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Nitric oxide (NO) plays relevant roles in signal transduction in physiopathology and its effects are de-
pendent on several environmental factors. NO has both pro-apoptotic and anti-apoptotic functions but
the molecular mechanisms responsible for these opposite effects are not fully understood. The action of
NO occurs mainly through redox changes in target proteins, particularly by S-nitrosylation of reactive
cysteine residues. Thioredoxin (Trx) and glutaredoxin (Grx) systems are the main cellular controllers of
the thiolic redox state of proteins exerting controversial effects on apoptosis with consequences for the
resistance to or the development of cancer.

The aim of this study was to ascertain whether Trx and/or Grx systems mediate the antiproliferative
effect of NO on hepatoblastoma cells by modulating the redox-state of key proteins.

Proliferation decreased and apoptosis increased in HepG2 cells overexpressing Nitric Oxide Synthase-
3 (NOS-3) as a result of multilevel cellular responses to the oxidative environment generated by NO.
Enzyme levels and cysteine redox state at several metabolic checkpoints were consistent with promi-
nence of the pentose phosphate pathway to direct the metabolic flux toward NADPH for antioxidant
defense and lowering of nucleotide biosynthesis and hence proliferation. Proteins involved in cell sur-
vival pathways, proteins of the redoxin systems and phosphorylation of MAPK were all significantly
increased accompanied by a shift of the thiolic redox state of Akt1, Trx1 and Grx1 to more oxidized.

Silencing of Trx1 and Grx1 neutralized the increases in CD95, Akt1 and pAkt levels induced by NO and
produced a marked increase in caspase-3 and -8 activities in both control and NOS-3 overexpressing cells
concomitant with a decrease in the number of cells.

These results demonstrate that the antiproliferative effect of NO is actually hampered by Trx1 and
Grx1 and support the strategy of weakening the thiolic antioxidant defenses when designing new an-
titumoral therapies.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nitric oxide (NO) is a very small, lipophilic, readily diffusible,
chemically unstable molecule with a very short half-life (seconds)
that plays a relevant role in signal transduction in physiopathology
such as vasodilation, respiration, cell migration, immune response
and apoptosis [1]. NO is known to be synthesized in a large
number of different tissues by the NO synthases (NOS) using L-
arginine as substrate. Three different isoforms of NOS have been
identified, products of different genes, with different localization,
regulation, catalytic properties and inhibitor sensitivity [2]. Their
expression and activity are cellular and tissue specific with dif-
ferential regulation at transcriptional, translational and post-
translational levels [3,4]. These isoforms in mammals are: neuro-
nal NOS (nNOS or NOS-1), inducible NOS (iNOS or NOS-2) and
endothelial NOS (eNOS or NOS-3) [5–8]. The NOS-1 and NOS-3
isoforms are constitutively expressed and can be activated as a
result of calmodulin (CaM) binding following a rise in intracellular
calcium, and also by phosphorylation/dephosphorylation mod-
ifications. The expression of NOS-2 isoform is induced by in-
flammatory stimuli and is maximally activated by Ca2þ/CaM even
at basal levels of intracellular Ca2þ [1,2,9]. The intracellular loca-
lization is relevant for the activity of NOS and accumulating evi-
dence indicates that NOSs are subject to specific targeting to
subcellular compartments (plasma membrane, Golgi, cytosol, nu-
cleus and mitochondria) and that this trafficking is crucial for NO
production and specific posttranslational modifications of target
proteins [10–12].

NO can have opposite biological effects, depending on their
local concentration, the target cell type involved and the levels of
reactive oxygen species (ROS). The role of NO as a bioregulator of
apoptosis is well established, having both antiapoptotic and
proapoptotic functions [13]. The molecular mechanisms re-
sponsible for its opposite effect are not fully understood but there
is strong evidence indicating the involvement of redox changes in
key proteins [14].

The cellular redox state plays a critical role in regulating many
signaling pathways including activation, differentiation, prolifera-
tion, and apoptosis [15–17]. ROS and reactive nitrogen species
(RNS), cause irreversible damage when their amounts exceed the
cellular antioxidant defense capacity, and are harmful to biomo-
lecules, including genomic and mitochondrial DNA, membrane
lipids and proteins. But they can also lead to reversible oxidations
that play regulatory roles of protein function. Within proteins, the
thiol group (–SH) of cysteine (Cys) can be oxidized in several ways:
two thiols can form a disulfide bond as in some proteins (PSSP), or
mixed disulfide in glutathionylated proteins (PSSG). Additionally,
cysteine can be reversibly oxidized by ROS or RNS to sulfenic acid
(–SOH) and nitrosothiol (–SNO). The nitrosylation of reactive cy-
steine residues in proteins takes part in NO signaling processes
and can affect a multitude of intracellular events, beneficial or
harmful, depending upon biological context [18–22].

The redox states of Cys residues are controlled by two major
cellular systems, the Trx/thioredoxin reductase system and the
glutathione (GSH)/Grx system [15,23,24]. The Trx system consists
of redox active Trx, thioredoxin reductase (TrxR) and NADPH,
which are critical for maintaining DNA synthesis and the cellular
redox balance. Human Trx1 and TrxR1 are located in cell cytosol/
nucleus. The Grx system consists of Grx, GSH and NADPH-de-
pendent glutathione reductase. Human Grx1 is located in the cy-
tosol [25] and is involved in redox-regulation through the reduc-
tion of protein disulfides and mixed disulfides, e.g. deglutathio-
nylation of proteins [24,26].

