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Let p- fl (mod 8) be a prime which is a quadratic residue module 7. Then 
p = M* + 7N2, and knowing M and N makes it possible to “predict” whether 
p = A 2 + 14B2 is solvable or p = 7C* + 20’ is solvable. More generally, let q and r 
be distinct primes, and let an integral solution of H*p = M2 + qN2 be known. 
Under appropriate assumptions, this information can be used to restrict the possible 
values of K for which K’p = A 2 + qrB2 is solvable and the possible values of K’ for 
which K12p = qCz + rD* is solvable. These restrictions exclude some of the binary 
quadratic forms in the principal genus of discriminant -4qr from representing p. 

C 1984 Academic Press, Inc. 

1. INTRODUCTION 

Let (a ( p) be the familiar Legendre symbol. If (a ( p) = 1, write (a ] P)~ = 1 
or -1 according as a is or is not a biquadratic residue of p. 

In 1825 Gauss announced two criteria for determining (2 ] P)~ for a prime 
p 3 1 (mod 8). Put 

p=(4A+1)*+8B2=X2+16Y2, 

then A ES Y (mod 2), and (2 1~)~ = 1 if and only if A and Y are both even. 
On reading this announcement, Dirichlet proved that (2 1~)~ = (-l)A and 
showed that A and Y have the same parity [9, p. 3131. 

In this paper we adapt Dirichlet’s technique to several other situations in 
which a prime p is represented by positive definite quadratic forms of 
different discriminants. Our principal results are three general theorems 
(Theorems 2, 4, and 5) and three particularly interesting corollaries 
(Theorems 3, 6, and 7). 

We may also use Dirichlet’s method to show the equivalence of certain 
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known power residue criteria formulated in terms of coordinates of binary 
quadratic forms. Theorem 1 is an example of this. 

We use nothing deeper than the elementary theory of quadratic forms, the 
Legendre-Jacobi symbol, and quadratic reciprocity. 

2. THE MAIN RESULTS 

In what follows, all letters stand for integers, and p, q, and r are primes 
(except in Theorem 1, where q = 1). We focus primarily on the following. If 
q and r satisfy certain congruential restrictions, and p belongs to certain 
residue classes (mod 4qr), then there exist integral solutions (H, M, N), 
(K, A, B), and (K’, C, D) to the equations 

HZp = MZ + qN2, (WN)= 1, (14 

K2p=A2 +qrB’, (A,B) = 1, (lb) 

Kt2p = qC2 + rD2 (CD)= 1, (lc) 

respectively. We shall derive conditions for the existence of these solutions in 
Section 3. Section 4 is devoted to some arithmetic preliminaries. 

In Section 5 we shall prove 

THEOREM 1. Let p z 1 or 9 (mod 20) be a prime; then we may write 
p = M2 + N2 with N even and M = 1 (mod 4), and p = A2 + 5B2. Noting 
that either M or N is divisible by 5, we conclude that: 

(a) ifp = 1 (mod 20), then A is even if and only if 5 ( h4, 

(b) ifp = 9 (mod 20), then A is even if and only if 5 1 N. 

We note that this is the special case q = 1, r = 5 of Eqs. (1). Part (a) is 
the corollary to Theorem 7 of [7], proved there by cyclotomy. 

The main results of this paper comprise Sections 6 and 7. These are 
Theorems 2, 4, and 5, the proofs of which use Dirichlet’s technique. They 
deal with cases in which q is odd and r = 2, q = 2 and r is odd, and q and r 
are both odd, respectively. 

THEOREM 2. Let p and q be distinct odd primes, and r = 2. Assume that 
Eqs. (1) are solvable. If the signs of the odd variables (among M, N, K, K’, 
B, D) are chosen so that each is ~1 (mod 4), then K and K’ satisfy the 
foil0 wing congruences : 

(a) M+N-K=qB2+(1-q)/2 (mod8) ly A4 is even, 

(b) M+N-KzB(1 +q) (mod8) ifN is even, 
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(c) M+N-2K=--(1 +q)/2 (mod 16) ifH is even. 

