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ABSTRACT
Ambient visibility is a complex manifestation arising out of interactions among many atmospheric variables, including
ambient aerosol load, and region specific geophysical characteristics. To functionally relate visibility impairment in
Delhi region during winter months months marred with poor visibility condi ons a novel experiment was designed to
relate visibility with ambient aerosol load (PM2.5), and relevant meteorological variables: dew point temperature (Dp),
height of planetary boundary layer (PBL), ambient temperature (T), relative humidity (RH), wind speed (WS) and wind
direction (WD). Time series data sets of Visibility(t) and other variables were subjected to non–linear decomposition
using Empirical Mode Decomposition Method (EMD), enabling to obtain total cyclic and acyclic–trend components
embedded in all data–sets. Extracted total cyclic visibility components were functionally related with the
corresponding components associated with PM2.5 load and meteorological variables. Decomposed acyclic–trend
component of the visibility, representing time dependent acyclic trend (AT), was separately related with the
corresponding AT components of the considered meteorological variables. The decomposed components of the
visibility (total cyclic and AT) were subjected to multiple linear regression to establish a functional relationship
between them and a set of variables among the considered variables. The analysis suggests that acyclic–trend
associated with Visibility(t) can be predicted better as opposed to the Visibility(t)cyclic component.
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1. Introduction

Impairment of visibility, during winter, is a common feature in
the region encompassing Indo–Gangetic planes. Both number of
days and the hours during the day for which low visibility
conditions persist have gone up in the last two decades (De et al.,
2005). These conditions cause severe disruption in the air, rail and
road traffic, and result in the loss of human lives, besides inflicting
considerable economic loss (Badarinath et al., 2009).

Given the pervasive impact of visibility on the routine and
essential human activities, it has been a focus of scientific
investigation for considerable time in relation to the role of local
and regional meteorological variables (Petterssen, 1956; Doran et
al., 1999; Knapp, 1999; Smirnova et al., 2000; Smith and Benjamin
2002; Benjamin et al. 2004; Gultepe and Issac, 2006; Badarinath et
al., 2009; Gultepe et al., 2009; Gultepe and Milbrandt, 2010;
Chmielecki and Raftery, 2011; Tiwari et al., 2011). Deriving a
universal functional relation between the visibility and meteoro
logical variables is a challenging scientific problem; even a
forecasting of the visibility over short duration is a tricky propo
sition (Chmielecki and Raftery, 2011).

Numbers of different functional forms of the visibility,
explained with the help of meteorological variables, have been
reported (Doran et al., 1999; Knapp, 1999; Smirnova et al., 2000;
Smith and Benjamin 2002; Benjamin et al. 2004; Gultepe and Issac,
2006; Badarinath et al., 2009; Gultepe and Milbrandt, 2010; Tiwari
et al., 2011). Broadly, different approaches were used to function
ally relate the visibility with different combinations of atmospheric
variables: (a) multiple linear regression, (b) numerical weather

prediction involving remote sensing meteorology, and (c) simple
statistical approach involving ambient aerosol load, dew point
(DP), and relative humidity (RH). The phenomenon of acute
visibility impairment is often transient, and occurs over short
duration, lasting for few days or weeks. The visibility trend
estimate is an important information of interest; a daunting task,
as the time series data represents the amalgamation of the time
dependent short term trends, the modulations and the noise; i.e.
in addition to the presence of non–linearity. Modulations
represent affects of many physical processes occurring over a wide
time scale (seconds, hours, days, weeks). Mathematically the
trends can be estimated, even in the presence of the natural
modulations and the noise, but it requires a large number of time
series observations, taken over many years (Weatherhead et al.,
1998); a requirement unavailable in case of the short duration (few
days to weeks) of acute visibility phenomenon. It is also important
to keep in mind that the visibility impairment conditions in the
environment occur at different locations for varying durations,
irrespective of the fact that each location differs considerably in
terms of the involved region specific geophysical and meteoro
logical causal variables leading to the impaired visibility: e.g.
ambient aerosol load; dew point (DP); planetary boundary layer
(PBL); relative humidity (RH); ambient temperature (T); wind
direction (WD); wind speed (WS); cloud water content etc. Given
the limited number of observations obtained over the acute
visibility impaired conditions and the complexity embedded in the
data, it is imperative to use a suitable method which is able to
visualize the time dependence of visibility as two distinct
components: (i) cyclic modulations caused by the variability in the
causal natural variables over different temporal scale (hours,
diurnal, weeks); and (ii) the time dependent acyclic trend (AT)
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intrinsically adapted to the data. This, in present paper, was
achieved by using non–linear analytical approach which is
adequate to decompose cyclic modulations from the embedded
acyclic trends (ATs) present in the data set. The method is
adequate to handle the presence of any non–linearity associated in
the data sets and can be applied to time series data having
observations >30 (Huang et al., 1998). In principle, such analysis
would allow to relate the cyclic part of the visibility with the
corresponding cyclic components embedded in the variables
(aerosol load and meteorological variables) considered to seek a
relation. Similarly, AT component of the visibility can be function
ally related with the corresponding AT component present in the
explaining variables.