A relationship exists between redoxins levels and apoptosis
with consequences for the resistance or the development of can-
cer. As an antioxidant system Trx/TrxR catalyzes the
denitrosylation of SNO-caspase-3 [27] and some experimental
data suggested that it also participates in the denitrosylation of
SNO-caspase-9 and the reductive reactivation of caspase-8 [28].
But as a pro-oxidant Trx has been described trans-nitrosylating
and inactivating caspase-3 thus showing an anti-apoptotic action
[29].

It has been shown that Trx1 and TrxR1 are often overexpressed
in tumor cells and that high Trx could be linked to drug resistance
during cancer treatment [30]. Other studies suggest that high Trx
and TrxR may induce apoptosis and reduce the mitotic index of
certain tumors linked to p53 dependent cell death [31]. Reduced
Trx is a negative regulator of ASK1 (apoptotic-inducing kinase),
which relates the Trx system to evasion of apoptosis [32]. Another
apoptosis-regulatory enzyme whose nitrosylation status is re-
versibly regulated by Trx1 is glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) [33]. Because reduced Trx1 plays a critical role
in cellular proliferation and viability, excessive oxidation of Trx
will lead to cell death [30,34].

On the other hand, Grx1 plays an important role in protecting
cells from apoptosis by regulating the redox state of Akt1, also
called protein kinase B (PKB), that has consequences for cell sur-
vival and also affect the multiple roles played by Akt1, as in the
Akt-mTOR signaling cascade [35]. Mitochondrial Grx2 also exerts a
protective effect on mitochondrial mediated apoptosis, preventing
cardiolipin oxidation and cytochrome c release [36].

The intracellular mechanism regulating cell death and cell
proliferation are intimately connected and different studies have
shown that NO production has an important role in the regulation
of the carcinogenic process. For instance, S-nitrosylation of some
proteins, such as GAPDH and CD95, stimulates apoptosis whereas
S-nitrosylation of other proteins, such as caspases and Bcl-2, in-
hibits apoptosis [33]. NO exerts an antineoplastic effect in tumoral
cells by increasing cell death [37] and a specific pattern of S-ni-
trosylation has been observed during induction of apoptosis in
hepatocytes [38].

The role of antioxidants in cancer has been controversial for
decades. On one hand, ROS could mediate the activation of mul-
tiple signaling cascades that promote cell proliferation and on the
other hand, the consequent increase in oxidative stress could
cause senescence or apoptosis and became a tumor suppressor.
Recent evidence indicates that antioxidants such as GSH and Trx
can actually contribute to tumorigenesis by preventing ROS accu-
mulation in cancer cells. The cellular response will depend on the
levels of ROS and antioxidant status in the cell [31,39,40].

The main objective of this study was to ascertain whether Trx
and/or Grx systems mediate the antiproliferative effect of NO on
hepatoblastoma cells by modulating the redox-state of key pro-
teins. We demonstrate that Trx1 and Grx1 behave differentially
depending on the intracellular oxidative/nitrosative stress in
HepG2 cells. They are required for proliferation but they also
contribute to the antiproliferative effect of NO, associated with
Akt1 redox changes.
2. Material and methods

2.1. Materials

All reagents were of analytical grade and were purchased from
Sigma, unless otherwise specified.

HepG2 cell line used in this work was obtained from ATCC LGC
Standards Company (Teddington, UK). Cell culture dish and flasks
were from TPP (Switzerland). Anti-Trx1 and anti-Grx1 were ob-
tained from rabbit in our laboratory. Antibodies against STAT3,
MAPK, Thr202/Tyr204p-MAPK (p-MAPK) and Ser473p-Akt (p-Akt)
were from Cell Signaling Technology. Antibodies against ACO1 and
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UROD were from Aviva Systems Biology (San Diego, CA, USA).
Antibodies against ACO2, TKT, TXNIP, Akt1, MATII, Bcl2, PKM2,
caspase-3, CD95, NOS-3 and β-actin were from Santa Cruz Bio-
technology, Inc. (Dallas, TX, USA). Anti-TrxR1 was from Abcam, Inc.
Secondary antibodies were from Sigma. ECL was from GE
Healthcare (Wauwatosa, Wisconsin, USA). Caspase substrates Ac-
DEVD-AFC, Ac-LETD-AFC and Ac-LEHD-AFC were from Alexis
Biochemicals (Enzo Life Sciences, Farmingdale, NY, USA). DNAse I
was from Ambion Life Technologies, Inc. (Foster City, California).
siRNA for Grx1 and Trx1, and DharmaFECT 1 were from GE
Healthcare Dharmacon, Inc. (Wauwatosa, Wisconsin, USA).

2.2. Cell growth conditions

HepG2 cells were transfected with the pcDNA/4TO (5100 bp;
Invitrogen, Molecular Probes, Inc.) expression vector containing
NOS-3 cDNA sequence (3462 bp; NCBI, ImaGenes, full length cDNA
clone sequence BC063294) under the control of the cytomegalo-
virus promoter (4TO-NOS). Cell lineages 4TO and 4TO-NOS were
selected with zeocin (15 mg/L; Invitrogen) as described by Gon-
zález et al. [37]. Cells were maintained in EMEM Medium (Mini-
mum Essential Medium Eagle), pH 7.4, supplemented with 10%
fetal bovine serum, 2.2 g/L HCO3Na, 1 mM sodium pyruvate, 100 U/
L penicillin, 100 μg/mL streptomycin, 0.25 μg/mL amphotericin,
and the corresponding selective zeocin antibiotic in 5% CO2 at-
mosphere at 37 °C. The experiments were routinely carried out at
100,000 cells/cm2. Cell extracts were obtained using lysis solution
containing 50 mM HEPES (pH 7.5), 2 mM EDTA, 100 mM NaCl, 0.6%
Nonidet NP-40, 1 mM phenylmethylsulfonyl fluoride (PMSF),
5 μg/mL aprotinin, 10 μg/mL leupeptin. Afterward, samples were
homogenized and centrifuged at 15,000 g for 5 min at 4 °C and the
supernatant was stored at �80 °C until use.