(d) M+N-K’-D(1 +q) (mod8) if M is even, 

(e) MtN-K’-D’t(q-1)/2(mod8) if N is even, 

(f) M+N-2K’r(l +q)/2 (mod 16) if H is even. 

The following corollary deals with the interesting special case q = 7: 

THEOREM 3. Let p = M2 + 7N2 be a prime s f 1 (mod 8) with M or 
NE 1 (mod 4). Then 

(a) p = A2 t 14B2 is solvable if and only ij’ 2p t M t N = 3 (mod 8). 

(b) p = 7C2 t 20’ is solvable if and only if2p + M t N = 7 (mod 8). 

In the following three theorems I z 1 (mod 4). A key role is played by the 
number U, which is defined to be either 1 or -1 by 

(HP”’ f M 1 r) = 0 or 1.4. (2) 

From Eqs. (lb) and (lc), (p 1 r) = 1 = (q 1 r), so that p”’ is an integer 
(mod r). By Eq. (la), 

((HP”’ + M)(Hp”’ -M)jr)=(H’p-M21r)=(M2+qNZ-ML/r) 

=(qN’Ir)=Oor 1. 

Thus the choice of sign of p”’ or the sign of +M has no effect on U. (In 
other words, it is impossible that u = 1 for one choice of signs and u = -1 
for another choice.) 

THEOREM 4. Let r G 1 (mod 8) and p be distinct odd primes, and q = 2. 
Assume Eqs. (1) are solvable with H = 1. Then (K ) r) = u and (K’ ) r) = 
(2 I r)l u, where u is defined by (2). 

Note. Clearly K and K’ are odd. 

THEOREM 5. Let r E 1 (mod 4), p and q be distinct odd primes. Assume 
Eqs. (1) are solvable. Define u by (2). Then (K ( r) = (-1)’ u and (K’ I r) = 
(- 1 r’ (q I r)4 u, where f = f’ = 0 if r = 1 (mod 8); if r = 5 (mod 8), then 

f=NtBt 1, f’=N+D+l, if q = 1 (mod4), 

f=H+Kt 1, j-’ = H + K’, if q = 3 (mod 4). 

Finally we obtain as corollaries the following results for the cases q = 3. 
r= 13, and q= 11, r=5: 
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THEOREM 6. Let p = M2 + 3N2 be a prime such that (p ) 13) = 1. Dejine 
u to be either 1 or -1 by (2). Then 

(a) p=A2+39B2issolvableifandonlyifu=-1, 

(b) p = 3C2 + 13D2 is solvable fund only ifu = 1. 

THEOREM 7. Let p be a prime which satisfies (p 15) = (p ( 11) = 1. Then 
H2p = M2 t 1 1N2 with H = 1 or 2, and 

(a) p = A2 t 55B2 is solvable if and only if 

pzl (rnod5)and51N,or 

p = 4 (mod 5) and 5 1 M; 

(b) p = 1 1C2 t 5D2 is solvable if and only if 

p=l (mod5)and5(M,or 

p = 4 (mod 5) and 5 ( N. 

Theorem 7 solves an open problem mentioned in [ 1, p. 1441. 
We view Theorems 2, 4, and 5 as prescribing congruential restrictions on 

possible values of K and K’. Any possible value of K or K’ must satisfy the 
condition that -qr be a quadratic residue module any odd prime divisor of 
K or K’. (This follows immediately from Eqs. (lb) and (lc).) A value of K 
or K’ satisfying this condition is called admissible if it satisfies the restriction 
of the appropriate theorem. These restrictions are called predictive 
if they are independent of A and B in the case of K, or of C and D in the 
case of K’. In other words, the restriction on K or K’ depends only upon the 
representation (la). A predictive restriction is called inclusive if identical 
restrictions are placed on K and K’. A predictive restriction is called 
exclusive if any admissible value for K (or K’) is inadmissible for K’ (or K). 