The designing of experiment to understand the impaired
wintertime visibility in the region of this study, and the used
method of analysis of the data allowed us to relate the embedded
cyclic and acyclic components with those present in the
corresponding meteorological variables and aerosol load. Set of
meteorological variables considered to functionally explain cyclic
and acyclic components of the visibility were decided on the basis
of the calculated Kendall’s correlation, prior to the establishing of a
multiple linear regression functional relation.

The stated objectives of decomposing (a) cyclic and (b) acyclic
trend (AT) components present in the visibility and the considered
meteorological variables was achieved by subjecting respective
data–sets to Empirical Mode Decomposition (EMD); the method is
not constrained by the presence of non–linearity and non–
stationarity present in the data–sets (Huang et al., 1998; Wu et al.,
2011). Decomposed cyclic and acyclic trend components of the
visibility data set were analyzed with respect to the corresponding
counterparts present in the meteorological variables considered as
independent variables. The results from this analysis clearly estab
lish that visibility has two components (cyclic and acyclic trend) and
each is influenced by the corresponding (cyclic and acyclic)
components present in the considered independent variables.

2. Experimental Design, Data Collection, and Methodology

Functional relationship of visibility with PM2.5 load and
meteorological variables being the main focus, the designed
experiment was conducted in Delhi to collect PM2.5 aerosol load;
where, during winter (December and January) this region is
inflicted with severe visibility impaired conditions. These condi
tions extend to the most of the north–western part of India, and
persist over many days to a few weeks. The site selected was
representative of the impaired visibility conditions during winter.
High aerosol load in the ambient environment of Delhi region is a
year round phenomenon, and collection of every six hourly PM2.5
load was an important aspect to capture cyclic variations (diurnal)
present in the load as opposed to the conventionally 24 hourly
load collections (Tandon et al., 2008; Tandon et al., 2010). Sample
collection time <6 hours sample 1 would be a better alternative,
but the aerosol mass collection decreases significantly with
decrease in the collection time. For accurate mass measurement of
the load 6 hour collection time was found to be optimum. As
ambient aerosol load is an important factor in relation to the
ambient visibility (Seinfeld and Pandis, 2006), it was not only
important to collect 6 hourly sample collection of the PM2.5 load,
but it was also crucial to collect the samples in a discrete time
series.

2.1. Description of sampling site

The capital region of Delhi is geographically located between
28°25 N and 28°53 N; 76°50 E and 77°22 E at 216 m above MSL in
the northern part of India. It has a semi–arid climate, influenced by
the Himalayan ranges to the north, Thar Desert to the west, the
central hot plains to the south and cooler hilly region to the
northeast. Delhi has the dubious distinction of being one of the

most polluted cities in the world and is afflicted with unusually
high concentrations of aerosols in the lower atmosphere (Yadav
and Rajamani, 2006; Tandon et al., 2008; Tandon et al., 2010).
Large amounts of wind–blown dust envelops the city during hot
and long summer and the onset of winter season brings a regular
feature of ground–based temperature inversion, which further
amplifies the load on account of the calm wind regime and low
planetary boundary layer (PBL) conditions (Yadav et al., 2013). The
location selected for this experiment, Jawaharlal Nehru University
(JNU) is a 1 000 acre lush green campus having large patches of
scrub and forest land, and comparatively less traffic load inside the
campus. JNU is a known receptor site (Singh et al., 1997) in the
south Delhi ridge area, which forms a plateau of 250–300 m
elevation above the mean sea level and is approximately 100 m
above the surrounding area. Sequential six hourly samples, over
twenty days, of PM2.5 were collected on the rooftop of a building at
15 m height. The numbers of samples collected over twenty days
were considered sufficient for EMD based determination of the
embedded cyclic components and acyclic trends present in the
PM2.5 load time series.