2.3. Assay of enzymatic activities

Grx activity was determined spectrophotometrically by mea-
suring the reduction of 0.5 mM 2-hydroxyethyl disulfide (HED) by
0.5 mM GSH in the presence of NADPH and 0.5 units of yeast
glutathione reductase, at 25 °C. The disappearance of NADPH was
monitored at 340 nm [41]. Trx activity was determined spectro-
photometrically by measuring its ability to reduce insulin dis-
ulfides in the presence of NADPH and rat thioredoxin reductase
[42]. An assay mixture was prepared by mixing 200 μL 1 M HEPES
pH 7.6, 40 μL 0.2 M EDTA, 40 μL 40 mM NADPH and 500 μL insulin
(10 mg/mL). 40 μL of this mixture was added to test tubes con-
taining 20 μL mammalian TrxR (1 μg) and the sample of protein
and the assay volume was completed up to 120 μL with water. The
tubes were incubated at 37 °C for 20 min and the reaction was
stopped by the addition of 500 μL of a solution containing
0.4 mg/mL DTNB in 6 M guanidine–HCl, 50 mM Tris–HCl, pH 7.5.
The absorbance at 412 nm was determined.

2.4. SDS-PAGE and Western blotting

The protein expression of Trx1, TrxR1, TXNIP, Grx1, Bcl-2,
STAT3, Akt1, p-Akt, MAPK, p-MAPK, MATII, UROD, ACO, PKM2, TKL,
caspase-3, CD95, NOS-3 and TKT were determined by SDS-PAGE
coupled to Western blotting analysis. SDS-PAGE was performed
with homogeneous 6% (NOS-3) 8% (STAT3, MAPK, ACO1, and TKT),
10% (Trx1, TXNIP, Akt, MATII, UROD, and ACO2), 12% (CD95) and
14% (Trx1, Grx1, Bcl-2, PKM2, and caspase-3) acrylamide gels. After
electrophoresis, proteins were transferred to nitrocellulose mem-
brane with a semi-dry electrophoretic transfer system (Bio-Rad).
The membranes were incubated overnight at 4 °C with the cor-
responding primary antibodies against Thr202/Tyr204p-MAPK,
1:2000 dilution; or against ACO1 and UROD, 1:500 dilution; or
against Trx1, Grx1, STAT3, MAPK, ACO2, TKT, TXNIP, TrxR1, Akt1,
Ser473p-Akt, MATII, Bcl-2, PKM2, caspase-3, CD95 and NOS-3,
1:1000 dilution. Then washed and incubated with the corre-
sponding secondary antibodies conjugated to peroxidase (anti-
rabbit, anti-goat or anti-mouse) used at 1:8000 dilution and the
chemiluminescent signal was induced by ECL reagent. β-actin
detected with the corresponding antibody at 1:5000 dilution, was
used as cell protein-loading control.

2.5. Measurement of cell death

Caspase-8, caspase-9 and caspase-3-associated activities were
determined using the corresponding peptide-based substrates
(100 μM) in the reaction mixture (50 mM HEPES, pH 7.5, 100 mM
NaCl, 10% sucrose, 0.1% Chaps, 1 mM EDTA and 5 mM DTT). The
substrates used were Ac-DEVD-AFC, Ac-LETD-AFC and Ac-LEHD-
AFC for caspase-3, -8, and -9, respectively. The fluorescence due to
the reaction product was recorded with a GENIos Microplate
Reader (TECAN) set at 400 nm excitation and 505 nm emission
[37].

The level of protein caspase-3-active fragment (p17) and cell
death receptor, CD95, were also determined by SDS-PAGE coupled
to Western blotting analysis as described in the previous section.

Apoptosis in HepG2 cells was also analyzed through DNA
fragmentation detected by terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP nick end labeling (TUNEL) (Biotool). HepG2
cells 72 h after siRNA interference were fixed in 4% paraf-
ormaldehyde solution in PBS (pH 7.4) and later these cells were
permeabilized with 0.2% Triton X-100 solution in PBS. Processing
the cells was performed according to the recommendations of the
manufacturer (Biotool) using DAPI (Molecular Probes) to stain the
cell nuclei. Fluorescence provided by the cells was analyzed with
fluorescence microscope (Olympus BX43) using standard fluor-
escein filter set to view the Apo-green fluorescence at 520þ20 nm
and view blue DAPI at 460 nm.

2.6. Cell viability and total number of cells

Total number of cells and cell viability in a HepG2 cell sus-
pension were determined using the trypan blue dye exclusion
method. The cells attached to the plate were washed with PBS and
trypsinized for 7 min at 37 °C followed by incubation with com-
plemented culture medium to halt the effect of trypsin. The cell
suspension was centrifuged at 238g for 5 min at room temperature
and the pellet was resuspended in 0.5 mL complemented culture
medium. Cell viability and total number of cells were measured by
mixing equal volumes of cell suspension and trypan blue. A viable
cell will have a clear cytoplasmwhereas a non-viable cell will have
a blue cytoplasm. Cell viability was obtained by referring the
number of living cells to the total number of cells in the initial cell
suspension.

