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Introduction

Let us denote byC the variety of lines inP3 meeting a fixed line, it is a grassmanni
(and hence minuscule) Schubert variety. In [16] we described the irreducible comp
of the scheme of morphisms fromP1 to C and the general morphism in each irreduci
component.

In this text we study the scheme of morphisms fromP
1 to any minuscule Schubert var

etyX. Let us recall that we studied in [15] the scheme of morphisms fromP
1 to any homo-

geneous variety. The main idea, in the case of a minuscule Schubert varietyX, is to restrict
ourselves to the dense orbit under the stabilizer Stab(X) of X and apply the results of [15

More precisely, letU be the dense orbit under Stab(X) in X and letY be the com-
plement. BecauseX is a minuscule Schubert variety the closed subsetY of X is of
codimension at least 2 (see Section 2.2). This fact and the stratification ofX by Schubert
subvarieties gives us a surjective morphism (see Section 1):

s : Pic(U)∨ → A1(X).

For any classα ∈ A1(X), we can consider a certain morphism:

j :
∐

s(β)=α

Homβ

(
P

1,U
) → Homα

(
P

1,X
)

where Homα(P1,X) is the scheme of morphismsf :P1 → X with f∗[P1] = α and
Homβ(P1,U) is the scheme of morphismsg :P1 → U such that[g] = β where [g] is
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the linear functionL �→ deg(g∗L) on Pic(U). As Y = X \ U lies in codimension 2, we
expect the image of this morphism to be dense (this is the crucial point of the proof)
condition means that any morphismP1 → X can be deformed such that the image of t
deformation does not meetY . If the morphismj defined above is dominant, we may app
the results of [15] to prove thatHomβ(P1,U) is irreducible as soon as it is non-emp
and the images of these irreducibleHomβ(P1,U) will give the irreducible components o
Homα(P1,X).

Let us denote byne(α) the subset of Pic(U)∨ given elementsβ such thats(β) = α and
Homβ(P1,U) is non-empty (see Section 1 for a more precise definition in terms of ro
We prove

Theorem 0.1. The irreducible components of the scheme of morphismsHomα(P1,X) are
indexed byne(α).

Here is an outline of the paper. In the first section we define the surjective maps of the
introduction and the setne(α) for X any Schubert variety andα ∈ A1(X). In the second
section we recall the definition of a minuscule Schubert variety and its propertie
also prove a positivity result on roots we will need later. In the third section we r
the construction of the Bott–Samelson resolutionπ : X̃ → X of a Schubert varietyX and
describe some cycles oñX. In the fourth section, we construct some big families of cur
onX̃ contracted byπ . In the fifth section we study the scheme of morphismsHomα̃(P1, X̃)

and prove some smoothing results with the curves contructed in the fourth section.
last section we prove our main result.

The key point as indicated above is to prove that the mapj is dominant that is to say tha
any morphismf :P1 → X can be factorised inU (modulo deformation). We prove this b
lifting f in f̃ on X̃. It is now sufficient to prove that the lifted curvẽf of a general curve
f does not meet the divisors contracted byπ . If f̃ does meet a contracted divisorD then
we add a “line”L ⊂ D with L · D = −1 constructed in the fourth section and smooth
unionf̃ (P1)∪L. The intersection withD is lowered by one in the operation. We conclu
by induction on the number of intersection off̃ with the contracted divisors.

Remark 0.2. (i) The varietyC can also be seen as a cone over a smooth 2-dimens
quadric embedded inP3. We treat more generally the case of a coneX over an homo-
geneous variety in the forthcoming paper [17]. In this situation we can also defin
α ∈ A1(X) a classne(α) as previously but the irreducible components ofHomα(P1,X)

are not always indexed byne(α). It is the case if and only if the projectivised tangent co
of the singularity (here the embedded homogeneous variety) contains lines.

(ii) This condition on the existence of lines in the projectivised tangent cone o
singularity also appears for more general Schubert varieties.

(iii) In [3], M. Brion and P. Polo proved that the singularities of minuscule Schuber
rieties are locally isomorphic to cones over homogeneous varieties. With the results
this implies that the key problem of factorising morphisms throughU is locally true. Un-
fortunately it is not obvious to prove the global results thanks to this local property
nevertheless a good guide for intuition and we solve here the global problem using
Samelson resolutions.
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1. Preliminary

In this section we explain the results on cycles used in the introduction. We de
the surjective morphisms : Pic(U)∨ → A1(X) and define the set of classesne(α) for
α ∈ A1(X).

Let X be a scheme of dimensionn. Denote byZk(X) the group ofk-cycles onX

and byZ≡
k (X) andZr

k(X) the subgroups of cycles trivial for the numerical and ratio
equivalence. Let us denote byNk(X) andAk(X) the corresponding quotients. The Pica
group is the image inAn−1(X) of the subgroup of Cartier divisors inZn−1(X) and we
denote byN1(X) the quotient of Pic(X) by numerical equivalence.

Lemma 1.1. Let X ⊂ G/P be a Schubert variety(G a Lie group andP a parabolic
subgroup ofG). Then one has

(i) Pic(X) 	 N1(X),
(ii) A1(X) 	 N1(X).

In particular we haveA1(X) 	 Pic(X)∨.

Proof. (i) Thanks to the results of [6] the groupsA∗(X) are free generated by Schub
subvarieties and, furthermore, rational and algebraic equivalence are the same. So
one hand, the Picard group is contained inAn−1(X) and is in particular free.

On the other hand, thanks to [5, Example 19.3.3], we know that a Cartier divisorD is
numerically trivial if for somem ∈ N we havemD is algebraically trivial. This implies
for Schubert varieties thatmD is rationally trivial and because Pic(X) is torsion freeD is
trivial in Pic(X). This implies that Pic(X) 	 N1(X).

(ii) The results of [6] also imply thatA1(X) is generated by the one-dimension
Schubert varieties inX. But on G/P there is a duality between the Picard group a
one-dimensional Schubert varieties. In particular for any one-dimensional Schubert
Z there is a line bundleLZ such thatLZ · Z = 1 andLZ is trivial on any other one
dimensional Schubert variety. If theZi ⊂ X are the one-dimensional Schubert varietie
X then the restrictions of theLZi

to X form a dual family to theZi . In particular, theZi

are numerically independent. As they form a basis ofA1(X) we haveA1(X) 	 N1(X).
The duality comes from general duality betweenN1(X) andN1(X). �
Let U be the smooth locus ofX. If X is minuscule (see definition in Section 2) th

smooth locusU is the dense orbit under Stab(X) in X (see [3]1). Let Y be the complemen
of U in X. BecauseX is a normal variety the closed subsetY is of codimension at least 2
this in particular implies that Pic(U) = An−1(U) 	 An−1(X). We now have the following
inclusion:

Pic(X) ⊂ An−1(X) 	 Pic(U)

1 We do not need the results of [3] to definene(α), see Theorem 6.7, but it is more simple with this fact on
singular locus.
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s : Pic(U)∨ → A1(X).

With these notations we make the following:

Definition 1.2. Let X be any Schubert variety and letα ∈ A1(X). We define the setne(α) ⊂
An−1(X)∨.

Let us make the identificationAn−1(X) 	 Pic(U). The elements ofne(α) are the ele-
mentsβ ∈ Pic(U)∨ such thats(β) = α and there exists a curveC ⊂ U with [C] = β as a
linear form on Pic(U) (β is effective).

In the case of minuscule Schubert varietyX ⊂ G/P we describene(α) more precisely:
the smooth partU is the dense orbit under StabX. Let R be the Levi subgroup of Stab(X),
the orbitU is of the formQP/P 	 Q/Q∩P whereQ = Stab(X) is a parabolic subgrou
of G. We proved in [15, Proposition 5] that this orbit is a tower of affine bundles ove
homogeneous varietyR/R ∩ P . In particular Pic(U) 	 Pic(R/R ∩ P) is given in terms of
weights with a particular weight given by the generator of Pic(X). Furthermore, we prove
in [15] that the elementsβ ∈ Pic(R/R ∩P)∨ are effective if they are in the dual cone of t
cone of effective divisor, in other words they lie in the cone spanned by the positive

Example 1.3. If X is a grassmannian Schubert variety given by a partitionλ, consider the
associated Young diagram (see for example [13]). Then the Picard group Pic(U) is free and
has as many generators(Li)i∈[1,r] as the numbers of outer corner of the Young diagr
which is the number of strict inequalities in the partitionλ = (λ1 � λ2 � · · · � 0). The
generatorL of Pic(X) is given by

L =
∑

i∈[1,r]
Li.

If α ∈ A1(X) is such thatα · L = d thenne(α) is given by ther-tuples(bi)i∈[1,r] of non-
negative integers such that ∑

i∈[1,r]
bi = d.

The number of irreducible components is
(
d+r−1

d

)
.

Remark 1.4. The schemeHomα(P1,X) is the scheme of morphisms fromP1 to X of
classα (for more details see [8,14]).

In general, this will just mean thatα ∈ A1(X) and thatf∗[P1] = α but sometimes (in
particular in the introduction for the open partU ) we considerα ∈ Pic(X)∨ and the class
of a morphismf :P1 → X will be the linear form Pic(X) → Z given byL �→ deg(f ∗L).

In the case of a minuscule Schubert varietyX the two notion coincide because of t
previous lemma.
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In the case of the open partU of a minuscule Schubert varietyX, these scheme ar
connected components of the scheme of morphisms with a fixed 1-cycle class.

2. Minuscule Schubert varieties

2.1. Definitions

In this section we recall the notion of minuscule weight and study the related hom
neous and Schubert varieties. Our basic reference will be [11].

Let G be a semi-simple algebraic group, fixT a maximal torus andB a Borel subgroup
containingT . Let us denote by∆ the set of all roots, by∆+ (respectively∆−) the set of
positive (respectively negative) roots, byS the set of simple roots associated to the d
(G,T ,B) and byW the associated Weyl group. IfP is a parabolic subgroup containin
B we noteWP the subgroup ofW corresponding toP . Let us finally denote bỹB the
opposite Borel subgroup (corresponding to the negative roots) and byi the Weyl involution
on simple roots. This involution sends a simple rootβ on −w0(β) and is also defined o
fundamental weights.