2.2. Sample collection

PM2.5 aerosol samples were collected, using Mass Flow Con
trolled Fine Particulate sampler (Envirotech – APM 550 MFC),
equipped with Well Impactor Ninety Six (WINS). The samples were
collected on Whatman PTFE filters (46.2 mm) at a constant flow
rate of 16.7 L min–1. The sample collection was done from 15th

December, 2010 to 3rd January, 2011. Four samples/day were
collected over 6 hour duration (00:00–06:00, 06:00–12:00, 12:00–
18:00, 18:00–00:00 hours). Concentration of the PM2.5 samples was
estimated by gravimetric determination of the collected aerosol
mass, using electronic microbalance with 0.01 mg accuracy.

2.3. Meteorological variables

Half hourly values of meteorological variables; visibility (V),
temperature (T), dew point (DP), relative humidity (RH), wind
direction (WD) and wind speed (WS), were obtained from
Wyoming University (WU, 2012)http://weather.uwyo.edu/surface/
meteogram/), and 3–hourly values for Planetary Boundary Layer
(PBL) were taken from Air Resources Laboratory, National Oceanic
and Atmospheric Administration (NOAA, 2012) (http://www.arl.
noaa.gov/ READYamet.php) for the region of this study; the data
obtained is from an observatory located close to the aerosol
collection sampling site. The half hourly and 3–hourly values were
averaged over 6 hours into a discrete time series sequence to
match with the time points of the collection of the aerosol load.

2.4. Analysis of visibility and meteorological data: determination
of total cyclic component

The visibility and meteorological data was decomposed into
(a) cyclic and (b) acyclic trend components by using EMD, the
details of the methodology and the steps involved are provided in
the seminal work done by Huang et al. (1998). Presence of the time
dependent modulations, and trend embedded in the respective
data–sets, at gross level, can be perceived from the corresponding
plots shown in Figure 1; and they can be represented by following
general expression as a function of time (t):

Data(t) = Total Cyclic(t) + Acyclic Trend(t) (1)

The modulations associated with the respective data–set
(Figure 1) can be expressed as the sum of all Internal Mode
Functions (IMFs) present in the respective data–set. The extracted
IMF, in a given data, would represent a modulation having distinct
average period in hours (hr) and average amplitude (hr–1). The sum
of the extracted IMFs present in a data would represent total cyclic
components over the time domain of the data set, and it can be
represented by following relation:
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In above relation, M represents the number of IMFs associ
ated in a respective data–set, each extracted by using EMD. The
determined oscillatory modes from the data conforms to following
two conditions: (i) given IMF, over the range of data time domain,
manifests equal number of extrema and zero crossings, or they
differ by one; (ii) over the data range the mean value of the
envelops defined by local maxima and minima is close to zero.
Statistically, the extracted mode conforming to the definition of

IMF can be ascertained (Wu et al., 2011). Extraction of different
modes (IMFs) is initiated by determining the minima and maxima
points present in the data–set having oscillations; all points
representing maximas are fitted by using cubic spline function and
the same exercise is repeated to get the spline fit through all
minima points. The fitted spline functions to the points repre
senting maxima and minima are designated as upper upe(t) and
lower envelop lwe(t), respectively. The average of these two,

, is subtracted from the original
data–set(t) to provide the first approximate representation of
IMF1(t) designated as h1(t).

Figure 1. Plotted values of visibility, PM2.5 load, dew point (DP), planetary boundary layer (PBL),
relative humidity (RH), ambient temperature (T), wind speed (WS) and wind direction (WD).
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Data Set(t) –m1(t) = h1(t) (3)

Further processing of h1(t), by using repeated sifting, is done
by treating it in same manner as was done in the case of the initial
data–set till an acceptable decomposed highest frequency IMF1 is
obtained. Required number of siftings for processed IMF1 is
decided by following a pre–set condition for standard deviation
(SD) between h1(k–1)(t) and h1k(t), where k represents the sifting
number; SD is expressed as:

T

t k

kk

th

thth

0 2
)1(1

2
1)1(1

)(

)()(
SD (4)

