fig. 15.Maximum entropy depending on perturbation/sorting ratio.

720 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

it when encountering another one. Observations across several ant species reported that corpses are clustered in small
cemeteries in order to clean up nests [5]. Similarly, broods of the same size are clustered while broods of different size are
sorted into concentric annuli. Concentric patterns have been observed in hive organization by honeybees: the central area
is occupied by broods and surrounded by pollen and honey placed in concentric rings [7,8].
Although the actual mechanisms regulating these behaviors are not fully understood yet, researchers agree on the

fundamental role of local density perception. In the literature there are several models able to replicate the observed
dynamics: specifically, collective robotics have produced several notable results through experimentation with physical
robots.

5.2. Collective robotics

Collective robotics is characterized by scenarios involving multiple autonomous robots coordinating with one another
by using local sensing and actions as well as limited communication. In the last decade, collective robotics has probably
been the most active field involved in developing artificial systems inspired by social insects’ behavior. For instance, the
main goal of the European project SWARM-BOTS has been to study novel approaches for developing self-organizing and
self-assembling swarms of robots [13]. However, among the several scenarios investigated in that specific context, none is
strictly related to sorting behaviors.
Instead, other works in collective robotics deal with the problem called spatial sorting which is closely related to collec-

tive sort but solved by mechanisms more similar to what observed in social insects. A taxonomy of spatial sorting problems
reflecting actual insect behaviors is provided in [26]:

clustering—the only available type of item is grouped in a small fraction of the available space;
segregation—each type of items is clustered but contiguous to other clusters;
patch sorting—each type of items is clustered but distant from other clusters;
annular sorting—clusters of different types of items are arranged in concentric rings.

Sorting tuple spaces in the general case, where the number of tuples nt and of tuple kinds nkmay be different, spans different
problems:

• when nk = 1 we have clustering;
• nk > 1 and nk < nt resembles patch sorting;
• nk > 1 and nk ≥ nt resembles segregation;

Annular sorting requires a specific notion of topology we do not currently handle, but would be an interesting approach to
consider as well. The choice of focussing on the case nk = nt in collective sort is motivated by the need of optimizing tuple
searching by user agents, which is in fact very easy in this case due to the fact that entropy can decrease to zero.
In [12], Deneubourg et al. proposed a probabilistic model for brood clustering. Probabilities Pp and Pd as described in

Section 2.2 depend on estimating the local density f of items: in [12] f is evaluated as the number of items encountered
in time interval T . While researchers agree on the fact that ants actually perceive local density when picking up an item,
whether they do so when dropping an item is still matter of debate [27]. In the struggle to find a minimal set of rules, as
pointed out in [26], it is possible to achieve spatial sorting by exploiting techniques similar to self-sorting, i.e. sorting that
occurs under environmental forces like gravity. In [23] a generalization based on a similarity function for exploratory data
analysis has been proposed [5]. The Lumer Faieta’s function replaces f : basically, such a function minimizes intra-cluster
distance with respect to inter-cluster distance. Results coming from this research could be applied to evaluate an improved
version of our solution to collective sort.
As an aside, it should be noted that collective sort is only apparently related to data clustering as defined in [19], which

is indeed a different problem than spatial clustering of robotics. Data clustering defines techniques for associating patterns
to group of related data items. As mentioned in Section 3 instead, data clustering could be applied at design-time to the set
of tuples an application has to handle, in order to identify N clusters that will be used as kinds to be grouped.

5.3. Swarm based coordination

In nature, swarms are famous due to their ability to coordinate movements and tasks: typical examples include schools
of fish, flocks of birds, and social insects in general [5,8]. Since it is possible to capture their behavior and encode it by simple
rules, swarm principles are currently being investigated that could be applied to the coordination of artificial large-scale
systems to tackle robustness and scalability issues. Notable examples of coordination media and infrastructures following
swarm principles include SwarmLinda [29] and TOTA [24].
SwarmLinda applies algorithms inspired by ant colonies to Linda-like distributed tuple spaces in order to tackle

scalability and adaptability. On the one hand, a specific algorithm for searching tuples is included. This algorithm mimics
the behavior of food foraging [8] where tuple templates resemble ants and each template is associated to a scent, i.e., a
pheromone. Then, an algorithm for tuple distribution is defined that resembles brood sorting. When a tuple is inserted, it