2.7. Cell proliferation

This parameter was analyzed using a cell proliferation colori-
metric ELISA (Roche Applied Science) based on the measurement
of BrdU incorporation during DNA synthesis in proliferating cells.
Cells were cultured (20,000 cells/cm2) in flat-bottomed 96-well
multiplates at 37 °C and 5% CO2. 72 h after siRNA Trx1 and Grx1
downregulation HepG2 cells were incubated with 10 μM BrdU
labeling solution for 6 h at 37 °C. Later on were followed the steps
according to the recommendations of the manufacturer (Roche)
and detected the absorbance of the samples at 370 nm (reference
wavelength 492 nm).
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2.8. Determination of nitrotyrosine

The levels of nitrotyrosine were determined by Western blot-
ting after 12% non-reducing SDS-PAGE as described before. The
primary antibody was anti-3-nitrotyrosine (1:1000) from Sigma.

2.9. Silencing of Grx1 and Trx1

Human Grx1 and Trx1 were knocked-down in wild type, 4TO
and 4TO-NOS cells using specific siRNA in 6-well plate
(20,000 cells/cm2) according to the manufacturer's recommenda-
tions (Dharmacon, GE Healthcare Life Sciences). Grx and Trx siRNA
(25 nmol) were mixed with the transfection reagent DharmaFECT
1, previously pre-incubated with culture medium (antibiotic/an-
timycotic and serum free), and incubated for 20 min at room
temperature. These interference solutions were added to cells in
2% of culture medium without antibiotic/antimycotic solution and
kept for 72 h [43].

2.10. Redox mobility shift assay

Cells were treated with lysis buffer consisting of 50 mM HEPES
pH 7.5, 2 mM EDTA, 100 mM NaCl, 1% Nonidet NP-40, 8 M urea,
1 mM PMSF and containing 5 mM N-ethylmaleimide (NEM) to
block all free cysteine thiols. The lysates were centrifuged at
15,000 g for 5 min at 4 °C and the supernatant was desalted with
Zeba spin desalting columns (Thermo Scientific Pierce) to elim-
inate the remaining NEM reagent, and then treated with 5 mM Tris
(2-carboxyethyl)phosphine (TCEP) at room temperature for
30 min to reduce all cysteine disulfides. Recovered cysteine thiols
were reacted at room temperature for 4 h with 6.25 mM Methyl-
PEG24-Maleimide (MM(PEG)24, Thermo Scientific Pierce), which
adds a 1239.44 Da label to any free thiol present, and desalted
again on Zeba spin desalting columns. Labeled proteins in the
Fig. 1. Effect of high levels of NO on different metabolic pathways. Western blot analysis
the HepG2 wild type cells (WT) and control cells (4TO), as well as in NOS-3 overexp
metabolism, ACO1 (A), and one carbon metabolism, MATII (B), were significantly lower
ACO2 from energy metabolism and cytosolic UROD (heme biosynthesis), PKM2 (glyco
expressing cells (C–F). Data are presented as mean7SEM (n¼3 independent experime
corresponding control cell lineage. The images are representative of three different exp
samples processed this way would show an increase of 1.2 kDa in
their apparent Mw per each reversibly oxidized cysteine, com-
pared to the same protein with their cysteines originally in the free
thiol form, which had been initially blocked with the non-PEG
maleimide reagent present in the lysis buffer. Protein concentra-
tion was determined and the samples were processed for SDS-
PAGE and Western blotting as described above.

2.11. Statistical analysis

Results are expressed as mean7SEM of three independent
experiments. Data were compared using ANOVA with the least
significant difference test a post hoc multiple comparison analysis.
The threshold for statistically significant differences was set at
pr0.05. The values labeled with “a” were significantly different
versus the corresponding internal control in the same cell lineage.
The values labeled with “b” were significantly different versus the
corresponding control cell lineage.
3. Results

3.1. Characterization of NOS-3 overexpressing HepG2 cells

NOS-3 overexpression was performed as described before and
was confirmed by measurement of mRNA and protein levels by
Western blotting (supplementary Fig. S1A and B) CD95 protein
levels and caspase-3, -8 and -9 activities were also determined and
confirmed that their levels increased significantly in NOS-3 over-
expressing HepG2 cells (supplementary Fig. S1C–F). The con-
centrations of NO and ROS were E40% higher and the levels of
nitrite and nitrate in the culture medium also increased sig-
nificantly in NOS-3 overexpressing cells compared to the cells
carrying the empty plasmid, as described before [37]. These results
of the expression of different metabolism proteins and their relative quantitation in
ressing cells (4TO-NOS). The levels of two key cytosolic proteins involved in iron
in NOS-3 overexpressing cells compared to control cells. However, mitochondrial
lysis) and TKT (pentose phosphate pathway) were up-regulated in NOS-3 over-
nts). The values labeled with “a” were significantly different (pr0.05) versus the
eriments.
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indicate that NOS3 overexpressing cells are subject to oxidative
stress and that the apoptotic pathways are activated.

3.2. Effect of high levels of NO produced by overexpression of NOS-3
on different metabolic pathways

Metabolic impairment is a characteristic feature of tumor cells
due to the demand of biomass for cellular division, so we analyzed
several checkpoints of biosynthetic, energetic and iron metabolic
pathways. ACO1, a marker of cytosolic iron homeostasis and MATII
involved in one carbon metabolism were diminished in NOS-3
overexpressing cells (Fig. 1A and B). By contrast, mitochondrial
ACO2 from energy metabolism and cytosolic UROD (heme bio-
synthesis), PKM2 (glycolysis) and TKT (pentose phosphate path-
way) increased significantly under NOS-3 overexpression condi-
tions (Fig. 1C–F). These results confirm that NOS3 overexpression
induces a marked metabolic rearrangement in HepG2 cells.