In the present analysis SD<0.1 was used as a stoppage criteria
for the sifting and to accept hik as the IMF1 (Huang et al., 1998).
IMF1(t), represents highest frequency oscillations present in the
data–set(t); lower frequency IMFS (IMF2, IMF3…IMFM), in
decreasing order of frequency are processed from the residuals
obtained at each stage: i.e. subsequent to the subtraction of
processed IMFj from the preceding data–set (or residuals). The
procedure is repeated until no further IMFs could be extracted
from the residuals, or the residuals manifest a monotonic charac
ter or have at maximum one extremum. The sum of residuals rn(t)
and decomposed (IMFj) could be statistically compared with the
original data set of Visibility(t) to assess the accuracy of the EMD
method, and ascertain the extent of data explained by this
analysis. The data–set (t), subsequent to the decomposition of all
the IMFs can be expressed as:

n
M

j
j ttt )()()(

1
residualsIMFsetData (5)

2.5. Acyclic–trend estimation

The residuals(t)n, in Equation (5) represents the mode of data
where well defined periodic variations are absent, as they are
already accounted by total cyclic components ( IMFj). Residuals,
over the data time domain, represent adaptive or acyclic–trend
(Huang et al., 1998; Wu et al., 2007). In present context, in the
analysis of the visibility and the respective causal meteorological
variables, the total cyclic components present in the respective
data set will correspond to IMFj. AT component can be extracted
subsequent to the subtraction of IMFj from the original data–set;
i.e. residuals from which further extraction of IMF is not possible.

2.6. Minimizing end effects, over–shoot and under–shoot

Cubic spline fit to the oscillating time series data–sets, during
repeated sifting, suffers from the problem of end effects and over–
shoot, which in turn infects inward values. To minimize the
problem of over–shoot and under–shoot we used piecewise cubic
Hermite interpolating polynomial (Fritsch and Carlson, 1980;
Kahaner et al., 1988) to fit the lwe(t) and upe(t) peak values; this
was effective in eliminating the stated problem as compared to the
use of simple cubic spline fit. End effect problem was eliminated by
taking two steps: (1) data at the start of the series under analysis
was padded by adding data points from the same set by adjusting
the first and the last value in respective data–set with respect to
the calculated slope of first two and the last two points. This
consideration was found to be effective in minimizing the end
effect, and it controlled the infection of inner values during
repeated sifting procedure due to the progression of end effects
inward. These calculations were done on visibility, PM2.5, DP, PBL,
RH, T, WD and WS data sets to extract embedded total cyclic
component ( IMFj) and acyclic trend component in respective
data–set. All calculations were done using MATLAB 7.1 platform.

3. Results and Discussion

EMD analysis of the Visibility(t) and meteorological variables
(PM2.5, DP, PBL, RH, T, WD, WS) data–sets revealed five IMFs (see
the Supporting Material, SM, Figure S1, showing representative
IMFs, and acyclic–trend extracted from the visibility data–set).
Each IMF, in respective data–sets, has distinct average period and
average amplitude. For further analysis, sum of all the IMFS,
( IMFs), that represent the total cyclic component associated with
the respective data sets, were used.

3.1. Criteria for selecting the meteorological variables to explain
visibility using multiple linear regression

Total cyclic component associated with the visibility was
grouped with the total cyclic components determined in the
meteorological variables (Section 2.4); and similarly a separate
data–set of the acyclic–trends in the visibility was grouped with the
corresponding acyclic–trends present in the meteorological
variables (Section 2.5). As a first step, to ensure the relevance of
considered meteorological variables to explain the visibility,
Kendall’s correlation coefficient between variables (see the SM,
Table S1 for total cyclic and Table S2 for ATs) was determined. This
step was considered necessary to select the appropriate
combination of independent variables from all the considered
variables (PM2.5, DP, RH, T, WS and WD) on the basis of the
calculated statistical co–linearity between the variables to
establish a functional relation with the Visibility(t) (cyclic or acyclic
part). However, it is important to state that the absence of the
correlation between Total cyclic components may arise due to the
presence of a lag between the variables with respect to their
respective periodicity in their total cyclic profile.

For ATs component, on the basis of Kendall’s correlation
between different variables, it was possible to form different
groups of strongly correlating variables (Kendall’s correlation >0.9
and having statistical significance at 0.01 level): (1) PM2.5 and DP
(0.965); (2) PBL and RH (0.934); (3) WD and WS (0.929); and (4)
temperature did not show strong correlation with any other
variable considered. It is evident that strong correlation between
different groups of the independent variables will affect the
multiple linear regression function on account of the statistical co–
linearity, while fitting the visibility’s AT component.