M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722 721

starts visiting tuple spaces and is dropped when location hosting an aggregation of similar tuples is visited. Furthermore,
SwarmLinda envisions the use of other techniques e.g. for migrating clusters of tuples and optimize themovement of tuples
across tuple spaces [28]. SwarmLinda is an approach tightly related to collective sort: the main difference is that we move
tuples by using a service external to tuple spaces, and seek complete sorting, whereas SwarmLinda is mainly targeted at
diffusing tuples as much as possible, avoiding e.g. over-clustering.
TOTA (Tuples On The Air) is a middleware that allows coordination of agents in mobile ad-hoc networks. TOTA provides

an active environment that allows one to quickly develop applications based on swarm-like coordination strategies, and in
particular, following the principles of stigmergy. The environment is articulated in a dynamic network of peer-to-peer TOTA
nodes partially connected. The key features [25] of TOTA include: (i) storage, propagation and maintenance of tuples; (ii)
definition of tuples and their maintenance rules at the application level; and (iii) a simple API for injecting and retrieving
tuples. In particular, when injected into a space, a copy of a tuple is spread in neighboring nodes recursively, and then
eventually fades, creating a so-called computational field – like e.g. gravity in physics – which mobile agents can navigate
to retrieve each other, or data of interest.
The collective sort problem for tuple spaces, along with some prototype solution, has been presented in some previous

work of ours [9,38]: this article consolidates that research, proposes a new and improved solution, and provides a
comprehensive evaluation and discussing a wide set of simulation results. Differently from [9], here sorting agents do not
draw a candidate tuple kind to move before observing tuple spaces, but rather infer it from local and remote observations:
this allows one to sensibly speed up convergence to full sorting, as tuples that are not aggregating are now more easily
found. The mechanism of noise tuples – actually called vacuum tuples in [38], due to a different interpretation – has been
accordingly adapted with respect to the one presented in [38]: this resulted into a mechanism that efficiently solves the
local minimum issue, though better approaches could be investigated in future work.

6. Conclusion and future work

In order to keep tuples organized in a distributed system, we conceived the collective sort problem for distributed tuple
spaces, aimed at grouping similar tuples in the same tuple space, for fast retrieval based on previous experience. A self-
organizing solution to the problem has been proposed, inspired from ants’ brood sorting, which stresses the possibility of
providing full convergence to sorting even with very simple agents. The approach has been validated through a number
of stochastic simulations of system evolution, providing evidence of full convergence, scalability, and reactiveness to
unpredictable changes in the environment.
Future work of this research includes evaluating new solutions, which could be able to stress different aspects of the

problem: First of all, the current solution can be finely tuned in several ways to improve performance, by: (i) dynamically
increasing the number of tuples moved at each step by sorting agents (i.e. reducing observation rate), (ii) improving the
noise mechanism in order to increase the current pertinence of moving, and (iii) considering load balancing issues, so that
the rate of sorting agents can be dynamically set so as to adapt to the degree of sorting in the local space. Then, the collective
sort scenario can be extended to a more general case where the number of tuples is not equal to the number of kinds. In
particular, when the number of spaces increases, it is more reasonable to shift to non-flat networks of spaces – e.g., large
scale-free networks – and accordingly consider a smaller set of kinds. There, an interesting sorting pattern would be to
aggregate tuple kinds in one or more clusters spread over the network. Finally, it would be interesting to consider sorting
based on a continuous similarity function between tuples, as considered e.g. in SwarmLinda [29].

References

[1] Recursive porous agent simulation toolkit (repast), 2006. Available online at: http://repast.sourceforge.net/.
[2] Swarm, 2006. Available online at: http://www.swarm.org/.
[3] M. Balazinska, A. Deshpande, M. Franklin, P. Gibbons, J. Gray, S. Nath, M. Hansen, M. Liebhold, A. Szalay, V. Tao, Data management in the worldwide
sensor web, Pervasive Computing, IEEE 6 (2) (2007) 30–40.

[4] S. Balqies, Applied system simulation: A review study, Information Sciences 124 (1–4) (2000) 173–192.
[5] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Santa Fe Institute Studies in the Sciences of Complexity,
Oxford University Press, 198 Madison Avenue, New York, NY 10016, USA, 1999.

[6] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Santa Fe Institute Studies in the Sciences of Complexity,
Oxford University Press, Inc., 1999.

[7] S. Camazine, Self-organizing pattern formation on the combs of honey bee colonies, Behavioral Ecology and Sociobiology 28 (1) (1991) 61–76.
[8] S. Camazine, J.-L. Deneubourg,N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-Organization in Biological Systems, Princeton Studies in Complexity,
Princeton University Press, 41 William Street, Princeton, NJ 08540, USA, 2001.