3.3. Effect of high levels of NO produced by overexpression of NOS-3
on different signaling pathways

Growing evidence shows that some transcription factors and
proteins involved in signaling pathways could be modulated by
Fig. 2. Effect of NOS-3 overexpression on different signaling pathways. Western blot ana
in the HepG2 wild type cells (WT) and control cells (4TO), as well as in NOS-3 overexpres
(E) and p-Akt (F) were all significantly increased in NOS-3 overexpressing cells compare
increased markedly (G) whereas the p-Akt relative to total Akt1 did not change (H). Data
with “a” were significantly different versus the corresponding control cell lineage. The i
both oxidation/reduction and phosphorylation [44]. We choose
several well-established representative proteins involved in cell
survival pathways to study their response to the oxidative condi-
tions prevailing in NOS-3 overexpressing cells. MAPK, p-MAPK,
Bcl-2, STAT3, Akt1 and p-Akt, were all significantly increased in
NOS-3 overexpressing cells compared to the control cells (Fig. 2A–
F). The ratio of p-MAPK/MAPK increased markedly as a con-
sequence of empty vector introduction but was further increased
in NOS3 overexpressing cells (Fig. 2G). However, the ratio p-Akt/
Akt1 did not change significantly despite the increase in both
forms (Fig. 2H). These results demonstrate that the cell signaling
pathways are thoroughly affected by overexpression of NOS3.

3.4. Effect of overexpression of NOS-3 on the redoxin levels

Proteins related to the thioredoxin and glutaredoxin systems
are prominent players in thiol redox homeostasis in cells and were
studied. Protein levels and activity of Trx1, Grx1 and levels of
TrxR1 and TXNIP, increased significantly in NOS-3 overexpressing
HepG2 cells (Fig. 3A–F). The simultaneous increase of both Trx1
and its opposing protein TXNIP is a conflicting situation likely a
reflection of the cellular response to redox changes under the
prevailing nitrosative conditions where Trx1 and TXNIP may not
lysis of the expression of different signaling proteins and their relative quantitation
sing cells (4TO-NOS). The levels of MAPK (A), p-MAPK (B), Bcl-2 (C), STAT3 (D), Akt1
d to cells transfected with the empty vector. The proportion of p-MAPK/MAPK ratio
are presented as mean7SEM (n¼3 independent experiments). The values labeled
mages are representative of three different experiments.



Fig. 3. High levels of nitric oxide induced activity and expression of redox proteins. Trx activity (A) and Trx1 protein expression (B), Grx activity (C) and Grx1 protein
expression (D), TrxR (E) and TXNIP (F) protein expression increased in NOS-3 overexpressing cells compared to cells transfected with the empty vector. Data are presented as
mean7SEM (n¼3 independent experiments) and the groups labeled with “a” were significantly statistical (pr0.05) versus the corresponding control group. Representative
Western blotting images are shown.

Fig. 4. Effect of overexpression of NOS-3 on thiolic redox state of different proteins. Electrophoretic redox mobility shift to detect the oxidized and reduced forms (arrows)
are showed. The high levels of NO known to prevail in these cells caused a redox shift to more oxidized in ACO1 (A), UROD (B), Akt1 (C) and in both studied redoxins, Trx
(D) and Grx (E).

R. González et al. / Redox Biology 6 (2015) 122–134 127
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be interacting (see below).

3.5. Effect of overexpression of NOS-3 on thiolic redox state of several
proteins

Thiol redox changes may be part of regulatory mechanisms of
proteins, so we analyzed the thiolic redox state of several proteins
to check whether this type of mechanism could be potentially
operative in NOS3 overexpressing cells. We have detected a redox
shift of ACO1 and UROD towards more oxidized states (Fig. 4A and
B), which could result in iron metabolism perturbation. Signaling
pathways could also be affected by redox changes since Akt1
shifted to more oxidized state under nitrosative pressure (Fig. 4C).
Changes in the redox state of MAPK, STAT3 and Bcl-2 could not be
detected under our experimental conditions and with our redox
electrophoretic mobility shift assay. However, the thiolic redox
state of Trx1 and Grx1 shifted to more oxidized in the NOS-3
overexpressing cells (Fig. 4D and E) a likely consequence of the
nitrosative and oxidative stress [37].

3.6. Specific silencing of Trx1 and Grx1

As shown above, Trx1 and Grx1 levels increased upon NOS3
overexpression in HepG2 cells. To go deep into the role of these
Fig. 5. Down regulation of Trx1 and Grx1 in HepG2 cells by treatment with specific siR
HepG2 cells with and without NOS-3 overexpression and treated or not with siRNATrx
protein levels are shown in A and C. The protein levels and activities of both redoxin
Treatment with the specific siRNA produced a E75% decrease in protein levels and ac
efficacy of the treatments. Data are presented as mean7SEM (n¼3 independent expe
sponding internal control in the same cell lineage. The values labeled with “b” were s
representative of three different experiments.
proteins in the adaptation to high NO levels, we studied the effect
of down-regulation of both proteins. Treatment of WT, 4TO and
NOS-3 overexpressing HepG2 cells with vectors harboring siRNA
specifically directed to Trx1 and Grx1 mRNA produced a E75%
decrease in Trx1 and Grx1 protein levels in the three cell lineages
(Fig. 5A and C). These changes in protein levels were accompanied
by equivalent functional fall off, as indicated by their canonical
enzymatic activities (Fig. 5B and D).