3.2. Functional relation of the cyclic component of visibility with
meteorological variables

Multiple regressions fit to total cyclic visibility component,
with the total cyclic component present in the independent
variables was done by excluding those variables showing strong
statistical co–linearity. The variables considered were: PM2.5, DP, T
and WS. Equation for Multiple Linear Regression fit explaining the
total cyclic component of the visibility can be expressed as:

CyclicCyclic

Cyclicvisibility

WST

DPPMCyclicTotal

)(128.0)(167.0

)(159.0)(002.0)( 5.2

tt

ttt Cyclic

(6)

The estimated error in the determined coefficients, respect
ively, was ±0.001, ±0.028, ±0.017, and ±0.050; adjusted R2 for the
fit was 0.794. Figure 2 shows the plot of total cyclic visibility
component obtained from the EMD analysis of the visibility data,
and the same fitted to the multiple regression fit by Equation (6).
The plot also show the spread in the fitted values obtained by
considering the statistical uncertainty in the fitted coefficients, to
the independent variables. The Equation (6), explains changes in
the total cyclic component of the visibility involving the corre
sponding cyclic variations present in the explaining independent
variables. Estimated coefficient of PM2.5, having negative sign,
suggests that any increase in the aerosol load will result in the



Tandon et al. – Atmospheric Pollution Research (APR) 203

decrease in the cyclic component of the visibility; the same is
implicit from the dew point temperature, which also has fitted a
negative coefficient value. On other hand, an increase in T and WS
suggests the increase of visibility’s cyclic components. The role of
the explaining variables considered to explain the cyclic visibility
component is evident from the fitted functional relation, however
the extent to which the decrease or increase in the cyclic part of
the visibility is affected by the respective variable can only be done
after normalizing the independent variables within the range they
vary over the time domain of the data–set as they have different
units; however, the overall effect of these variables in explaining
visibility will not alter. The statistics of the regression fit to explain
the cyclic component of the visibility by the corresponding part
present in the explaining variables (PM2.5, DP, T and WS) is
acceptable (R2=0.794), which suggests that unexplained cyclicity
associated with the visibility may be on account of the presence of
the noise component. The upper and lower bound error (95%
confidence) in functionally explaining the cyclic part of the visibility
is shown by the shaded part surrounding the fitted function to the
EMD decomposed total cyclic visibility values.

3.3. Functional relation of the acyclic trend component of the
visibility with the meteorological variables

Profiles of AT components extracted from the visibility data
using EMD, and all independent variables considered are shown in
Figure 3, it is noted that all profiles manifest acyclic trend (not
linear trend) present in the respective variable. This suggests that
the conventional analysis based on the estimation of linear trends
in the climatic variable is presumptuous. The ATs extracted from
visibility, aerosols (PM2.5), DP, PBL, RH, T, WD and WS, on the other
hand provides timeline of the changes associated with the
variables; any addition of new data would not alter the determined
AT, unlike the conventional linear trend estimates (Huang et al.,
1998). For instance, eye balling of the AT profiles provide
immediate appreciation for impaired visibility (around 300 hours,
Figure 3, Panel 1) and its strong correlation with AT present in
aerosols, DP and RH profiles.

Keeping in view the strong correlation between different
groups of the explaining independent variables used to elucidate
AT in the visibility (Section 3.1), the statistical co–linearity based
criteria was used to exclude variable overlap. Multiple regression

function fit to the AT component of the visibility can be expressed
as:

( ) 0.549 ( )
0.017 ( )
0.887 ( )

t t
t
t

Acyclic Trend Acyclic Trend

Acyclic Trend

Acyclic Trend

Visibility DP

PBL

WS
(7)