[9] M. Casadei, L. Gardelli, M. Viroli, Simulating emergent properties of coordination in Maude: The collective sort case, in: C. Carlos, M. Viroli
(Eds.), Proceedings of the 5th International Workshop on the Foundations of Coordination Languages and Software Architectures, FOCLASA 2006,
in: Electronic Notes in Theoretical Computer Science, vol. 175(2), Elsevier Science B.V., 2007.

[10] P. Ciciriello, L. Mottola, G.P. Picco, Efficient routing frommultiple sources tomultiple sinks in wireless sensor networks, in:Wireless Sensor Networks,
in: LNCS (Tutorial Volume), vol. 4486, Springer, 2007, pp. 34–50. URL: http://dx.doi.org/10.1007/978-3-540-69830-2_3.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott, Maude Manual, Department of Computer Science University of Illinois at
Urbana-Champaign, version 2.2 ed., version 2.2 is available online at: http://maude.cs.uiuc.edu, December 2005.

[12] J. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chrétien, The dynamics of collective sorting: Robot-like ants and ant-like robots,
in: J.-A. Meyer, S.W. Wilson (Eds.), From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior,
MIT Press, Cambridge, MA 02142, USA, 1991, pp. 356–363.

http://repast.sourceforge.net/
http://repast.sourceforge.net/
http://repast.sourceforge.net/
http://repast.sourceforge.net/
http://www.swarm.org/
http://www.swarm.org/
http://www.swarm.org/
http://www.swarm.org/
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://dx.doi.org/10.1007/978-3-540-69830-2_3
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu

722 M. Casadei et al. / Science of Computer Programming 74 (2009) 702–722

[13] M. Dorigo, E. Tuci, F. Mondada, S. Nolfi, J.-L. Deneubourg, D. Floreano, L.M. Gambardella, The SWARM-BOTS project, Künstliche Intelligenz 4/05 (2005)
32–35. Also available at: http://www.swarm-bots.org as IRIDIA Technical Report No. TR/IRIDIA/2005-018. URL: http://www.swarm-bots.org.

[14] N.R. Franks, A.B. Sendova-Franks, Brood sorting by ants: Distributing the workload over the work-surface, Behavioral Ecology and Sociobiology 30 (2)
(1992) 109–123.

[15] L. Gardelli, M. Viroli, M. Casadei, On engineering self-organizing environments: Stochastic methods for dynamic resource allocation, in: D. Weyns,
H.V.D. Parunak, F. Michel (Eds.), 3rd International Workshop Environments for Multi-Agent Systems, E4MAS 2006, AAMAS 2006, Hakodate, Japan,
2006. URL: http://www.cs.kuleuven.ac.be/∼distrinet/events/e4mas/2006/contents/papers/gardelli.pdf.

[16] L. Gardelli, M. Viroli, A. Omicini, On the role of simulations in engineering self-organising MAS: The case of an intrusion detection system in TuCSoN,
in: S.A. Brueckner, G. Di Marzo Serugendo, D. Hales, F. Zambonelli (Eds.), Engineering Self-Organising Systems (3rd International Workshop (ESOA
2005), Utrecht, The Netherlands, 26 Jul. 2005), in: LNAI, vol. 3910, Springer, 2006, pp. 153–168. Revised Selected Papers.

[17] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems 7 (1) (1985) 80–112.
[18] D. Gelernter, Multiple tuple spaces in Linda, in: Parallel Architectures and Languages Europe (PARLE’89), vol. II: Parallel Languages, Springer-Verlag,

1989, pp. 20–27.
[19] A. Jain, M. Murty, P. Flynn, Data clustering: A review, ACM Computing Surveys 31 (3) (1999) 264–323.
[20] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671–680.
[21] B. Krishnamachari, D. Estrin, S.B. Wicker, The impact of data aggregation in wireless sensor networks, in: Proceedings of the 22nd International

Conference on Distributed Computing Systems, ICDCSW’02, IEEE Computer Society, Washington, DC, USA, 2002.
[22] M. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in: M. Bernardo, J. Hillston (Eds.), Formal Methods for the Design of Computer,

Communication and Software Systems: Performance Evaluation, SFM’07, in: LNCS (Tutorial Volume), vol. 4486, Springer, 2007.
[23] E.D. Lumer, B. Faieta, Diversity and adaptation in populations of clustering ants, in: From Animals to Animats 3: Proceedings of the Third International