3.7. Effect of Trx1 and Grx1 silencing on the levels of tyrosine ni-
tration in normal and NOS-3 overexpressing HepG2 cells

Tyrosine nitration is mediated by reactive nitrogen species such
as peroxynitrite (ONOO�) anion and nitrogen dioxide, formed as
secondary products of NO metabolism in the presence of oxidants
including superoxide radicals (O2

� �) and hydrogen peroxide
(H2O2) [45]. For this reason, the level of Tyr nitration is indicative
of the degree of nitrosative and oxidative stress and we measured
it to check the effect of Trx1 and Grx1. Overexpression of NOS-3 in
HepG2 cells induced protein Tyr nitration (Fig. 6, black bars). Si-
lencing of Trx1 and Grx1 also increased protein tyrosine nitration
in wild type and 4TO cells, but, interestingly, had the opposite
effect on NOS-3 overexpressing cells (Fig. 6). These results uncover
an apparent conflict, e.g., a decrease in antioxidant defenses, Trx1
NAs. Protein levels and activity of Trx1 (A, B) and Grx1 (C, D) were determined in
and siRNAGrx. Representative images of Western blot membranes used to quantify
s were significantly higher in NOS-3 overexpressing cells (4TO-NOS, black bars).
tivities of both redoxins in control and NOS-3 overexpressing cells, confirming the
riments). The values labeled with “a” were significantly different versus the corre-
ignificantly different versus the corresponding control cell lineage. The images are



Fig. 6. Detection of nitrotyrosine levels in NOS-3 overexpressing HepG2 cells with Grx and Trx down regulation. The detection of this postranslational modification was
performed by Western blot with the analysis focused on a representative 55 kDa band (arrow). The image is representative of three different experiments and densitometric
data of n¼3 independent experiments are presented in the histogram below as mean7SEM. The numbers 1, 2 and 3 indicate the cell treatments control, siRNAGrx and
siRNATrx respectively. NOS-3 overexpression induced Tyr nitration of proteins in HepG2 cells (black bars). This effect was offset by treatment with siRNAGrx and siRNATrx as
shown in the 4TO-NOS group. However, in WT and 4TO HepG2 cells siRNAGrx and siRNATrx treatment had the opposite effect, inducing Tyr nitration of proteins. Statistical
significance was assessed by (pr0.05). The values labeled with “a” were significantly different versus the corresponding internal control in the same cell lineage. The values
labeled with “b” were significantly different versus the corresponding control cell lineage.
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and Grx1, results in alleviation of oxidative stress.

3.8. Cellular proliferation and apoptosis in NOS-3 overexpressing
cells: effect of Trx1 and Grx1

Nitrosative stress in HepG2 cells as a consequence of NOS3
overexpression results in reduction of cell number and prolifera-
tion (Fig. 7A and C) in agreement with a previous report [37]. In
the current study we show that silencing Trx1 or Grx1 further
decreased the number of cells and proliferation in all cell lineages
and siRNATrx further reduced cell viability (Fig. 7A–C). siRNAGrx
or siRNATrx treatments also provoked a striking increase in cas-
pase-3 and caspase-8 activities in all cells (Fig. 7D and E), but
lowered the levels of CD95 in NOS-3 overexpressing cells (Fig. 7F).
Increase in caspases activities was actually accompanied by signs
of increased apoptosis like DNA fragmentation as determined by
TUNEL assay (Fig. 8). These results are worthy of consideration as
they point to a moonlighting role of the redoxins depending on
the prevailing cellular redox conditions as will be discussed in the
next section (Fig. 9).

3.9. Effect of Trx1 and Grx1 silencing on the levels and redox state of
Akt1 in normal and NOS-3 overexpressing HepG2 cells

Akt1 is known to be affected by thiol redox changes and is a
major agent in the control of apoptosis, so it was pertinent to
study its response to redoxins dow-regualtion. Trx1 or Grx1 spe-
cific siRNA counteracted the effect of the NOS-3 overexpression,
regarding both, total levels (Fig. 8A–C) and redox state (Fig. 8D) of
Akt. Grx1 and Trx1 down-regulation shifted Akt towards a more
reduced state but at the same time, there was a parallel marked
decrease in total Akt protein.
4. Discussion

NOS3 overexpression in HepG2 cells induces oxidative stress
and slight but significant activation of apoptosis. In these condi-
tions the cells undergo a pronounced metabolic remodeling as
deduced from the changes observed in the levels of checkpoint
enzymes from key metabolic pathways.

In mammals, there are two genes encoding pyruvate kinase
that produce two isoforms. Whereas PKM1 is a constitutively ac-
tive enzyme, PKM2 is expressed in all cancers and cancer cell lines
studied to date. PKM2 is highly regulated at both the activity and
expression levels allowing this isoform to act as floodgate keeper
to change the metabolic flux from lactate production to NADPH
and anabolic pathways. This metabolic change is particularly re-
levant under conditions of oxidative stress [46], thus explaining
the induction of PKM2 in NOS3 overexpressing cells and in co-
herent with the observed concomitant induction of TKT.

UROD has been considered a target for head and neck cancer
treatment [47]. It plays a key role in the biosynthesis of heme
group and its down-regulation has been shown to increase oxi-
dative stress and affect the cellular iron homeostasis. It's up-reg-
ulation in NOS3 overexpressing cells (Fig. 1D) could be counter-
balanced by inactivation through thiol oxidation [48] as shown in
Fig. 4B. These results, together with the observed down-regulation
of ACO1, indicate that cytosolic iron metabolism is perturbed.

MATs (methionine adenosyltransferases) are regulated by oxi-
dative stress and are associated to different pathologies such as
hepatocellular carcinoma and diabetes [49]. The decrease in MATII
levels we have observed in NOS-3 overexpressing cells mean that
AdoMet levels were reduced in those cells, with negative con-
sequences for nucleotide biosynthesis and hence for proliferation,
which would agree with the results on cell proliferation shown in



Fig. 7. Effect of down-regulation Grx and Trx on cell proliferation and cell death induced by NOS-3. Number of total cells (A), cell viability (B) and incorporation of BrdU (C) in
WT, 4TO and 4TO-NOS cells. Treatment with siRNAGrx and siRNATrx significantly diminished the number of cells (gray and white bars) and siRNATrx further reduced cell
viability in all cell lineages (white bars). Caspase-3 (D) and caspase-8 (E) activities, known markers of apoptosis, were also markedly increased in all cell types by treatment
with either siRNAGrx or siRNATrx, whereas the same treatments offset the increase in CD95 receptor levels induced by NOS-3 overexpression (F). The numbers 1, 2 and
3 refer to control, siRNAGrx and siRNATrx treatments, respectively. Data are presented as mean7SEM (n¼3 independent experiments). The values labeled with “a” were
significantly different versus the corresponding internal control in the same cell lineage. The values labeled with “b” were significantly different versus the corresponding
control cell lineage. The images are representative of three different experiments.
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Fig.7. This situation would make sense under the oxidative con-
ditions prevailing in those cells, since the metabolic flux would be
compensated by diversion towards pentose phosphate pathway
for NADPH production and antioxidant defense.