Definition 2.1. Let � be a fundamental weight,

(i) we say that� is minuscule if we have〈α∨,� 〉 � 1 for all positive rootsα ∈ ∆+;
(ii) we say that� is cominuscule if〈α∨

0 ,� 〉 = 1 whereα0 is the longest root.

With the notation of Bourbaki [2], the minuscule and cominuscule weights are:

Type Minuscule Cominuscule

An �1 · · ·�n same weights
Bn �n �1
Cn �1 �n

Dn �1, �n−1 and�n same weights
E6 �1 and�6 same weights
E7 �7 same weight
E8 none none
F4 none none
G2 none none

Remark 2.2. The Weyl involutioni acts on minuscule and on cominuscule weights.

Definition 2.3. Let � be a minuscule weight and letP� be the associated parabo
subgroup. The homogeneous varietyG/P� is then said to be minuscule. The Schub
varieties of a minuscule homogeneous variety are called minuscule Schubert variet

Remark 2.4. To study minuscule homogeneous varieties and their Schubert varietie
sufficient to restrict ourselves to simply-laced groups.
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In fact the varietyG/P�n with G = Spin2n+1 is isomorphic to the varietyG′/P ′
�n+1

with G′ = Spin2n+2 and there is a one to one correspondence between Schuber
eties thanks to this isomorphism. The same situation occurs withG/P�1, G = Sp2n and
G′/P ′

�1
, G′ = SL2n.

2.2. Divisors on minuscule Schubert varieties

In this section we describe the divisors on minuscule Schubert varieties. For proo
more details see [11].

Definition 2.5. Let φ̄ ∈ W/WP� and letX(φ̄) the associated Schubert variety. A Schub
divisor X(sβφ̄) in X(φ̄) defined by asimpleroot β is called a moving divisor. All othe
Schubert divisor are said to be stationary.

Remark 2.6. The term “moving divisor” comes from the fact that the Schubert v
ety X(φ̄) is stable under the action ofU−β whereasX(sβφ̄) is moved byU−β in X(φ̄)

(see [11]).

We have the following proposition [12, Lemma 1.14]:

Proposition 2.7. With the notation of the Definition2.5 thenX(sβφ̄) is a moving divisor
in X(φ̄) if and only if φ̄ has a reduced expression starting withsβ .

We now have the following theorem ([10, Theorem 1] or [11, Theorem 3.10]) w
describes the divisors of a minuscule Schubert variety:

Theorem 2.8. Let X be a minuscule Schubert variety, then every Schubert divisor inX is
a moving divisor.

Remark 2.9. (i) This theorem is equivalent to the fact that weak and strong Bruhat o
coincide on minuscule Schubert varieties.

(ii) Let U be the dense orbit inX under the action of stabilizer Stab(X) ⊂ G. Let Y be
the complement ofU in X. A consequence of this theorem is thatY is in codimension a
least 2.

2.3. A positivity result

Let (γi)i∈[1,n] be a sequence of simple roots and defineφ = sγ1 · · · sγn . We suppose in
addition thatl(φ) = n. Setβi = i(γi) and let us define a sequence of roots(αi)i∈[1,n] by

α1 = β1, α2 = sβ1(β2), . . . , αn = sβ1 · · · sβn−1(βn).

Remark that this construction is involutive in the sense that if the(αi)i∈[1,n] are given we
can recover the(βi)i∈[1,n] by the formulae

β1 = α1, β2 = sα1(α2), . . . , βn = sα1 · · · sαn−1(αn).
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Remark 2.10. We use these notations to fit with those of the Bott–Samelson resoluti

Proposition 2.11. Let� be a minuscule weight. Suppose thatφ is the smallest element
the classφ̄ ∈ W/WP� . Then for all(i, j) ∈ [1, n] we have〈

α∨
i , αj

〉
� 0.

Proof. Let us define the sequence(β̃i)i∈[1,n] of simple roots as being the sequen
(βi)i∈[1,n] with reversed order, that is to saỹβi = βn+1−i . With this sequence we can co
struct a sequence(α̃i)i∈[1,n] by

α̃1 = β̃1, α̃2 = sβ̃1
(β̃2), . . . , α̃n = sβ̃1

· · · sβ̃n−1
(β̃n). �

Lemma 2.12. For all i ∈ [1, n], we have〈
α∨

i , αj

〉 = 〈
α̃∨

n+1−i , α̃n+1−j

〉
.

Proof. We have

〈
α̃∨

n+1−i , α̃n+1−j

〉 = 〈
sβ̃1

· · · sβ̃n−i
(β̃n+1−i )

∨, sβ̃1
· · · sβ̃n−j

(β̃n+1−j )
〉

= 〈
sβn · · · sβi+1(βi)

∨, sβn · · · sβj+1(βj )
〉 = 〈

sβ1 · · · sβi
(βi)

∨, sβ1 · · · sβj
(βj )

〉
where we appliedsβ1 · · · sβn to get the last equality. But we have

〈
sβ1 · · · sβi

(βi)
∨, sβ1 · · · sβj

(βj )
〉 = 〈

sβ1 · · · sβi−1(−βi)
∨, sβ1 · · · sβj−1(−βj )

〉
= 〈

α∨
i , αj

〉
. �

It is thus enough to prove the result on the sequence(α̃i)i∈[1,n]. As φ is the smalles
element inφ̄, the reduced expressionφ = sγ1 · · · sγn = si(β̃n) · · · si(β̃1)

in W is still reduced
in W/WP� . Let us prove the following lemma:

Lemma 2.13. Let β the only simple root such that〈β∨, i(�)〉 = 1. For all i ∈ [1, n], the
roots α̃i are such that

α̃i � β

that is to say, for all fundamental weights�k we have〈�∨
k , αi − β〉 � 0.

Proof. Because the expression̄φ = si(β̃n) · · · si(β̃1)
is reduced inW/WP� , we have for all

i ∈ [1, n] 〈
i(β̃i+1)

∨, s ˜ · · · s ˜ (−�)
〉
< 0.
i(βi ) i(β1)
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Remark that this (and in fact the whole lemma) is valid for any fundamental weig�

(the minuscule hypothesis implies more precisely that this bracket has to be−1). Let us
calculate〈

α̃∨
i+1,−i(�)

〉 = 〈
sβ̃1

· · · sβ̃i
(β̃i+1)

∨,−i(�)
〉〈
β̃ ∨

i+1, sβ̃i
· · · sβ̃1

(−i(�)
)〉

= 〈
i(β̃i+1)

∨, si(β̃i )
· · · si(β̃1)

(−�)
〉
< 0,

that is to say〈α̃∨
i+1, i(�)〉 > 0. Writing α̃i+1 in terms of simple roots, we see that the c

efficient ofβ has to be strictly positive (in fact it has to be one because� is cominuscule)
This exactly means that̃αi+1 � β. �

It is now an easy check on the tables of [2] to see that for these roots and a min
weight� we always have 〈

α̃∨
i , α̃j

〉
� 0.

Remark 2.14. Here is another proof (due to the referee) of this proposition. Let us d
Inv(w) to be the set of roots{α1, . . . , αn} already defined.

J.R. Stembridge [18,19] defines an element ofW to be fully commutative if its reduce
decomposition is unique up to commuting factorssisj = sj si . He also proves that in th
(co)minuscule case, everyw ∈ W/WP� of minimal length in its class is fully commutativ

Then S. Billey and A. Postnikov [1] prove that for all non-orthogonal rootsα andβ

in Inv(w) then the vectors Inv(w) ∩ SpanR(α,β) are isomorphic to a proper subset
the positive roots of typeA2, B2 or G2. The last case being here impossible we get
positivity result.

Corollary 2.15. With the above notations and the remark of Lemma2.13, the fact that
the expressionφ = si(β1) · · · si(βn) is reduced implies that〈i(βn),−� 〉 < 0 or equivalently
〈βn, i(�)〉 > 0. This is possible if and only ifβn = β.

Let k ∈ [1, n], if there exists ani < k such thatβi = βk (respectively if there exists a
i > k such thatβi = βk) we will denote byp(k) (respectivelyn(k)) the biggest (respec
tively smallest) integeri ∈ [1, k − 1] (respectivelyi ∈ [k + 1, n]) such thatβi = βk .

Corollary 2.16. Let j such thatβj = β.

(i) We have〈α∨
i , αj 〉 = 0 if for all k ∈ [i + 1, j ], 〈β∨

i , βk〉 = 0.
(ii) Otherwise we have〈α∨

i , αj 〉 = 1 if i > p(j) or if i < p(j) and for allk ∈ [i +1,p(j)],
〈β∨

i , βk〉 = 0. In all other cases we have〈α∨
i , αj 〉 = 0.

Proof. We have seen that〈α∨
i , αj 〉 = 〈α̃∨

n+1−i , α̃n+1−j 〉 and composing withsβ̃1
· · · sβ̃n−j

we can assume thatn + 1− j = 1 (i.e.,j = n). We thus have to calculate〈
α̃∨ , α̃1

〉 = 〈
β̃∨, α̃n+1−i

〉 = 〈
β∨, α̃n+1−i

〉

n+1−i 1
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(we use here the fact thatR = R∨ and the fact thatβj = β). We first have to prove tha
〈β∨, α̃n+1−i〉 = 0 if for all k ∈ [1, n + 1− i], 〈β̃∨

n+1−i , β̃k〉 = 0.
And otherwise we have to prove that〈β∨, α̃n+1−i〉 = 1 if n + 1 − i < n(1) or if n +

1− i > n(1) and for allk ∈ [n(1), n + 1− i], 〈β̃∨
n+1−i , β̃k〉 = 0 and that in all other case

we have〈β∨, α̃n+1−i〉 = 0.
(i) In this case, it is easy to see thatα̃n+1−i = β̃n+1−i and we have the vanishing.
(ii) Let us defineα = sβ̃2

· · · sβ̃n−i
(β̃n+1−i ). We haveα̃n+1−i = sβ̃1

(α) = sβ(α). And
recall that the simple rootβ always appears iñαn+1−i (Lemma 2.13) with multiplicity 1
(because� is a cominuscule weight).