Conference on Simulation of Adpative Behavior, MIT Press, Cambridge, MA 02142, USA, 1994, pp. 501–508.
[24] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing applications with the tota middleware, in: Pervasive Computing and

Communications, 2004. PerCom 2004 (Proceedings of the Second IEEE Annual Conference on), IEEE, 2004.
[25] M. Mamei, F. Zambonelli, Programming stigmergic coordination with the TOTA middleware, in: 4th International Joint Conference on Autonomous

Agents and Multiagent Systems, AAMAS’05, ACM Press, New York, NY, USA, 2005.
[26] C. Melhuish, O. Holland, S. Hoddell, Collective sorting and segregation in robots with minimal sensing, in: R. Pfeifer, B. Blumberg, J.-A. Meyer,

S.W. Wilson (Eds.), From Animals to Animats 5: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior, MIT Press,
Cambridge, MA 02142, USA, 1998, pp. 465–470.

[27] C. Melhuish, A.B. Sendova-Franks, S. Scholes, I. Horsfield, F. Welsby, Ant-inspired sorting by robots: The importance of initial clustering, Journal of the
Royal Society Interface 3 (7) (2006) 235–242.

[28] R. Menezes, R. Tolksdorf, A new approach to scalable Linda-systems based on swarms, in: Symposium on Applied Computing, SAC’03, ACM Press, New
York, NY, USA, 2003.

[29] R. Menezes, R. Tolksdorf, Adaptiveness in Linda-based coordination models, in: G.D.M. Serugendo, A. Karageorgos, O.F. Rana, F. Zambonelli (Eds.),
Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering, in: LNAI, vol. 2977, Springer, Berlin, Heidelberg, 2004,
pp. 212–232.

[30] R.D. Nicola, D. Latella, M. Massink, Formal modeling and quantitative analysis of klaim-based mobile systems, in: Proceedings of the 2005 ACM
Symposium on Applied Computing, SAC’05, ACM Press, New York, NY, USA, 2005.

[31] A. Omicini, E. Denti, From tuple spaces to tuple centres, Science of Computer Programming 41 (3) (2001) 277–294.
[32] A. Omicini, F. Zambonelli, Coordination for Internet application development, Journal of Autonomous Agents and Multi-Agent Systems 2 (3) (1999)

251–269.
[33] A. Phillips, The Stochastic Pi Machine (SPiM), version 0.042, 2006. Available online at: http://www.doc.ic.ac.uk/∼anp/spim/. URL: http://www.doc.ic.

ac.uk/∼anp/spim/.
[34] G. Plotkin, A structural approach to operational semantics, Tech. Rep. DAIMI FN-19, Department of Computer Science, AArhus University, Denmark,

1991.
[35] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, MIT Press, Cambridge, MA 02142, USA, 1997.
[36] J. Rutten, M. Kwiatkowska, G. Norman, D. Parker, Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems, in: CRMMonograph,

vol. 23, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294, United States of America, 2004.
[37] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27.
[38] M. Viroli, M. Casadei, L. Gardelli, A self-organising solution to the collective sort problem in distributed tuple spaces, in: Proceedings of the 2007 ACM

Symposium on Applied Computing, SAC 2007, ACM, Seoul, Korea, 2007, special Track on Coordination Models and Languages.
[39] D. Yamins, R. Nagpal, Automated global-to-local programming in 1-d spatial multi-agent systems, in: 7th International Joint Conference on Agents

and Multi-Agent Systems, AAMAS-08, IFAAMAS, Estoril, Portugal, 2008.
[40] B.-Y. Yaneer, Dynamics of Complex Systems, Studies in Nonlinearity, Westview Press, 1997.
[41] K. Yuen, B. Liang, L. Baochun, A distributed framework for correlated data gathering in sensor networks, IEEE Transactions on Vehicular Technology

57 (1) (2008) 578–593.

http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.swarm-bots.org
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/2006/contents/papers/gardelli.pdf
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/
http://www.doc.ic.ac.uk/~anp/spim/

	On the collective sort problem for distributed tuple spaces
	Introduction
	Collective sort
	Motivation
	Seeking for a self-organizing solution
	Architectural and behavioral constraints
	Quality attributes
	An example scenario

	A solution to the problem
	Basic strategy
	Simulation method
	On convergence
	System annealing by noise tuples

	Evaluation
	Full convergence
	Sorting cost and scalability
	Reactiveness

	Related works
	Self-organization in social insects
	Collective robotics
	Swarm based coordination

	Conclusion and future work
	References