The following examples illustrate these definitions: 

(a) Theorem 3, the case q = 7 and r = 2, is an exclusive predictive 
restriction. In this case Eqs. (lb) and (lc) are solvable with either K = 1 and 
K’ = -3, or with K = -3 and K’ = 1. The conclusion is that either 
p=A2t14B2 or p=7C2+2D2 is solvable, but not both, and the 
conditions for solvability depend only upon the representation 
p=M2+7N2. 

(b) Theorem 4 gives a predictive restriction; it is inclusive if and only 
if (2/r),= 1. 

Note that admissibility does not imply solvability. For example, let q = 2, 
r = 97, and p = 73. Then 

73 = l2 + 2. 6*, 73’12 = f48 (mod 97), 
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so by Theorem 4, we have 

(p”2 f Ml 97) = (*48 It 1) 97) = 1. 

Thus (K 197) = 1 and (K’ / 97) = (2 ( 97), = (14 197) = -1. Admissible 
values for K are 1, 3, and 9, while 5, 7, and 13 are admissible values for K’. 
The equation K2 . 73 = A2 + 194B2 is satisfied by 92 . 73 = 53* + 194. 4*. 
but has no integral solutions if K = 1 or K = 3. Similarly, the equation 
K” . 73 = 2C2 + 970* is satisfied by 72 . 73 = 2 I 242 + 97 . 5*, but has no 
integral solutions for K’ = 5 or K’ = 13. 

3. ON THE SOLVABILITY OF EQUATIONS (1) 

Assuming that Eqs. (1) are solvable places certain restrictions on p, q, and 
Y. We present the restrictions associated with the hypotheses of Theorems 2. 
4, and 5 in the following three lemmas. 

LEMMA 1. Let p and q be distinct odd primes, r = 2. If Eqs. (1) are 
solvable, then (pJq)= 1, and p,q E I 1 (mod 8). Moreover, one of H, M, 

and N is divisible by 4, while the other two are odd. 

Proof. Equation (la) implies (p / q) = (-4 / p) = 1. Equation (1 b) yields 
(-2q ( p) = 1. so that (2 Ip) = 1. Hence p G f 1 (mod 8). Similarly Eq. (lc) 
gives (2 19) = (p I 9h so that q E f 1 (mod 8). Now by (la), fH* = M2 + N2 
(mod 8). Since (M, N) = 1, two of M, N, and H are odd, and the other is 
divisible by 4. 

Note. Obviously p = 1 + 2qB2 I q + 2D2 (mod 8). Also 

4IM=xp-q (mod8), 41N=7p= 1 (mod8), 

41H*qr7 (mod8). 
(3‘) 

LEMMA 2. Let p and r be distinct odd primes, q = 2. If Eqs. (1) are 
solvable, then (p I r) = 1 = (-2 Ip), so that p s 1 or 3 (mod 8). Zf p E 1 
(mod 8), then r = f 1 (mod S), while p = 3 (mod 8) implies r = 1 (mod 8). 

Pro& Equations (la) and (lb) imply (-2 I p) = 1 and (p 1 r) = 1, respec- 
tively. The former implies that p = 1 or 3 (mod 8). Examining Eq. (lc) 
(mod 8) gives the rest of the lemma. 

Note. The restrictions presented in Theorems 4 and 5 are meaningful 
only if (-1 ) r) = 1; i.e., if r = 1 (mod 4). Accordingly, the case p = 1 
(mod 8), r = 7 (mod 8) was excluded from Theorem 4, and r = 3 (mod 4) 
from Theorem 5. 
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LEMMA 3. Let p, q and r be distinct odd primes. If Eqs. (1) are solvable, 
then (p(q)=(-q(p)=l, (p(r)=(r(p)=l, (q/r)=(r)q)=l. If r-3 
(mod 4), then p = q = 1 (mod 4). 