In the first case, we see that the simple rootβ does not appear inα. But we have
α̃n+1−i = sβ(α) = α − 〈β∨, α〉β thus〈β∨, α〉 = −1.

In the second case, applying Lemma 2.13 to the sequencen(1), . . . , n + 1 − i we see
that the simple rootβ appears insβ̃n(1)

· · · sβ̃n−i
(β̃n+1−i ) with multiplicity 1. As β does not

appear inβ̃2, . . . , β̃n(1)−1, we see thatβ appears inα with multiplicity 1. But we have
α̃n+1−i = sβ(α) = α − 〈β∨, α〉β thus〈β∨, α〉 = 0.

We conclude because〈β∨, α̃n+1−i〉〈β∨, sβ(α)〉 = −〈β∨, α〉. �
Remark 2.17. The formula of Corollary 2.16 is more simple if we use commutation
lation between the simple rootβk : let j such thatβj = β, then we have〈α∨

i , αj 〉 = 0 if
modulo commutation we can exchangesβi

and sβj
. If not we also have〈α∨

i , αj 〉 = 0 if
i < p(j) and we cannot commutesβi

andsβp(j)
.

Let us prove the following:

Corollary 2.18. We have the formula

n∑
k=i+1, βk=β

〈
α∨

i , αk

〉 = {
1, if βi �= β,

0, if βi = β.

Proof. We apply the previous corollary. We know thatβn = β and we cannot commut
sβi

andsβn (otherwise the expression would not be reduced). Letj be the smallest intege
k ∈ [i + 1, n] such thatβk = β and we can not commutesβi

andsβk
.

We have〈α∨
i , αk〉 = 0 for all k ∈ [i + 1, n] with βk = β andk �= j . Fork = j , we have

〈
α∨

i , αk

〉 = {
1, if βi �= β,

0, if βi = β. �
As is Proposition 2.11, it is easy to check on the tables of [2] the following

Fact 2.19. If � is minuscule and(αi)i∈[1,n] as above, then for alli andj in [1, n], one has
〈α∨

i , αj 〉 � 2 with equality if and only ifαi = αj .

Let us prove the following corollary that we will need later:
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Corollary 2.20. Let i, x andj in [1, n]. If 〈α∨
i , αx〉 = 1 then for allj ∈ [1, n], one has〈

α∨
i , sαx (αj )

〉
� −1.

Proof. We have〈
α∨

i , sαx (αj )
〉 = 〈

α∨
i , αj

〉 − 〈
α∨

i , αx

〉〈
α∨

x ,αj

〉 = 〈
α∨

i , αj

〉 − 〈
α∨

x ,αj

〉
.

The preceding fact tells us that〈α∨
x ,αj 〉 � 2 with equality only if αx = αj . In case of

equality we have〈α∨
i , αj 〉 = 〈α∨

i , αx〉 = 1 thus〈α∨
i , sαx (αj )〉 = −1.

If αx �= αj , then Proposition 2.11 tells us that〈α∨
i , αj 〉 � 0 and we have〈α∨

x ,αj 〉 � 1
thus〈α∨

i , sαx (αj )〉 � −1. �

3. The Bott–Samelson resolutions

In this section we briefly describe the Bott–Samelson construction which gives
olution of any Schubert variety inG/B and inG/P for any parabolic subgroupP . We
describe this construction as M. Demazure did in [4] we refer to this article for mor
tails.

3.1. Construction

Let φ ∈ W with l(φ) = n. We recall in this section M. Demazure’s construction [4]
a resolution of the dimensionn Schubert varietyX(φ) = BφB/B ⊂ G/B associated to a
reduced decompositionφ = sγ1 · · · sγn with γi ∈ S.

Let w0 be the longest element ofW and define the elementw = w0φ
−1w0. The preced-

ing reduced expression leads to the reduced expression

w = si(γn) · · · si(γ1).

If we choose any reduced expression

ww0 = si(γn+1) · · · si(γN )

with γi ∈ S andN = l(w0), thenw0 = si(γ1) · · · si(γN ) is a reduced expression ofw0. To
keep the same notation with [4], let us noteβi = i(γi), we have:

w0 = sβ1 · · · sβN
, w = sβn · · · sβ1 and ww0 = sβn+1 · · · sβN

.

With the sequence(βi)i∈[1,N ], we define the following sequence(αi)i∈[1,N ] of roots by:

α1 = β1, α2 = sβ1(β2), . . . , αN = sβ1 · · · sβN−1(βN).

The αi are distinct and∆+ = {αi/i ∈ [1,N]}. Definewi = sαi
∈ W (we will also for

simplicity of notations sometimes considerwi as an element ofG). We have
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wi = sβ1 · · · sβi−1sβi
sβi−1 · · · sβ1, w = w1 · · ·wn,

w0 = w1 · · ·wN and w−1
0 φ = wN−n+1 · · ·wN.

We define a sequence(Bi)i∈[0,N ] of Borel subgroups containingT by induction:

B0 = B̃ and Bi+1 = wi+1Biw
−1
i+1.

Denote byPi the parabolic subgroup generated byBi−1 and Bi we get a sequence o
codimension one inclusions:

B0 ⊂ P1 ⊃ B1 ⊂ · · · ⊃ Bn−1 ⊂ PN ⊃ BN.

Finally we construct a sequence of varieties(Xi)i∈[0,N ] endowed with a right action ofBi

by induction:

X0 = B0 and Xi+1 = Xi ×Bi Pi+1

where the second term is the contracted product ofXi andPi overBi (see [4, Par. 2.3])
The quotientXi/Bi is well defined and we get a sequence ofP

1-bundlesfi with canonical
sectionsσi :

X0/B0
f1←− X1/B1 ← ·· · ← XN−1/BN−1

fN←− XN/BN.

The schemeXi/Bi is the quotient ofP1 × · · · × Pi by the right action ofB1 × · · · × Bi

given by

(p1, . . . , pi) · (b1, . . . , bi) = (
p1b1, . . . , b

−1
i−1pibi

)
.

The projectionfi sends the class of(p1, . . . , pi) to the class of(p1, . . . , pi−1) whereas the
sectionσi sends the class of(p1, . . . , pi−1) to the class of(p1, . . . , pi−1,wi).

The multiplication morphismP1 × · · · × PN → G factorises throughXN → G which
is PN equivariant and in particularBN equivariant. We thus get a morphism

XN/BN → G/BN = G/B

which is birational and such that the restriction toσN · · ·σn+1(Xn/Bn) is birational on the
Schubert variety

B̃w−1
0 φB/B 	 X(φ).

This construction gives us the resolution

π :Xn/Bn → X(φ).
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Let P be a parabolic subgroup containingP and letφ̄ ∈ W/WP . We want to construc
a resolution of the Schubert variety

X(φ̄) = Bφ̄P/P ⊂ G/P.

For this chooseφ the smallest element in the classφ̄. The morphismX(φ) → X(φ̄) in-
duced by the projectionG/B → G/P is birational. So the morphism

π :Xn/Bn → X(φ̄)

is a resolution. We will denote bỹX(φ̄) the schemeXn/Bn.

Remark 3.1. If we have〈β∨
i , βi+1〉 = 0 for somei, then the Bott–Samelson resolution a

sociated to the sequence(βk)k∈[1,n] is the same as the Bott–Samelson resolution assoc
to the sequence(β ′

k)k∈[1,n] whereβ ′
k = βk for k /∈ {i, i + 1}, β ′

i = βi+1 andβ ′
i+1 = βi .

3.2. Curves and divisors on the Bott–Samelson resolution

In his paper [4], M. Demazure studies some special cycles on the varietiesXN/BN .
DenoteZi = f −1

N · · ·f −1
i+1(Im(σi)). It is a divisor inXN/BN . For anyK ⊂ [1,N] denote

by

ZK =
⋂
i∈K

Zi

which is a codimension|K| subvariety ofXN/BN . The classes of theZK form a basis of
the Chow group ofXN/BN (cf. [4, Par. 4, Proposition 1]). Remark that for anyk ∈ [1,N],
we haveXk/Bk = Z[k+1,N ]. We can in this way define subvarieties ofX̃(φ̄):

• Denote byDi = Z{i}∪[n+1,N ]. This is a divisor oñX(φ̄) and these divisors form a bas
of the Picard group of̃X(φ̄).

• Define the curveCi = Z[1,N ]−{i}. These curves fori ∈ [1, n] form a basis ofA1(X̃(φ̄)).

Denote byξi the class ofZi in the Chow group ofXN/BN . M. Demazure describe
completely the Chow group ofXN/BN in the following

Theorem 3.2 (Demazure [4, Par. 4, Proposition 1]). The Chow group ofXN/BN is gener-
ated overZ by the(ξi)i∈[1,N ] with the relations:

ξi ·
(

ξi +
i−1∑
j=1

〈
α∨

j , αi

〉
ξj

)
= 0 for all i ∈ [1,N].

With the above notation we have[Ci] = ∏
j �=i ξj and we can use the previous theor

to prove
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Proposition 3.3. We have

[Ci] · ξj =


0, for i > j,

1, for i = j,

〈β∨
i , βj 〉, for i < j.

Proof. The preceding theorem leads by an easy induction to

Fact 3.4. We have the following formula inA(XN/BN):

[Ci] · ξj =


0, for i > j,

1, for i = j,∑j−i

k=1(−1)k
∑

i=i0<···<ik=j

∏k−1
x=0〈α∨

x ,αx+1〉, for i < j.