Standard error in the fitted coefficients in Equation (7) was
0.001, adjusted R2 approached to 1.0, and the standard error of

estimate in the fitted model value equaled 0.00272. It is evident
that the results of the regression fit explained fully the AT
component associated with the visibility. The coefficients mani
fested insignificant error (0.001). The fitted coefficient of DP,
having negative sign, suggests the decrease in the visibility trend
with an increase in DP. Acyclic trend in the visibility would improve
with an increase in the PBL height and an increase in the WS. The
absence of PM2.5 from the fitted function was curious, it seems
that the modulations in the aerosol load has more to do with the
cyclic part of the visibility; the AT component of the visibility is
plotted with the multiple regression based fit derived from
Equation (7) in Figure 4. The fit is enveloped by the uncertainty
spread region at 95% confidence; extracted acyclic trend in the
visibility can be estimated with high accuracy. It is interesting to
note that DP and WS affect both components of visibility.
Visibility’s functional form, which includes both components, can
be expressed as Equation (8):

trendAcyclicCyclic VisibilityVisibiltyVisibilty )()()( ttt (8)

where, the first part on the right–hand side of the equation is a
function of PM2.5, DP, T, WS; and the second part of DP, PBL and
WS. Equation (8) explains reasonably well the role of meteoro
logical variables affecting ambient visibility and it is implicit that
DP, WS are independent variables, and they have maximum effect
in lowering the visibility. The complete functional forms of the two
sub functions in the Equation (8) are given by the Equations (6) and
(7). The Visibility data fitted to Equation (8) is shown in Figure 5.
Upper and lower confidence band at 95% level is shown by taking
into account the uncertainty in the fitted coefficients of Visibil
ity(t)cyclic and Visibility(t)Acyclic–trend functions.

Figure 2. Total cyclic visibility values obtained after subtracting the acyclic trends from the original visibility
data (circles) is fitted to multiple linear regression (sold line) function (PM2.5, DP, T, WS). The shaded envelop
surrounding the regression fit represent the uncertainty (95% confidence) in predicting the Visibility(t)cyclic.
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Figure 3. Extracted acyclic trends present in the visibility data and independent variables
considered (PM2.5 load, DP, T, PBL, RH, WS and WD) to explain Visibility(t).

Figure 4. Acyclic trend component values (black dots) fitted (black line) to multiple linear regression
function (DP, PBL and WS); R2 of the fit approaches 1.0. The fit is surrounded with the region
(thick grey lines) showing uncertainty (95% confidence) in predicting Visibility(t)Acyclic trend.
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4. Conclusion

The strategy adopted to consider the modulations and the
embedded trend encountered in the visibility observations as two
distinct attributes reveal that; (1) the total cyclic component are
influenced by the separate set of environment variables (PM2.5, DP,
T and WS), and (2) the acyclic trend involves the role of DP, PBL
and WS. Multiple regression fit based function to predict
Visibility(t)cyclic does not explain fully all the associated cyclic
component, which is evident from the uncertainty band drawn
around the fitted function. Unexplained cyclic part of the data in
the form of residuals plotted in Figure 6 (upper panel) suggests
that the residuals are randomly distributed and does not display
any systematic trend. The plotted autocorrelation function (ACF)
for the residuals (Figure 6, lower panel) substantiate the preceding
inference; the residuals attributes can be assigned as noise, which
would also limit the predictability of the Visibility(t)cyclic.

The function obtained to explain Visibility(t)Acyclic–trends, on
other hand explains well the predictability of the embedded trends
in the visibility data. The residuals, the unexplained part of acyclic–
trend data, were small (Figure 7, upper panel). However, there is
clear evidence of systematic variation associated with the residuals
in this case and same cannot be categorized as noise. The plotted
ACF with lag of residuals does not decays gradually in this case
(Figure 7, lower panel), which is indicative of the presence of
persistence in the Visibility(t)Acyclic–trend. It can be inferred that the
presence of persistence would allow the better predictability of
acyclic–trends from the attributes of involved causal variables (DP,
PBL and WS). Suggested approach to understand the manifestation
of atmospheric processes, as in case of the visibility, is not limited
to the presumptuous fit done to the a priori model form; and is not
limited on account of the presence of the non–linearity in the data.

Figure 5. Plot showing the fitted (black line) function to the Visibility(t) data points (circles), and
acyclic trend fit (dotted line). The fit includes total cyclic + acyclic components of the Visibility(t).
The uncertainty involved is shown by the shaded region (95% confidence) surrounding the fit.

Figure 6. Residuals obtained from the difference between the regression fit to Visibility(t)
data (thick black line) and the original observed visibility data are shown in upper panel.

The lower panel of the figure shows the plotted ACF with lag.
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Figure 7. Residuals obtained from the difference between the Visibility(t)Acyclic trend data and the fitted
function to these values are plotted in the upper panel. Lower panel shows the plot of ACF with lag.
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