ProoJ Examining Eqs. (1) yields these Legendre symbol values. Then 
the law of quadratic reciprocity gives the final assertion. 

We turn now to the converse problem and show that assuming the 
congruential restrictions of Lemmas 1, 2, or 3 implies the solvability of Eqs. 
(1). 

A binary quadratic form f = [a, b, c] = ax* + bxy + cy* =f(x, y) of 
discriminant d = b* - 4ac is primitive if the g.c.d. (a, b, c) of the coefficients 
is 1. A form having negative discriminant is called definite. If in addition 
a, c > 0, the form is called positive definite. Only positive definite forms are 
considered here. 

The form f is said to represent the integer m if f (x, y) = m for integers x, 
y; this representation is primitive if (x, v) = 1. Representation of m is 
invariant under any integral linear transformation 

x= t,X+ t*Y, y = t,X + t, Y, 

where the determinant t, t, - t,t, is equal to 1. A set of all binary quadratic 
forms obtainable one from another by applying such linear transformations 
is called a class of forms. Evidently, two forms in the same class have the 
same discriminant, and to be positive definite is a class property. Every 
positive definite class has a unique reduced form [a, b, c] such that 

-a<b,<a<c; if a = c, then b > 0. 

The generic characters of a number m, relatively prime to the discriminant 
d, consist of a set of Jacobi symbols, which includes 

(m I 4 for each odd prime divisor v of d, 

C-1 14 if dr 0 or 12 (mod 16), 

PI@ if d = 0 or 8 (mod 32), 

F-2 I@ if d = 0 or 24 (mod 32). 

The generic characters of a form f consist of the generic characters of any 
odd m prime to d and primitively represented byf: The set of all forms of a 
given discriminant having a given set of generic characters is called a genus. 
A genus consists of one or more classes, as generic characters are clearly 
invariants of a given class. The principal class is the class that represents 1, 
and the principal genus is the genus whose forms have generic characters all 
equal to 1. Proofs of all unverified statements can be found, for example, in 
[9, Art. 79-981. 
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LEMMA 4 [S, p. 1281. Let t be relatively prime to d. Then t is 
represented primitively by a binary quadratic form of discriminant d if and 
only if the congruence 

s2zd (mod 4t) 

is solvable. 

The discriminants studied in this paper are all even, so that we may put 
d = 44. By Lemma 4, it follows that the prime p, (p, 2d) = 1, is represented 
primitively by a form of discriminant 44 if and only if (A ( p) = 1. 

LEMMA 5 [3, Sect. 53, 831. Let p be an odd prime, not dividing d = 44, 
whose generic characters are all equal to 1. Then p is represented primitively 
by a form in the principal genus of discriminant d. 

LEMMA 6. If p is an odd prime that satisfies 

(a) r = 2, (p / q) = 1, p, q = f 1 (mod 8), but q = 1 (mod 8) implies 
p 5 1 (mod 8); or 

(b) q=2, (-2]p)=l=(p]r), r=fl (mod8), but r-7 (mod8) 
implies p z 1 (mod 8); or 

(c) (p]q)=(-q/p)=(p(r)=(q/r)= 1, but r=3 (mod4) implies 
p=q= 1 (mod4); 

then in each case p is represented by a form in the principal genus of 
discriminants -4q and -4qr. 

Proof According to Lemma 5, we must show in each case that all the 
relevant generic characters equal 1. 

In case (a), (p j q) = 1 is given. If q = 7 (mod 8), then (2 Jp) = 1 follows 
from the assumption that p = f 1 (mod 8). If, however, q = 1 (mod 8), then 
(-lIp)=l=(--21 ) p are needed. But these follow from p = 1 (mod 8). 