The serine/threonine kinase Akt is a critical component of an
intracellular signaling pathway that exerts effects on cell survival
and apoptosis. Akt is activated by insulin and various growth and
survival factors. The unphosphorylated form of Akt is inactive and
it is activated by phosphorylation at Thr308 by PDK1 and at Ser473
by mTOR2. It can also be inactivated by protein phosphatase 2A
(PP2A) dephosphorylation when Akt is in its oxidized form [50]. It
has been shown that Grx prevented Akt from forming a specific
disulfide bond and suppressed its association with PP2A under
oxidative stress, resulting in phosphorylation of Akt and inhibition
of apoptosis. In Fig. 2E–H, we show that nitrosative stress caused
the increase of both Akt forms (Akt1 and p-Akt), accompanied by a
shift towards a more oxidized state (Fig. 4C). This would mean that
Akt is prone to inactivation by dephosphotylation under NOS-3
overexpression conditions, which indicates that apoptosis is being
favored.

The redox state and total protein levels of Akt are both under
the influence of Trx1 and Grx1 as will be detailed in another
section below.

The mitogen-activated protein kinase (MAPK) cascades are
multifunctional signaling pathways involved in cell growth, dif-
ferentiation, apoptosis and cellular response to stress. Two differ-
ent MAP kinase cascades that converge to c-Jun N-terminal ki-
nases (JNK) and p38 MAP Kinases are mainly activated by citotoxic
stresses, oxidative/nitrosative stress and proinflammatory cyto-
kines such as tumor necrosis factor (TNF)-α [32].

Our results show that MAPK is more phosphorylated in NOS3
overexpressing cells and hence less active. At first sight, this result
would conflict with the fact that Trx1 and Grx1 had shifted to
more oxidized state in these cells (Fig. 4D and E) because oxidation
of both redoxins would suppress their inhibiting interaction with
apoptosis signal-regulating kinase 1 (ASK1) [50]. ASK1 would then
be free to initiate the MAPK cascade leading to activation of JNK or
p38 [51]. The explanation of this apparently contradictory result
could be that downstream p38MAPK, which is prone to tyrosine
nitration as opposed to phosphorylation, could not be activated
under the nitrosative pressure with elevated levels of nitrotyrosine
(see Fig. 6).

Human Bcl-2 is an anti-apoptotic, membrane-associated on-
coprotein that can be directly affected by oxidative stress induced
by NO [44] and could play an important role in NO-induced
apoptosis. In Fig. 2C, we show a significant increase in Bcl-2 in
HepG2 cells under nitrosative stress. STAT3, the key cell growth
regulator signal transducer and activator of transcription, is sub-
ject to redox regulation by glutathionylation and ROS trigger tyr-
osine phosphorylation and nuclear translocation of STAT3. Glu-
tathionylated STAT3 was a poor Janus protein tyrosine kinase
2 substrate, and it exhibited low DNA-binding activity [52]. Fur-
thermore, the effect of inactivation of STAT3 has resulted in in-
hibition of growth and metastasis of human hepatocellular carci-
noma cells, and increase in their chemo-sensitivity.

The observed increases in Bcl-2 and STAT3 in NOS3 over-
expressing cells may be part of a counteracting cellular response to
induction of cell death, although the activation state of Bcl-2 and
the glutathionylation state of STAT3 should have to be determined
to support this reasoning. So far, we could not detect redox
changes in both proteins by the electrophoretic redox mobility
shift assay, but ongoing redox proteomic studies could throw light
to this question.

Trx1 was detected in a more oxidized state in NOS3



Fig. 8. Effect of down-regulation of Grx and Trx on apoptosis. DNA fragmentation in cells detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick
end labeling (TUNEL). We have selected representing merged images of FITC and DAPI fluorescence of these treatments in the cell lineages studied (A). Apoptotic nuclei vs.
total nuclei in percentage detected in different fluorescence images of control, siRNAGrx and siRNATrx treated cells in 3 independent experiments (B). The values labeled
with “a” were significantly different (pr0.05) versus the corresponding internal control in the same cell lineage. The values labeled with “b” were significantly different
versus the corresponding control cell lineage.
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overexpressing cells than in normal HepG2 cells (Fig. 4D). Trx1 is
mostly found in the cytoplasm; however, it moves to the nucleus
as a response to nitrosative/oxidative stress and this Trx1 nuclear
migration has been described as part of a survival signaling
pathway, associated with intracellular compartmentalization and
activation of ERK1/2 MAP Kinases. TXNIP prevents Trx1 nuclear
migration and its expression was down-regulated in different
human carcinomas [53], however, it binds to reduced Trx1 but not
to oxidized Trx1. Hence, in the oxidative environment of NOS-3
overexpressing cells, inhibition of Trx1 by TXNIP might not be fully
operative despite the increase in TXNIP levels.