We prove the following lemma to conclude the proof:

Lemma 3.5. For i < j , we have the following formula:

j−i∑
k=1

(−1)k
∑

i=i0<···<ik=j

k−1∏
x=0

〈
α∨

x ,αx+1
〉 = 〈

β∨
i , βj

〉
.

Proof. Let us first remark that theβi can be constructed thanks to theαi in the following
way:

β1 = α1, β2 = sα1(α2), . . . , βN = sα1 · · · sαN−1(αN).

Calculating〈
β∨

i , βj

〉 = 〈
sα1 · · · sαi−1(αi)

∨, sα1 · · · sαj−1(αj )
〉 = 〈

α∨
i , sαi

· · · sαj−1(αj )
〉

= −〈
αisαi+1 · · · sαj−1(αj )

〉
.

Furthermore, we can write

sαi
· · · sαj−1(αj ) =

j∑
k=i

xk,j αk

with xk,j ∈ Z not depending oni. On the one hand, we get by an easy induction the eq
ity:

xi,j =
j−i∑

(−1)k
∑ k−1∏〈

α∨
x ,αx+1

〉
.

k=1 i=i0<···<ik=j x=0
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On the other hand, we have

〈
α∨

i , sαi
· · · sαj−1(αj )

〉 = j∑
k=i

xk,j

〈
α∨

i , αk

〉
and

−〈
α∨

i , sαi+1 · · · sαj−1(αj )
〉 = −

j∑
k=i+1

xk,j

〈
α∨

i , αk

〉
summing the two equalities we get

2
〈
α∨

i , sαi
· · · sαj−1(αj )

〉 = 〈
α∨

i , sαi
· · · sαj−1(αj )

〉 − 〈
α∨

i , sαi+1 · · · sαj−1(αj )
〉 = xi,j

〈
α∨

i , αi

〉
concluding the proof of the lemma.�

The proposition follows from Fact 3.4 and Lemma 3.5.�
Remark 3.6. The formulae of Proposition 3.3 are still valid oñX(φ̄).

Let us introduce some notations (see also [4]). Ifλ is a character of the torusT let
us denote byŁi (λ) the associated line bundle onXi/Bi (recall thatT ⊂ Bi ). Let us now
denote byTi the relative tangent sheaf of theP

1-fibrationfi :Xi/Bi → Xi−1/Bi−1. Thanks
to [4, Par. 2, Proposition 1] and an easy induction oni we get

Fact 3.7. Let us still denote Łi (λ) the corresponding class inA∗(Xi/Bi) then we have the
formula:

Łi (λ) =
i∑

k=1

〈
α∨

k , λ
〉 · ξk.

Furthermore, M. Demazure remarks [4, Par. 2, remark following Proposition 1] th
haveTi = Łi (αi) so that we get the following

Corollary 3.8. Let us still denoteTi the corresponding class inA∗(Xi/Bi) then we have
the formula:

Ti =
i∑

k=1

〈
α∨

k , αi

〉 · ξk.

Remark that the factor ofξi in Ti is 2. We get the
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Corollary 3.9. Let C be a curve onXi/Bi . Suppose that for allk ∈ [1, i] we have[C] ·
ξk � 0 and〈α∨

k , αi〉 � 0 then for allk we have

[C] · (Tk − ξk) � 0 and in particular [C] · Tk � 0

where we still denote byTk the pull-back ofTk onXi/Bi .

Finally if φ is the smallest element in the classφ̄ ∈ W/WP� with � a minuscule weight
the results of Proposition 2.11 gives us

Corollary 3.10. Let C be a curve oñX(φ̄) the resolution ofX(φ̄). Suppose that for al
k ∈ [1, n] we have[C] · ξk � 0 then for allk we have

[C] · (Tk − ξk) � 0 and in particular [C] · Tk � 0

where we still denote byTk the pull-back ofTk on X̃(φ̄).

Proposition 3.11. We have

[Ci] · Tj =
{

0, for i > j,

〈β∨
i , βj 〉, for i � j.

Proof. Thanks to Corollary 3.8 the result is clear fori > j . Let i � j and let us use Coro
lary 3.8 and Proposition 3.3 to get

[Ci] · Tj =
j∑

k=1

〈
α∨

k , αj

〉[Ci] · ξk =
j−1∑

k=i+1

〈
α∨

k , αj

〉 · 〈β∨
i , βk

〉 + 〈
α∨

i , αj

〉 + 2
〈
β∨

i , βj

〉
.

Lemma 3.12. We have the formula

j−1∑
k=i+1

〈
α∨

k , αj

〉 · 〈β∨
i , βk

〉 = −〈
α∨

i , αj

〉 − 〈
β∨

i , βj

〉
.

Proof. Because the construction ofαi in terms ofβi is symmetric to the construction ofβi

in terms ofαi the formula of Lemma 3.5 is valid when we exchange the roles of theαi and
of theβi so we get fork < j :

〈
α∨

k , αj

〉 = j−k∑
u=1

(−1)u
∑

k=i0<···<iu=j

u−1∏
x=0

〈
β∨

ix
, βix+1

〉
.

We thus obtain

j−1∑ 〈
α∨

k , αj

〉 · 〈β∨
i , βk

〉 = j∑ j−k∑
(−1)u

∑ u−1∏〈
β∨

ix
, βix+1

〉 · 〈β∨
i , βk

〉
.

k=i+1 k=i+1 u=1 k=i0<···<iu=j x=0
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If we seti−1 = i we get

j−1∑
k=i+1

〈
α∨

k , αj

〉 · 〈β∨
i , βk

〉 = j−i−1∑
u=1

j−u∑
k=i+1

(−1)u
∑

i=i−1<k=i0<···<iu=j

u−1∏
x=−1

〈
β∨

ix
, βix+1

〉

=
j−i−1∑
u=1

(−1)u
∑

i=i−1<i0<···<iu=j

u−1∏
x=−1

〈
β∨

ix
, βix+1

〉

=
j−i∑
u=2

(−1)u+1
∑

i=i0<···<iu=j

u∏
x=0

〈
β∨

ix
, βix+1

〉

= −〈
β∨

i , βj

〉 + j−i∑
u=1

(−1)u+1
∑

i=i0<···<iu=j

u∏
x=0

〈
β∨

ix
, βix+1

〉
− 〈

β∨
i , βj

〉 − 〈
α∨

i , αj

〉
. �

This lemma with the preceding formula ends the proof.�

4. Some more curves on X̃(φ̄)

4.1. Effective and contracted curves

In this section, we study some more curves onX̃(φ̄). In particular those which ar
contracted by the projectionπ : X̃(φ̄) → X(φ̄).

Let us look at the restriction ofπ on the curveCj . M. Demazure [4, Par. 3, Theorem
proves that the curve is contracted if and only ifl(w1 · · ·wj−1wj+1 · · ·wn) > n. But a
simple calculation gives

w1 · · ·wj−1wj+1 · · ·wn = sβj
w

so the curve is not contracted inG/B if and only if l(sβj
w) = l(w) − 1 in W and is not

contracted inG/P if this equality is true for the minimal representatives inW of sβj
w and

w in W/WP . This means that there exists a minimal reduced expression ofw beginning
with sβj

. But for any reduced expressionw = sβn · · · sβ1 we have seen in Corollary 2.15 th
we must haveβn = β (whereβ is the unique simple root such that〈β∨, i(�)〉 = 1). This
would imply thatβj = β = βn. In the other cases the curveCj is contracted (in genera
i.e., when� is not minuscule and even not fundamental, the curveCj is contracted if and
only if 〈β∨

j , i(�)〉 > 0).
For any integerj ∈ [1, n] let us definen(j) = min{k > j/bk = bj }. If n(j) does

not exist thenj = m(i) = max{k/βk = βi} for somei ∈ [1, n]. Let us consider the cas
wheren(j) exists. A pointt in Cj (respectivelyCn(j)) is the image iñX(φ̄) of a n-uple
(w1, . . . ,wj−1, x(t),wj+1, . . . ,wn) ∈ P1 × · · · × Pn (respectively(w1, . . . ,wn(j)−1, y(t),
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wn(j)+1, . . . ,wn)). Because the curvesCj andCn(j) have the same imageX(sbj
w) un-

derπ , we thus have the equation

w1 · · ·wj−1 · x(t) · wj+1 · · ·wn = w1 · · ·wn(j)−1 · y(t) · wn(j)+1 · · ·wn.

If we consider the curvẽCj parametrized byt defined by the images of(
w1, . . . ,wj−1,w

−1
j x(t),wj+1, . . . ,wn(j)−1,wn(j)y(t)−1,wn(j)+1, . . . ,wn

)
in X̃(φ̄) we see that its image byπ is w1 · · ·wj−1wj+1 · · ·wn(j)−1wn(j)+1 · · ·wn−1 a con-
stant. The curvẽCj is contracted byπ .

If n(j) does not exists, then we definẽCj = Cj .

Lemma 4.1. We have[C̃j ] = [Cj ] − [Cn(j)].

Proof. The projection of̃Cj andCj on Xn(j)−1/Bn(j)−1 are the same. This implies th
[Cj ] − [C̃j ] = a[Cn(j)] with a ∈ Z. Apply π∗ to this equation to getπ∗[Cj ] − π∗[C̃j ] =
aπ∗[Cn(j)]. But we haveπ∗[Cj ] = π∗[Cn(j)] andπ∗[C̃j ] = 0 thusa = 1. �
Proposition 4.2. The classes[C̃j ] generateA1(X̃(φ̄)) overZ. Furthermore, they generat
the cone of effective curves, i.e., they generate the extremal rays.

Proof. The first assertion is trivial because the classes[Cj ] generateA1(X̃(φ̄)) overZ.
For the second, we proceed by induction onj : we prove that the classes[C̃k] for k � j

generated the effective cone ofXj/Bj (by abuse of notation we still denote by[C̃k] the
image of the class[C̃k] in Xj/Bj ). It is true forj = 1 assume it is true forj − 1 and let

[C] =
j∑

k=1

ak[C̃k]

the class of an effective curve. By projection onXj−1/Bj−1 we obtain the class

fj∗ [C] =
j−1∑
k=1

ak[C̃k]

which has to be effective so by induction we haveak � 0 for k < j . Now by projection on
G/Pj we get

π∗[C] =
j∑

k=1

akπ∗[C̃k].