In case (b), (-2 Jp) = 1 = (p 1 r) are given. If r = 7 (mod 8), then 
(2 j p) = 1, which is required, follows from p = 1 (mod 8). 

In case (c), the generic characters for the discriminant -4q are (p I q) and, 
if q = 1 (mod 4), (-1 I p). (p 1 q) = 1 is given. If q zz 1 (mod 4), then 
(-q/P)=(Plq)=(qlP)= 19 so (-1 Ip)= 1. 

The generic characters for the discriminant -4qr are (p I q), (p / r) and, if 
qr = 1 (mod 4), (-1 ]p). (p 1 q) = (p ) r) = 1 is given. If r E 3 (mod 4), then 
q = 1 (mod 4) and qr = 3 (mod 4). So the only remaining case is q = r = 1 
(mod 4). Then (-1 ( p) = 1, as was shown in the previous paragraph. 

Since they represent 1, [ 1, 0, q] and [ 1, 0, qr] are forms of their respective 
principal genera. In order to prove a similar statement about the form 
]q, 0, r], we need two classical results, along with the seemingly extraneous 
assumption made in Lemma 6, part (c): (q ] r) = 1. 
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LEMMA 7 (Legendre) [3, Theorem 911. If a, b, and c are relatively 
prime in pairs, squarefree, and not all of the same sign, then au2 + bv2 + 
cw2 = 0 has nontrivial integral solutions if and only if -bc, -ca, and -ab 
are quadratic residues of a, b, and c, respectively. 

Two forms f and g of discriminant d will be called rationally equivalent if 
f can be transformed into g by a linear transformation with rational matrix R 
of determinant f 1, where the denominators of R are relatively prime to d. 

LEMMA 8 (Eisenstein-H. J. S. Smith) [2, p. 881. Two forms f and g of 
discriminant d are in the same genus if and only if they are rationally 
equivalent. 

Set X = t, x + t, y, Y = t,x + t, y, where t, , t,, t,, and t, are rational and 
t, t, - 1, t, = 1. It is easy to see that there exists a rational transformation 
such that qX2 + rY2 =x2 + qry’ if and only if qu2 + rv2 = w* is solvable in 
integers. (The correspondence is t, = u/w, t, = v/w, t, = -rt,, t, = qt, .) In 
every case of Lemma 6, q and r are quadratic residues of each other, so that 
qu2 + rv2 = w2 is solvable in integers, by Lemma 7. Thus by Lemma 8, 
[q, 0, r] is in the principal genus of forms of discriminant -4qr. 

LEMMA 9. If the hypotheses of Lemma 6 are satisfied, then in each case, 
Eqs. (1) have solutions. 

Proof: By Lemma 6, p is represented by a form f of the principal genus 
of discriminant -4q. If g = [ 1, 0, q], then to f (x, y) = p we apply a rational 
linear transformation and obtain g(X, Y) = X2 + qY2 =p. If H is the least 
common multiple of the denominators of X and Y, then (H, -4q) = 1, and 
we have 

H2p = (fIX)2 + q(HY)2, 

where HX and HY are relatively prime integers. 
By Lemma 6, p is represented by a form f’ of the principal genus of 

discriminant -4qr. Having established that [ 1, 0, qr] and [q, 0, r] are in the 
principal genus of discriminant -4qr, we apply two appropriate rational 
linear transformations to f’ and obtain in a similar fashion that Eqs. (lb) 
and (lc) are solvable. This completes the proof of Lemma 9. 

The discriminants in Theorems 3, 6, and 7 have the property that [ LO, qr] 
and [q, 0, r] are the reduced forms of the only two classes in the principal 
genus of discriminant d = -4qr; this can be derived by the Gaussian theory 
of reduction of positive definite binary quadratic forms (see, for instance, [6, 
Art. 1341). Thus the necessary conditions for the representation ofp are also 
sufficient, as they are in Theorem 1, where the only class in the principal 
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genus of discriminant -4 contains the reduced form [ 1, 0, I], and [ LO, 5] is 
the reduced form in the only class in the principal genus of discriminant 
-20. 