The increase in protein Tyr nitration occurring in WT cells upon
Trx1 and Grx1 down-regulation was an indication of oxidative
stress [54], the expected consequence of a drop in thiol anti-
oxidant defenses. However, in NOS-3 overexpressing cells, whose
redoxins levels are markedly higher (Fig. 3), silencing of Trx1 and
Grx1 provokes a decrease in nitro-Tyr levels (Fig. 6). It has been
noted that nitration processes are promoted over other oxidative
modifications in specific protein targets [55] and it has also been
suggested that nitration is a reversible process [56]. Whether the
observed parallel drop in protein nitration and Trx1 and Grx1 le-
vels in NOS-3 overexpressing cells is an indication of specificity of
the nitration process, its reversibility or the degradation of nitrated
proteins, is an interesting matter for further research and adds up



Fig. 9. Effect of down-regulation of Grx and Trx on Akt phosphorylation and redox state. Western blot analysis of the expression of Akt1 (A) and p-Akt (B) proteins and their
relative quantitation in the HepG2 wild type cells (WT) and control cells (4TO), as well as in NOS-3 overexpressing cells (4TO-NOS). The numbers 1, 2 and 3 refer to control,
siRNAGrx and siRNATrx treatments, respectively. The enhancing effect of NOS-3 overexpression on Akt1 (A) and p-Akt (B) protein levels was offset by siRNA Grx (gray bars, 2)
and even more by siRNA Trx (white bars, 3). None of these siRNA treatments had effect on the p-Akt/Akt1 ratio (C). However, silencing Grx1 and more prominently Trx1,
shifted the redox state of Akt1 to the reduced form (arrows) in NOS-3 overexpressing cells (D). Data are presented as mean7SEM (n¼3 independent experiments). The
values labeled with “a”were significantly different (pr0.05) versus the corresponding internal control in the same cell lineage. The values labeled with “b”were significantly
different versus the corresponding control cell lineage. The images are representative of three different experiments.
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to the debate [57].
The observed neutralization of CD95 induction in NOS-3 over-

expressing cells by Trx1 or Grx1 down regulation (Fig. 7F) suggest
that the high levels of both thiol-disulfide oxidoreductases pre-
vailing in these cells (Fig. 3) are required to induce the expression
of CD95. Activation of the extrinsic apoptotic pathway, indicated
by the increase in caspase-8 activity (Fig. 7E), despite the drop in
dead receptor CD95 levels, points to the operation of other pro-
apoptotic mechanism involving thiol redox changes.

Many reports have documented the influence of redox changes
on the apoptotic signaling pathways in a variety of cell types
through glutathionylation and S-nitrosylation of cysteines in var-
ious proteins along the signaling cascade, from receptors to cas-
pases, with the involvement of Grx and Trx in most cases [58].
Trx1 acting as denitrosylating enzyme counteracted inactivation of
caspase-3 and -8 by S-nitrosylation in HepG2 cells [28]. But on the
other hand, Trx1 can be S-nitrosylated itself [59] and this oxidized
Trx1 can impede apoptosis by S-transnitrosylation of caspase-3
[29,60]. Thus, depending on the redox state of the cell, Trx1 can
catalyze either trans-S-nitrosylation or S-denitrosylation reactions
[29,61]. Total levels of Trx1 increase in NOS-3 overexpressing cells
but a measurable proportion of the protein is in the oxidized state
(Fig. 4D) and could be acting on caspase-3 to inhibit it. This in-
hibitory effect would be alleviated in siRNATrx treated cells in
which the total amount of Trx1 drops down to E25%.

Most of the effects of siRNATrx treatment were also attained by
treatment with siRNAGrx, reflecting a degree of similarity of both
redoxins in the control of redox homeostasis, although differences
also exist. Both proteins have been related to apoptosis regulation
through redox modulation of stress activated and ASK1 [32] al-
though the role of Grx1 has been documented to more extent [50].

This increase of thiolic form of Akt when the levels of thiol
antioxidant redoxins decrease would favor activation by phos-
phorylation and apoptosis inhibition, whereas the parallel
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decrease in total Akt protein would attenuate the antiapoptotic
potential of Akt. This increase of thiolic form of Akt when the le-
vels of thiol antioxidant redoxins decrease may sound contra-
dictory, but could be caused by the proteasome differentially de-
grading the oxidized form, thus unbalancing the redox equilibrium
towards the reduced form. Inactivation and proteasomal de-
gradation of Akt upon Grx1 down-regulation had been observed
before [35]. The effect of down-regulation of Grx1 and Trx1 on Akt
redox state followed the same trend but the changes were more
pronounced when Trx1 was silenced, which could be correlated
with fading of its denitrosylase activity.
5. Conclusions

Overexpression of NOS-3 has antiproliferative effect on HepG2
cells. Activation of apoptosis, as demonstrated by increases in
caspases activity, is the final outcome resulting from the balance of
multilevel and conflicting cellular responses to the oxidative stress
generated by the elevated level of NO. Among these, metabolic
remodeling potentiates the pentose phosphate pathway to in-
crease the metabolic flux towards NADPH production for anti-
oxidant defense at the expenses of lowering nucleotide bio-
synthesis and therefore proliferation. Proteins of the antioxidant
redoxin systems and proteins involved in cell survival pathways
and phosphorylation of MAPK increase significantly. At the same
time, the thiolic redox state of Akt1, Trx1 and Grx1 shifts to more
oxidized.

The important finding of our study is that Trx1 and Grx1,
principal actors of the antioxidant response induced by increased
NO levels, are actually a hindrance to the antiproliferative action of
NO. Down regulation of either redoxin by specific siRNAs activates
caspases dramatically and reduces cell proliferation. These results
support the contention that weakening the thiolic antioxidant
defenses enhances the antiproliferative effects on tumoral cells.
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