The class[C̃j ] is not contracted. The only classes[C̃k] that are not contracted byπ are such
that[C̃k] = [Ck] andl(sβ w) = l(w)−1. The image is then the Schubert variety associ
k
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. The first condition implies that for these not contracted curves, all theβk are distinct.

But the associated Schubert varieties are independent inA1(G/B) and because the imag
is effective we haveak � 0 for all thosek and in particularaj � 0. �
4.2. Curves on contracted divisors

Let x ∈ [1, n] such that the divisorDx is contracted byπ . We are going to construc
special curves onDx (recall that[Dx] = ξx ).

Lemma 4.3. There existsi ∈ [1, n] such that[Ci] · ξx = −1.

Proof. Recall that we have (Proposition 3.3)

[Ci] · ξx =


0, for i > x,

1, for i = x,

〈β∨
i , βx〉, for i < x.

We have to choosei < x and for such ani, as the group is simply laced we have[Ci] · ξx =
−1, 0 or 2. If for all i < x this intersection is zero then for alli < x the symmetrysβi

commutes withsβx so that the reduced expressionw = sβn · · · sβ1 can be writtenw =
sβn · · · sβx+1sβx−1 · · · sβ1sβx . We have a reduced expression

φ̄ = sγx sγ1 · · · sγx−1sγx+1 · · · sγn

meaning that the image ofDx in X(φ̄) is a moving divisor. This is impossible becauseDx

is contracted. Leti be the biggesti < x such that[Ci] · ξx �= 0. If the intersection is 2 thi
means thatβi = βx . But because for allk ∈ [i + 1, x − 1], we have〈β∨

k , βx〉 = 0, we see
thatsβx commutes with allsβk

with k ∈ [i + 1, x − 1]. We have:

φ̄ = sγ1 · · · sγi−1sγi
sγi+1 · · · sγx−1sγx sγx+1 · · · sγn = sγ1 · · · sγi−1sγi

sγx sγi+1 · · · sγx−1sγx+1 · · · sγn

= sγ1 · · · sγi−1sγi+1 · · · sγx−1sγx+1 · · · sγn

that is to say the expression̄φ = sγ1 · · · sγn was not reduced, a contradiction.�
Remark 4.4. In particular there exists ani ∈ [1, n] such that〈α∨

i , αx〉 = 1 (choose thei of
the preceding proof and we have〈α∨

i , αx〉 = −〈β∨
i , βx〉 = 1).

Let i ∈ [1, n] and let us define the following classes of curves:

[Ĉi] = [Ci] +
n∑

k=i+1

〈
α∨

i , αk

〉[Ck].
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Lemma 4.5. We have the formulae

[Ĉi] · ξj = δi,j and [Ĉi] · Tj =
{

0, for i > j,

〈α∨
i , αj 〉, for i � j.

Proof. We use Proposition 3.3 and Lemma 3.12 to get

[Ĉi] · ξj =
(

[Ci] +
n∑

k=i+1

〈
α∨

i , αk

〉[Ck]
)

· ξj

=


0, for i > j,

1, for i = j,

〈β∨
i , βj 〉 + ∑j−1

k=i+1〈α∨
i , αk〉〈β∨

k , βj 〉 + 〈α∨
i , αj 〉, for i < j,

=


0, for i > j,

1, for i = j,

〈β∨
i , βj 〉 − 〈β∨

i , βj 〉 − 〈α∨
i , αj 〉 + 〈α∨

i , αj 〉, for i < j,

proving the first formula. For the second one we use Proposition 3.11 and Lemma 3
get

[Ĉi] · Tj =
(

[Ci] +
n∑

k=i+1

〈
α∨

i , αk

〉[Ck]
)

· Tj

=
{

0, for i > j,

〈β∨
i , βj 〉 + ∑j

k=i+1〈α∨
i , αk〉〈β∨

k , βj 〉, for i � j,

=


0, for i > j,

1, for i = j,

〈β∨
i , βj 〉 − 〈β∨

i , βj 〉 − 〈α∨
i , αj 〉 + 2〈α∨

i , αj 〉, for i < j,

concluding the proof. �
Now let i ∈ [1, n] such that〈α∨

i , αx〉 = 1 (there exists such ani thanks to Remark 4.4
We define the class:

[Γx,i] = [Ĉi] − 〈
α∨

i , αx

〉[Ĉx] = [Ĉi] − [Ĉx]

and prove the following:

Proposition 4.6. We have:

(i) [Γx,i] · ξx = −1 so all curvesC ∈ [Γx,i] are contained inDx .
(ii) The schemeHom[Γ ](P, X̃(φ̄)) is irreducible and smooth(in particular non-empty).
x,i
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(iii) The open partDx −⋃
k �=x(Dx ∩Dk) of the divisorDx is covered by curvesC ∈ [Γx,i].

(iv) All curvesC ∈ [Γx,i] are contracted byπ .

Proof. (i) This is a simple application of Lemma 4.5.
(ii) Recall that X̃(φ̄) is a sequence ofP1-bundles. We proceed by induction on t

Xj/Bj (by abuse of notation, we still denote by[Γx,i] the push-forward of[Γx,i] in
A1(Xj/Bj )). Let us denote byϕ :X → Y the morphismfj :Xj/Bj → Xj−1/Bj−1 and
by T the relative tangent sheaf. We have a sectionσ = σj of ϕ and we denote byξ = ξj

the divisor image of the section. We have:

σ∗ϕ∗[Γx,i] =


0, for j � i,

[Γx,i] − 〈α∨
i , αj 〉 · [Cj ], for i < j < x,

[Γx,i], for j = x,

[Γx,i] − 〈α∨
i , sαx (αj )〉 · [Cj ], for j > x.

Proposition 3.3 and Lemma 4.5 give us

[Γx,i] · ξ =


1, for j = i,

−1, for j = x,

0, otherwise,

σ∗ϕ∗[Γx,i] · ξ =


0, for j � i,

−〈α∨
i , αj 〉, for i < j � x,

−〈α∨
i , sαx (αj )〉, for j > x,

and

[Γx,i] · T =


0, for j < i,

〈α∨
i , αj 〉, for i � j < x,

〈α∨
i , sαx (αj )〉, for j � x.

Let us denote by[Γ ] the class of[Γx,i] in X = Xj/Bj and letf ∈ Homϕ∗[Γ ](P1, Y ). We
want to study the fiber overf of the morphism

Hom[Γ ]
(
P

1,X
) → Homϕ∗[Γ ](P, Y )

that is to say the morphismsf ′ ∈ Hom[Γ ](P1,X) such thatf = ϕ ◦ f ′. We look for a
section of theP1-bundleϕ pulled-back byf . Let E be the rank two vector bundle definin
theP

1-bundle. We can chooseE such thatf ∗E = OP1 ⊕OP1(a) with a � 0.
The sectionf ◦ σ is given by a surjectionf ∗E → OP1(z) with 2z − a = σ∗ϕ∗[Γ ] · ξ .

A morphismf ′ is simply given by a surjectionf ∗E →OP1(y) such thaty+z−a = [Γ ]·ξ
and 2y − a = [Γ ] · T .

Remark 4.7. The sectionf ◦ σ always exists. We must thus havez = 0 or z � a. This
implies that

• if σ∗ϕ∗[Γ ] · ξ = 0 thena = z = 0;
• if σ∗ϕ∗[Γ ] · ξ < 0 thenz = 0 anda = −σ∗ϕ∗[Γ ] · ξ ;
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• if σ∗ϕ∗[Γ ] · ξ > 0 then〈α∨
i , sαx (αj )〉 = −σ∗ϕ∗[Γ ] · ξ < 0 and in fact〈α∨

i , sαx (αj )〉 =
−1 (Corollary 2.20). In this case we have 2z − a = 1 and this impliesz = a = 1.

The sectionf ′ will exist if there exists an integery such thaty = 0 ory � a. In the case
j = i, we havez = a = 0, y = 1 andf ′ exists. In the casej = x we havey = z = 0, a = 1
andf ′ exists. In the other cases we always havey + z − a = 0. This implies that

• if σ∗ϕ∗[Γ ] · ξ = 0 theny = 0;
• if σ∗ϕ∗[Γ ] · ξ < 0 theny = a;
• if σ∗ϕ∗[Γ ] · ξ > 0 theny = 0.

In conclusion there always exists a sectionf ′ of f with the required invariants.

We will use the following proposition (see [15, Proposition 4]):

Proposition 4.8. Let ϕ :X → Y a P
1-bundle with relative tangent sheafT and let[Γ ] ∈

A1(X) such that[Γ ] ·T � 0, thenHom[Γ ](P1,X) is an open subset of a projective bund
over Homϕ∗[Γ ](P1, Y ). In particular, if Homϕ∗[Γ ](P1, Y ) is irreducible, the same is tru
for Hom[Γ ](P1,X) as soon as it is non-empty.

This proposition with be useful for the fibrationfj if we have[Γx,i] · Tj � 0. The only
cases where the previous proposition does not apply is when〈α∨

i , sαx (αj )〉 < 0 and in fact
〈α∨

i , sαx (αj )〉 = −1 (Lemma 2.20). There are two distinct cases where this may occ
j = x then [Γx,i] · ξj = −1 and[Γx,i] · Tj = −1. If j > x and 〈α∨

i , sαx (αj )〉 = −1 then
[Γx,i] · ξj = 0 and[Γx,i] · Tj = −1.

The first casej = x is treated thanks to

Lemma 4.9. Letϕ :X → Y a P
1-bundle with relative tangent sheafT and with a sectionσ .

Denoteξ the divisorσ(Y ) and let[Γ ] ∈ A1(X) such that[Γ ] · ξ = −1, [Γ ] · T = −1 and
σ∗ϕ∗[Γ ] · ξ = −1. Suppose thatHomϕ∗[Γ ](P1, Y ) is normal then we have

Hom[Γ ]
(
P

1,X
) 	 Homϕ∗[Γ ]

(
P

1, Y
)
.