4. DIRICHLET'S METHOD 

Assume that Eqs. (1) are solvable. We obtain the basic equations 

q(K*N* - rH*B*) = (HA + KM)(HA -KM) (4) 

K”M* - rH*D* = q(HC + K’N)(HC - K’N) (4’) 

by cross-multiplying Eqs. (la) and (lb), (la) and (lc), respectively, and 
rearranging. The heart of the method of Dirichlet involves analysis of the 
prime divisors of the quantities HA f KM and HC f K’N. 

LEMMA 10. Let v be an odd prime distinct from q and r. 

(a) Let v divide HA + KM (or HA - KM). If (r / v) = -1, then an 
even power of v exactly divides HA + KM (or HA - KM). 

(b) Let v divide HC + K’N (or HC - K’N). If (r / v) = -1, then an 
even power of v exactly divides HC + K’N (or HC - K’N). 

Note. It suffices to prove the lemma for HA + KM and HC + K’N. 
Replacing H by -H provides proofs for the other cases. 

Proof of (a). Let v be an odd prime divisor of HA + KM in (4) different 
from q and r. 

From (4), (KN)’ s r(HB)* (mod v). If vj(KN, HB), then (r ) v) = 1. 
If v ((KN,HB), then v 1 (K, H) or v j (N, B), as (H, N) = 1 = (K, B). If 

v ( (K, H), then (la) and (lb) yield (-q 1 v) = 1, (-qr ) v) = 1, respectively. 
Hence (r 1 v) = 1. 

Now assume that vc(K, H) but u 1 (N, B). If v also divides HA - KM, 
then v 1 HA and v (KM. But v / HB and v / KN. Hence v divides both 
(HA, HB) = H and (KM, KN) = K. Thus u 1 (K, H); contradiction. 

It remains to consider the case where v jHA - KM. Assume v’ 11 (N, B). 
Then Eq. (4) becomes 

q[(KN/v’)’ - r(HB/u’)*] = (HA - KM)(HA + KM)/v*‘. 

We conclude the proof by showing that uzf I/ HA + KM or (r 1 v) = 1. If 
v / (HA + KM)/v*‘, then 

(KN/v’)* s r(HB/v’)* (mod v). 
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This implies (r ( V) = 1 unless u divides both KN/u’ and HB/v t. If v ( K, then 
by (lb), u ( A, contradicting (A, B) = 1. If u ) N/v’, then u 1 H; this leads to a 
contradiction of (M, N) = 1 in (1 a). 

The proof of (b) is almost identical. 

LEMMA 11. Let r z 1 (mod 4). Let S denote the set of the four 
expressions HA f KM, HC f K’N. 

(a) If r divides HA + KM or HA -KM, then r ( N, If r divides 
HC + K’N or HC - K’N, then r ( M. At most one element of S is divisible by 
r. 

(b) The largest odd divisor of each of the elements of S is not a 
quadratic nonresidue (mod r). 

(c) If r z 1 (mod 8), then the elements of S are not quadratic 
nonresidues (mod r). 

Proof: If r divides HA + KM or HA -KM, then by Eq. (4), r 1 KN. 
Hence r ( N, since r 1 K and Eq. (lb) imply r 1 (A, B), a contradiction. If r 
divides both HA + KM and HA -KM, then r 1 HA and r ) KM. Since r (A or 
r ( K implies r 1 (A, B), r must divide H and M. But by Eq. (la), this implies 
r ) (M, N), a contradiction. We show similarly, by referring to Eqs. (4’), (lc), 
and (la), that if r divides HC + K’N or HC - K’N, then r ( M, and that r 
cannot divide both HC + K’N and HC - K’N. Finally, if r divides one of 
HA f KM and HA -KM, and also one of HC + K’N and HC - K’N, then 
r ) N and r ) M, which contradicts (M, N) = 1 in (la). This completes the 
proof of part (a). 