Proof. Let f ∈ Homϕ∗[Γ ](P1, Y ), we have to prove (by Zariski Main theorem) that th
is exactly one morphismf ′ ∈ Hom[Γ ](P1,X) such thatf = ϕ ◦ f ′. But with the above
notation and thanks to Remark 4.7 we havey = z = 0 anda = 1. The morphismf ′ has to
beσ ◦ f . �

The second casej > x is treated thanks to

Lemma 4.10. Let ϕ :X → Y a P
1-bundle with relative tangent sheafT and with a sec-

tion σ . Denoteξ the divisorσ(Y ) and let[Γ ] ∈ A1(X) such that[Γ ] · ξ = 0, [Γ ] ·T = −1
andσ∗ϕ∗[Γ ] · ξ = 1. Suppose thatHomϕ∗[Γ ](P1, Y ) is normal then we have

Hom[Γ ]
(
P

1,X
) 	 Homϕ∗[Γ ]

(
P

1, Y
)
.
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Proof. Let f ∈ Homϕ∗[Γ ](P1, Y ), we have to prove (by Zariski Main theorem) that th
is exactly one morphismf ′ ∈ Hom[Γ ](P1,X) such thatf = ϕ ◦ f ′. But with the above
notation and thanks to Remark 4.7 we havey = 0 andz = a = 1. The morphismf ′ is given
by the unique self-negative section ofPP1(f ∗E). �

(iii) Let us note that thanks to Remark 4.7, Lemmas 4.9 and 4.10 there are curveC ∈
[Γx,i] such thatC is not contained in any intersectionDx ∩ Dj (we always haveC ⊂ Dx )
and thus always meet the open partDx − ⋃

k �=x(Dx ∩ Dk) of the divisorDx .
But the orbit of the unipotent partU of B acting onDx is exactlyDx − ⋃

k �=x(Dx ∩
Dk). TranslatingC thanks to the action ofU we see that the curvesC ∈ [Γx,i] cover
Dx − ⋃

k �=x(Dx ∩ Dk).

(iv) We have seen that all the curves[C̃k] are contracted byπ except[C̃n]. We just have
to prove that the coefficientan of [C̃n] in [Γx,i] is zero. Let us set

A =
n∑

k=i+1, βk=β

〈
α∨

i , αk

〉 − n∑
k=x+1, βk=β

〈
α∨

x ,αk

〉
.

We have

an =


A, if βi �= β andβx �= β,

A + 1, if βi = β andβx �= β,

A − 1, if βi �= β andβx = β,

A, if βi = β andβx = β.

We now apply Corollary 2.18 to see thatan = 0 in all cases. �
Remark 4.11. If the fiber of the projectionπ :Dx → π(Dx) is a curve then its class ha
to be[Γx,i]. In general, the generic fiber is covered by curves in the class[Γx,i]. For more
details on the fiber of the Bott–Samelson resolution see [7].

5. The scheme of morphisms for X̃(φ̄)

5.1. Irreducibility

We will prove in this section that for some classesα ∈ A1(X̃(φ̄)) the scheme o
morphismsHomα(P1, X̃(φ̄)) is irreducible and smooth. We will essentially need Prop
tion 4.8 (see [15, Proposition 4]).

Let us now consider a classα ∈ A1(X̃(φ̄)) such thatα · ξi � 0 for all i ∈ [1, n]. Thanks
to Corollary 3.10 we know thatα · Ti � 0 andα · (Ti − ξi) � 0.
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Proposition 5.1.

(i) The scheme of morphismsHomα(P1, X̃(φ̄)) is irreducible and smooth of dimension∫
α

c1(TX̃(φ̄)) + dim
(
X̃(φ̄)

)
.

(ii) If the classα is such thatα · ξx = 0 for all x ∈ [1, n] with Dx a contracted divisor, then
a general elementf ∈ Homα

(
P

1, X̃(φ̄)
)

is contained in the regular locus ofπ .

Proof. (i) We proceed by induction, for the first step, we have to study the schem
morphisms fromP

1 to P
1. This scheme is irreducible and smooth. We go by induc

thanks to Proposition 4.8. We only have to prove that the scheme is non-empty. Ho
with the notations of the preceding section forP

1-fibrations, we havef ∗E = OP1 ⊕OP1(a)

with sectionσ given by a surjectionf ∗E → OP1(z) and we look for a sectionf ∗E →
OP1(y). Because of the relationsα · Ti � 0 andα · (Ti − ξi) � 0 we see thaty � z and
y � a − z. This implies thaty � a proving the existence of a surjectionf ∗E → OP1(y).

(ii) Let f a general element. Thanks to the discussion above, we may assume th
element will meet the non-contracted divisorsDi in distinct points and will not meet th
contracted divisors. In particularf will never meet intersectionsDi ∩ Dj with i �= j . In
particular, the onlyB-orbits of the Bott–Samelson resolution thatf will meet are the dens
orbit and the orbits dense inDi for a non-contracted divisor. These orbits are containe
the regular locus so this in particular proves thatf is contained in the regular locus.�
5.2. Smoothing curves oñX(φ̄)

Let α ∈ A1(X̃(φ̄)) as above.

Lemma 5.2. There existsf̃ ∈ Homα(P1, X̃(φ̄)) such thatf̃ (P1) is not contained in any
Di and does not meet any intersectionDi ∩ Dj .

Proof. Because the schemeHomα(P1, X̃(φ̄)) is irreducible, if it exists, a general mo
phism will have the required property.

Let i < j , we construct this curvẽf by induction on theP1-fibrations. For all fibrations
except for the fibrationsfi andfj , we take any section.

For the fibrationfi we have by induction a morphism̃fi−1 :P1 → Xi−1/Bi−1 and with
the notations of the proof of the previous proposition: a rank 2 vector bundlef̃ ∗

i−1E =
OP1 ⊕OP1(a) with a � 0; a surjectionf̃ ∗

i−1E →OP1(z) (corresponding to the divisorDi )

and we look for a surjectioñf ∗
i−1E → OP1(y). With our hypothesis onα we havey � z

andy � a − z (cf. proof of the preceding proposition) so there always exists a sectio
we can choose it such that the image is not contained inDi (becausey � a − z).

For the fibrationfj we have by induction a morphism̃fj−1 :P1 → Xj−1/Bj−1 and
with the notations of the proof of the previous proposition: a rank 2 vector bu
f̃ ∗ E = OP1 ⊕ OP1(a) with a � 0; a surjectionf̃ ∗ E → OP1(z) (corresponding to th
j−1 j−1
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divisor Dj ) and we look for a surjectioñf ∗
j−1E → OP1(y). We know thatf̃j−1(P

1) is

not contained inDi . There are a finite number of points inP1, sayx1, . . . , xk such that
f̃j−1(xl) ∈ Di . With our hypothesis onα we havey � z andy � a − z (cf. proof of the
preceding proposition) so there always exists a section and we can choose it such
compositionOP1(a−z) → f ∗E →OP1(y) is non-zero forx1, . . . , xk . Then the new curve
does not meetDi ∩ Dj .

Because the condition is open we can find a curve for which it is true for alli andj . �
Corollary 5.3. Let α ∈ A1(X̃(φ̄)) such thatα · ξk � 0 for all k ∈ [1, n] and α · ξx > 0
for somex ∈ [1, n]. Then there exists̃f ∈ Homα(P1, X̃(φ̄)) such thatf̃ (P1) meetsDx in
Dx − ⋃

k �=x(Dx ∩ Dk).

Proof. Let f̃ as in the preceding lemma. We know thatf̃ (P1) is not contained inDx but
has to meetDx (because of the intersection number). The curvef̃ (P1) does not meet an
intersectionDi ∩ Dj , in particular it does not meet the intersectionDx ∩ Dk for all k. �

Let us now suppose that dim(X(φ̄)) � 3. When dim(X(φ̄)) � 2 thenX(φ̄) is P
1 or P

2

for which the scheme of morphisms is well known. LetDx be a contracted divisor,α ∈
A1(X̃(φ̄)) and f̃ ∈ Homα(P1, X̃(φ̄)) as in the preceding corollary. There existsx0 ∈ P

1

such that

f̃ (x0) ∈ Dx −
⋃
k �=x

(Dx ∩ Dk)

and thanks to Proposition 4.6, for any integeri < x with 〈α∨
i , αx〉 = 1 there exists a curv

C ∈ [Γx,i] such thatf̃ (x0) ∈ C.

Proposition 5.4. Then there exists a deformatioñf ′ of f̃ in Homα(P1, X̃(φ̄)) and an
integeri with 〈α∨

i , αx〉 = 1 such thatf̃ ′(P1) andC meet exactly inf̃ (x0) and transversally

Proof. Let us first assume thatx < n.

Lemma 5.5. There existsj > x such that〈α∨
x ,αj 〉 = 1.

Proof. It is enough to prove that there existsj > x such that〈β∨
x , βj 〉 �= 0. Indeed tak-

ing the smallest suchj we must have〈β∨
x , βj 〉 = −1 because otherwise we would ha

〈β∨
x , βj 〉 = 2 that is to sayβx = βj . But for k ∈ [x + 1, j − 1] we have〈β∨

x , βk〉 = 0 so in
this case we have

φ̄ = si(β1) · · · si(βx−1)si(βx)si(βx+1) · · · si(βj−1)si(βj )si(βj+1) · · · si(βn)

= si(β1) · · · si(βx−1)si(βx)si(βj )si(βx+1) · · · si(βj−1)si(βj+1) · · · si(βn)

= si(β ) · · · si(β )si(β ) · · · si(β )si(β ) · · · si(βn)
1 x−1 x+1 j−1 j+1
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that is to say the expression̄φ = si(β1) · · · si(βn) was not reduced, a contradiction. Thus
have〈β∨

x , βj 〉 = −1. For such aj we have〈β∨
x , βk〉 = 0 for k ∈ [x + 1, j − 1] and thus〈

α∨
x ,αj

〉 = −〈
β∨

x , βj

〉 = 1.

We have to prove that there existsj > x such that〈β∨
x , βj 〉 �= 0. If not we would have:

φ̄ = si(β1) · · · si(βx−1)si(βx)si(βx+1) · · · si(βn) = si(β1) · · · si(βx−1)si(βx+1) · · · si(βn)si(βx)

and we would haveβx = βn (Remark 2.15) thus〈β∨
x , βn〉 = 2 �= 0, a contradiction. �

In the casex < n let j be as in the lemma and consider the line bundlesTx andTj . We
have the formula (Corollary 3.8):

Ti =
i∑

k=1

〈
α∨

k , αi

〉 · ξk.

But 〈α∨
k , αi〉 � 0 for all i andk (Proposition 2.11) andα · ξk � 0 for all k by assumption

therefore

α · Tx �
〈
α∨

x ,αx

〉
α · ξx = 2α · ξx > 0 and α · Tj �

〈
α∨

x ,αj

〉
α · ξx = α · ξx > 0.

We construct the required̃f ′ by induction on the fibrations. Let us denote byg :P1 →
X̃(φ̄) the morphism whose image isC (cf. Proposition 4.6) and defineP = f̃ (x0) andPk

the image ofP in Xk/Bk . Let us denote byf̃k (respectivelygk) the morphism fromP
1 to

Xk/Bk induced byf̃ (respectively byg). We constructf̃ ′ by induction on theP1-fibration
beginning withf̃x−1.

Lemma 5.6. Let ϕ :X → Y a P
1-bundle andα ∈ A1(X) such thatα · T > 0 (T is the rel-

ative tangent sheaf). Letf ∈ Homα(P1,X) andg :P1 → X such that there existsx0 ∈ P
1

with f (x0) = g(x0) and such that the images ofϕ ◦ f andϕ ◦ g are distinct.
Then there exists a deformationf ′ of f meetingg exactly inf (x0) and transversally.

Proof. Because the images are distinct the curvesϕ ◦ f (P1) and ϕ ◦ g(P1) meet each
other in a finite number of points, sayx0 andx1, . . . , xk . Let E a rank 2 vector bundl
defining the fibration, we can chooseE such that(ϕ ◦ f )∗E = OP1 ⊕OP1(a) with a � 0.
The morphismf is given by a surjections : (ϕ ◦ f )∗E → OP1(y) with α · T = 2y − a > 0
(this impliesy > 0). A general surjections′ : (ϕ ◦ f )∗E → OP1(y) will give a deformation
of f . Becausey > 0, we can take such a surjection such thats′(xi) �= s(xi) for i ∈ [1, k],
s′(x0) = s(x0) but are not equal at order 2 inx0. This gives us a morphismf ′ whose image
meets the image ofg only in f (x0) and transversally. �

If f̃x−1(P
1) �= gx−1(P

1) then thanks to the lemma we can constructf̃ ′
x a deformation of

f̃x meetinggx only in Px . Taking by induction any section of̃f ′
x passing through the poin

Pk for k > x (this is possible becauseα · Tk � 0 for all k) we get the required deformatio
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On the contrary iff̃x−1(P
1) = gx−1(P

1) we use the following

Lemma 5.7. Let ϕ :X → Y a P
1-bundle andα ∈ A1(X) such thatα · T > 0 (T is the

relative tangent sheaf). Letf ∈ Homα(P1,X) andx0 ∈ P
1.

There exists a deformationf ′ of f such thatf ′ andf have distinct images still meetin
in f (x0).

Proof. Let E a rank 2 vector bundle defining the fibration, we can chooseE such
that (ϕ ◦ f )∗E = OP1 ⊕ OP1(a) with a � 0. The morphismf is given by a surjection
s : (ϕ ◦ f )∗E →OP1(y) with α · T = 2y − a > 0 (this impliesy > 0). A general surjection
s′ : (ϕ ◦ f )∗E → OP1(y) will give a deformation off . Becausey > 0, we can take such
surjection such thats′ �= s ands′(x0) = s(x0). This gives us the deformationf ′. �

If f̃x = gx then, thanks to the lemma we can constructf̃ ′
x a deformation off̃x meeting

gx in Px and a finite number of points. If̃fx �= gx we can takef̃ ′
x = f̃x . Taking by induction

any section off̃ ′
x passing through the pointsPk for x < k < j (this is possible becaus

α · Tk � 0 for all k) we get a deformationf̃ ′
j−1 of f̃j−1 meetinggj−1 in Pj−1 and a

finite number of points. Because we haveα · Tj > 0 we can use Lemma 5.6 to contru
a deformationf̃ ′

j of f̃j meetinggj exactly inPj and transversally. Taking by induction a
section off̃ ′

j passing through the pointsPk for k > j (this is possible becauseα · Tk � 0
for all k) we get the required deformation.

The only case left is the casex = n. In this case, becausen � 3, we can con-
sider βn−1 and βn−2. Let us prove that〈α∨

n−2, αn〉 = 〈α∨
n−1, αn〉 = 1. For 〈α∨

n−1, αn〉 =
−〈β∨

n−1, βn〉 = 1 it is just Corollary 2.16. For〈α∨
n−2, αn〉 we can apply Corollary 2.16 an

it will be true except ifβn−2 = βn = β. But in this case we have

0�
〈
α∨

n−2, αn

〉 = 〈
β∨, sβsβn−1(βn)

〉〈
β∨, sβ(βn−1 + βn)

〉 = 〈
β∨, βn−1

〉 = −1.

This is impossible and we must have〈α∨
n−2, αn〉 = 〈α∨

n−1, αn〉 = 1. This in particular im-
plies that there are at least twoi < x = n such that〈α∨

i , αx〉 = 1, namelyi = n − 1 and
i = n − 2.

Let us now consider the morphism̃fn−1 :P1 → Xn−1/Bn−1 induced byf̃ and two
morphismsg :P1 → X̃(φ̄) andh :P1 → X̃(φ̄) such thatg∗[P1] = [Γn,n−1] andh∗[P1] =
[Γn,n−2]. Because the classes[Γn,n−1] and [Γn,n−2] are distinct, the morphismf̃n−1
has to be distinct from one of the morphismsgn−1 :P1 → Xn−1/Bn−1 andhn−1 :P1 →
Xn−1/Bn−1 deduced fromg andh. Let us say thatf̃n−1 �= gn−1 then applying Lemma 5.
we get a deformatioñf ′ of f̃ meetingg only in f̃ (x0) and transversally. �
Proposition 5.8. Let C and f̃ ′ as in the preceding proposition, the curvẽf ′(P1) ∪ C can
be smoothed that is to say deformed to a smooth curve. The smoothing is the ima
morphismf̂ :P1 → X̃(φ̄) and we have[

f̂
(
P

1)] · ξx = [
f̃ ′(

P
1)] · ξx − 1 = [

f̃
(
P

1)] · ξx − 1.
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Proof. We will use the following proposition proved in [9, Corollary 1.2] forP
3 but valid

for any smooth varietyX:

Proposition 5.9. Let D be a nodal curve in a smooth varietyX and assume tha
H 1(TX|D) = 0 then there exists a smooth deformation ofD.

In order to prove Proposition 5.8 it suffices to prove thatH 1(TX|D) = 0 whereX =
X̃(φ̄) andD = f̃ ′(P1) ∪ C (which is a nodal curve). LetP be the intersection point, w
have the exact sequence

0→ O
f̃ ′(P1)

(−P) → OD →OC → 0

and it is enough to prove thatH 1(TX|C) = 0 andH 1(TX|
f̃ ′(P1)

(−P)) = 0.

One more time we do it by induction on the fibrations. Denote byf̃ ′
k :P1 → Xk/Bk the

morphism induced bỹf ′ andCk the image ofC in Xk/Bk . We assume that

H 1(TXj−1/Bj−1|Cj−1) = 0 and H 1(TXj−1/Bj−1|f̃ ′
j−1(P

1)
(−P)

) = 0.

We are going to prove thatH 1(TXj /Bj
|Cj

) = 0 andH 1(TXj /Bj
|
f̃ ′

j (P1)
(−P)) = 0.

We have an exact sequence

0→ Tj → TXj /Bj
→ TXj−1/Bj−1 → 0

so it suffices to prove thatH 1(Tj |Cj
) = 0 andH 1(Tj |f̃ ′

j (P1)
(−P)) = 0. But we have seen i

the proof of Proposition 4.6 that[Γx,i] ·Tj � −1 thus the restriction ofTj onCj isOP1(u)

with u � −1 and we have the first vanishing. In the same way, we haveα · Tj � 0 thus the
restriction ofTj on f̃ ′

j (P
1) is OP1(v) with v � 0 and we have the second vanishing.�

6. Curves on minuscule Schubert varieties

In this section, we prove our main theorem on the irreducible components of the s
of morphisms fromP

1 to X(φ̄) a minuscule Schubert variety.

6.1. Moving out Schubert subvarieties

We begin to prove that a general curve inX(φ̄) is not contained in a Schubert subvarie

Proposition 6.1. Consider a morphismf :P1 → X(φ̄) such thatf factors through a Schu
bert varietyX(φ̄′) ⊂ X(φ̄) (with φ̄′ < φ̄) then there exists a deformationf ′ :P1 → X(φ̄)

of f such thatf ′ does not factor throughX(φ̄′).
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Proof. Restricting ourselves to a smaller Schubert variety, we may assume that the
bert varietyX(φ̄′) is a Schubert divisorX(s̄βφ) of X(φ̄). But (Theorem 2.8) this diviso
has to be a moving divisor soβ is simple and (Proposition 2.7) there exists a redu
expression

φ̄ = sγ1 · · · sγn

of φ̄ whereγ1 = β and φ̄′ = sβφ̄. Consider the Bott–Samelson resolutioñX(φ̄′). If we
denote with a prime the corresponding elements in the Bott–Samelson construct
have

Bi+1 = si(β)(B
′
i ), Pi+1 = si(β)(P

′
i )

thus

X̃(φ̄′) = X′
n−1/B

′
n−1 = si(β)

(
f −1

n · · ·f −1
2 σ1(X0/B0)

)
.