Let w  E S, and let u be any odd prime divisor of w  distinct from q and r. 
We invoke the law of quadratic reciprocity and the assumption r = 1 
(mod 4) to derive from Lemma 10 that if (u ( r) = -1, then an even power of 
u exactly divides w. Hence the largest odd divisor of w  is not a quadratic 
nonresidue (mod r), and we have established part (b). Part (c) then follows 
from noting that r = 1 (mod 8) implies (2 I r) = 1. 

If r = 5 (mod 8), then we must attempt to determine the parities of the 
powers of 2 which exactly divide each of the elements of S. The following 
lemma will be useful in this context. 

LEMMA 12. If r E 5 (mod 8), then an even power of 2 exactly divides 
x2 - ry’. 

Proof: Let 2’11~ and 2’11 y. If sz t, then clearly 22w ()x2 -ry2, where 
w  = min{s, t}. If s = t, then x2 3 y2 z 22S(mod 22s+3). Hence 
22s+2 11 x2 - ry2. 
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5. THE CASE q = 1, I = 5 

This section is devoted to proving Theorem 1. 
As noted at the end of Section 3, if p = 1 or 9 (mod 20), then (la) and 

(lb) are solvable with H = K = 1. Elementary considerations (mod 5) show 
that one of M and N must be divisible by 5. The basic equation (4) becomes 

N2 - 5B2 = (A + M)(A - M). 

First assume that A is even. Then B, A + M, and A -M are odd, since 
M z 1 (mod 4). According to Lemma 11, part (b), (A + M 15) = 0 or 1 and 
(A - M ( 5) = 0 or 1. The only values (mod 5) of (A, M) which satisfy these 
conditions are (kl, 0) and (*2, k2), since 5j’A. If 5 /M, then A = k4 
(mod lo), and p = A * + 5B2 z 16 + 5 G 1 (mod 20). If, however, 5 jM, then 
A z + 2 (mod lo), and p = A * + 5BZ z 4 + 5 z 9 (mod 20). This proves 
Theorem 1 if A is even. 

If A is odd, choose the sign of A so that A = h4 zz 1 (mod 4); then 
A + M = 2 (mod 4). By Lemma 12, A - M is also exactly divisible by an 
odd power of 2. Since (2 15) = -1, we deduce from Lemma 11, part (b), that 
(A f M 1 5) = 0 or -1. The only values (mod 5) of (A, M) which satisfy 
these conditions are (f2,O) and (k 1, f 1). If 5 1 M, then p = 9 (mod 20) 
while if StM, then p = 1 (mod 20). This proves Theorem 1 if A is odd. 

6. THE CASE q ODD, r = 2 

In this section we prove Theorem 2 and its corollary for the special case 
q = 7, Theorem 3. We assume that Eqs. (1) hold, and are aided by Lemma 1. 

Proof of Theorem 2. We present the arguments for conditions (a), (b), 
and (c) on K. The arguments for K’ are analogous. 

By Lemmas 1 (should q divide HA + KM) and 10, if u is any odd prime 
divisor of HA + KM, then (2 1 V) = 1, which is equivalent to u = f 1 (mod S), 
or Vet )I HA + KM. But v* = 1 (mod 8); hence, if 2” 1) HA + KM, then 

(HA + KM)/2’ SE f 1 (mod 8). 

We may choose the signs of K and A so that K = 4k + 1 and A = 4a + 1, 
and consider the basic equation (4) with r = 2 

q(K*N* - 2H2B2) = H2A2 - K*M= (5) 

modulo certain powers of 2. There are three cases. 

641/19/2-IO 
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(a) Suppose M is even; put M = 4m, N = 4~2 + 1, H = 4h + 1. Then 
HA + KM is odd, so that s = 0, and we have 

HA+KM=4h+4a+1+4mr&l=l (mod 8). 