This shows that we can identifỹX(φ̄′) with the subschemef −1
n · · ·f −1

2 σ1(X0/B0) of
X̃(φ̄) which is a fiber of the projection of̃X(φ̄) on X1/B1. We have the commutativ
diagram:

X̃(φ̄′) X̃(φ̄)

X(φ̄′) X(φ̄).

The unipotent groupU−i(β) acts equivariantly on the second vertical map and mo
the first one. We may assume by induction thatf does not factor through any Schub
subvariety ofX(φ̄′) so we can find a sectiong :P1 → X̃(φ̄′) ⊂ X̃(φ̄) of f . We can de-
form g in X(φ̄) thanks to the action ofU−i(β) and we obtain a morphismg :P1 → X̃(φ̄)

not contained iñX(φ̄′). Projecting onX(φ̄) gives a deformationf ′ of f not contained
in X(φ̄′). �
Corollary 6.2. For any morphismf :P1 → X(φ̄) there exists a deformationf ′ of f such
thatf ′ does not factor through anyX(ψ̄) ⊂ X(φ̄) (with ψ̄ < φ̄).

Proof. Remark that iff does not factor through a subvariety ofX(φ̄) then it is also the cas
of any deformation. As there is a finite number of Schubert varieties contained inX(φ̄),
we apply the preceding proposition for each subvariety containing the image off . �

Let π : X̃(φ̄) → X(φ̄) a Bott–Samelson resolution. The preceding result implies
for any morphismf :P1 → X(φ̄) there exist a deformationf ′ :P1 → X(φ̄) of f (the
deformation of the previous corollary) such thatf ′(P1) meets the regular locus ofπ . We
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can thus consider a sectioñf of f ′:

P
1

f ′

f̃

X̃(φ̄)

π

X(φ̄).

Remark 6.3. The imagef̃ (P1) is not contained in any divisorDi on X̃(φ̄). In fact, if it
was the case it would means thatf ′(P1) is contained inπ(Di) which is a strict Schuber
subvariety ofX(φ̄). This is impossible.

Corollary 6.4. The morphismf̃ constructed fromf thanks to Corollary6.2 is such that[
f̃

(
P

1)] · ξi � 0 for all i ∈ [1, n].

Proposition 6.5. For any morphismf :P1 → X(φ̄) there exist a deformationf ′ of f such
thatf ′ does not meet the imageπ(Dx) of any contracted divisorDx .

Proof. We can replacef by the deformationf ′ of Corollary 6.2. We can thus assume th
f (P1) is not contained in anyπ(Di) for i ∈ [1, n]. We then have a sectioñf :P1 → X̃(φ̄)

of f . Let us denoteα = f̃∗[(P1)], we haveα · ξi � 0 for all i. Define the subsetA ⊂ [1, n]
of all integersk such thatDk is a contracted divisor and set

l(α) =
∑
k∈A

α · ξk.

We prove the result by induction onl(α). If l(α) = 0 thenf̃ does not meet any contract
divisor sof does not meet the imageπ(Dx) of any contracted divisorDx . Let x be the
smallest element inA such that there exists a morphismg :P1 → X(φ̄) not contained in any
Schubert subvariety with a sectiong̃ :P1 → X̃(φ̄) such thatβ = g̃∗[(P1)] with l(β) = l(α),
β · ξx > 0 and for which we have not constructed the required deformation yet. Than
Propositions 5.4 and 5.8, for such ag andg̃ a section inX̃(φ̄) there exists a deformatio
g̃′ of g̃, an integeri < x with 〈α∨

i , αx〉 = 1 and a curveC ∈ [Γx,i] such thatg̃′(P1) ∪ C

can be smoothed in̂g(P1). The morphismπ ◦ ĝ deforms tog and we haveβ̂ = ĝ∗[P1] =
β + [Γx,i]. We thus have

β̂ · ξk


β · ξk + 1, for k = i,

β · ξk − 1, for k = x,

β · ξk, otherwise.

If i ∈ A then because of our minimality assumption onx we know that there exists
required deformation forπ ◦ ĝ and we can conclude becauseg is a deformation of this
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deformation. If on the contraryi /∈ A then we have

l(β̂) =
∑
k∈A

β̂ · ξk = l(β) − 1 = l(α) − 1

and by induction there exists a required deformation forπ ◦ ĝ and we can conclude a
above. �
Corollary 6.6. There exists a dense open subset ofHom(P1,X(φ̄)) whose elements do n
meet the imageπ(Dx) of any contracted divisorDx and are not contained in anyπ(Dk)

for k ∈ [1, n].

Theorem 6.7. Let α ∈ A1(X(φ̄)), the irreducible components ofHomα(P1,X(φ̄)) are
indexed byne(α).

Proof. We have a surjective morphismπ∗ :A1(X̃(φ̄)) → A1(X(φ̄)) and a natural mor
phism ∐

π∗(α̃)=α

Homα̃

(
P

1, X̃(φ̄)
) → Homα

(
P

1,X(φ̄)
)
.

Let us prove that the irreducible components ofHomα(P1,X(φ̄)) are indexed by the se
C(α) of classesα̃ ∈ A1(X̃(φ̄)) such thatπ∗(α̃) = α, α̃ · ξk � 0 for all k ∈ [1, n] and α̃ ·
ξx = 0 for all x such thatDx is a contracted divisor.

Because of Corollary 6.6 we know that a general morphismf ∈ Homα(P1,X(φ̄)) can
be lifted into f̃ ∈ Homα̃(P1, X̃(φ̄)) such thatα̃ ∈ C(α). We thus have a dominant mo
phism ∐

α̃∈C(α)

Homα̃

(
P

1, X̃(φ̄)
) → Homα

(
P

1,X(φ̄)
)
.

Let α̃ ∈ C(α) and f̃ a general element inHomα̃(P1, X̃(φ̄)) (this scheme is irreducibl
thanks to Proposition 5.1). We know (Corollary 6.6 and Proposition 5.1) that its
age is contained is the regular locus ofπ . If the morphismπ ◦ f̃ was in the image o
Homα̃′(P1, X̃(φ̄)) then we would have a morphism̃f ′ of classα̃′ such thatπ ◦ f̃ ′ = π ◦ f̃ .
But because these curves are contained in the regular locus ofπ this implies thatf̃ = f̃ ′
andα̃′ = α̃. The images of theHomα̃(P1, X̃(φ̄)) for α̃ ∈ C(α) are the irreducible compo
nents ofHomα(P1,X(φ̄)).

To conclude the proof we have to show thatC(α) = ne(α). We begin with the following

Lemma 6.8. The kernelK of the mapπ∗ :An−1(X̃(φ̄)) → An−1(X(φ̄)) is generated by
the classesξx of the contracted divisorsDx .

Proof. M. Demazure proved in [4] that the morphismπ is an isomorphism on the big ce
of the Schubert varietyX(φ̄). This in particular implies that the locus̃D in X̃(φ̄) whereπ
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i Di. Moreover, if the divisorDi is not contracted
the open partDi − ⋃

j �=i (Di ∩ Dj) is not contained iñD so that the codimension one pa

(in X̃(φ̄)) of D̃ is the union of the contracted divisorsDx .
Let us denote bỹU the open part iñX(φ̄) whereπ is an isomorphism andU its image

in X(φ̄). On the one hand, the kernel of the surjective mapAn−1(X̃(φ̄)) → An−1(Ũ) is
generated by the contracted divisorsDx . On the other hand, we haveAn−1(Ũ) = An−1(U)

and because the complement ofU in X(φ̄) is in codimension at least 2 (it is the ima
of D̃ with fibers of dimension at least 1 because Schubert varieties are normal), w
An−1(U) = An−1(X(φ̄)). �

As X̃(φ̄)) is smooth and projective we can identifyAn−1(X̃(φ̄))∨ with A1(X̃(φ̄))

and π∗ gives us a morphismAn−1(X̃(φ̄))∨ → A1(X(φ̄)). The lemma leads to the fo
lowing diagram whose first line is exact:

0 An−1
(
X(φ̄)

)∨

s

An−1
(
X̃(φ̄)

)∨

π

K∨ 0

A1
(
X(φ̄)

)
.

Now we can translate the definition ofC(α) in terms ofAn−1(X(φ̄))∨. Indeed, because o
the vanishing condition on contracted divisor, all the elements ofC(α) are inAn−1(X(φ̄))∨
and go onα by s. What is left to prove is the following

Lemma 6.9. An element̃α ∈ An−1(X(φ̄))∨ seen as an element inA1(X̃(φ̄)) is effective if
and only ifα̃ · ξi � 0 for all i ∈ [1, n].

Proof. We have seen Proposition 5.1 that if all the intersectionα̃ · ξi are non-negative the
the class is effective.

Let α̃ ∈ An−1(X(φ̄))∨ an effective class. Becauseα̃ is in An−1(X(φ̄))∨ we know that
its intersection with all contractedDx are 0. LetDi a not contracted divisor, then its ima
in X(φ̄) is a moving divisor (Theorem 2.8). LetC a curve of class̃α, if C is not contained
in Di thenC · ξi � 0. If C is contained inDi then as in the proof of Proposition 6.1 we c
deform this curve in the class̃α so that it is not contained inDi and we haveC · ξi � 0. �

This proves thatC(α) = ne(α) and the theorem follows. Indeed,ne(α) is given (cf. Sec-
tion 1) by the elementsβ ∈ Pic(U)∨ in the dual of the cone of effective divisors (U is the
dense orbit under Stab(X(φ̄))). But Pic(U) = An−1(U) = An−1(X(φ̄)) and the effective
cone is generated by theπ∗ξi with Di not contracted. �
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