Expanding Eq. (5) (mod 16) and dividing by 2 yields 

4k + 4n ZE 4h + 4a + qB2 + (1 - q)/2 (mod 8). 

Combining the last two congruences (and using 4k s -4k (mod 8)) gives 

4m+4n-4k=M+N-K=qB*+(l-q)/2 (mod 8). 

This is congruence (a) of Theorem 2. 

(b) Suppose N is even; put N = 4n, M = 4m + 1, H = 4h + 1. By (3), 
p = 1 (mod B), so that B = 2b is even; furthermore, HA + KM E 2 (mod 4), 
so that s = 1. Then 

(HA+KM)/2-1=2(h+a+k+m)=Oor-2 (mod 8). (6) 

If we expand Eq. (5) (mod 32) and divide by 4, we obtain 

4n + 2(h + a - k - m) z 2qb2 (mod 8). (7) 

(Recall that x2 -x is even for every integer x.) This congruence implies that 
b has the same parity as h + a + k + m, so that (6) becomes 

2(h + a + k + m + b*) = 0 (mod 8). 

Subtracting this congruence from congruence (7) gives 

4m + 4n - 4k s 26*(1 + q) (mod 8). 

Since 1 + q is even, 2b*(1 + 4) E 2b(l + 4) z B(l + 4) (mod 8). Hence 

4m+4n-4k=M+N-KrB(l +q) (mod 8). 

This is congruence (b) of Theorem 2. 

(c) SupposeHiseven;putH=4h,M=4m+l,N=4n+l+AsHis 
even, HA + KM is odd, s = 0, so that 

2(HA+KM)-2=8h+Bk+BM=Oor-4 (mod 16), 

Bh+Bk+BmrO (mod 16). 
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Expand Eq. (5) (mod 32) and divide by 2. Since, by Lemma 1, q E 7 
(mod 8), 

8h z 12m + 4n + (1 f q)/2 (mod 16). 

Combining the last two congruences, we obtain 

4m+4n-8k=M+N-2K--(l +q)/2 (mod 16). 

This is congruence (c) of Theorem 2. 
The proofs of congruences (d), (e), and (f) are very similar to those of (b), 

(a), and (c), respectively. 

Remarks. Congruences (c) and (f) of Theorem 2 do not depend at all on 
A, B, C, or D; thus if H is even, we have predict&e restrictions. By (3), q = 7 
(mod 8). If q z 15 (mod 16), then (c) and (f) impose identical restrictions on 
K and K’, so they comprise an inclusive predictive restriction. If, however, 
q = 7 (mod 16), then (c) and (f) impose mutually exclusive restrictions on K 
and K’, so they comprise an exclusive predictive restriction. 

If H is odd and q = 7 (mod 8), then Theorem 2 yields 

M + N - K z (1 + q)/2 or 0 (mod 8) according as M or N is even, 

it4 + N - K’ = 0 or (1 + q)/2 (mod 8) according as M or N is even. 

These restrictions are predictive. They are inclusive or exclusive according as 
q = 15 or 7 (mod 16). (Note that this is the same situation that prevails 
where H is even, so that the type of restriction depends only on q (mod 16).) 

If q = 1 (mod 8), the restrictions on K and K’ are not predictive. Note, 
however, that if the roles of q and r are interchanged, then Theorem 4 
provides a predictive restriction for these K and K’. 

The case q = 7 of Theorem 2, motivated by [8, Theorem 31, has a 
particularly elegant formulation. If (p ] 7) = 1 and p = f 1 (mod 8), then 
p = M* + 7N*; moreover, p is represented by one of the two reduced forms 
[ 1, 0, 141 and [2,0, 71 in the principal genus of discriminant -56. Since 

p=A* + 14B* implies (-3)*p = 2(A + 7B)* + 7(A - 2B)*, 

p=7C2+2D2 implies (-3)* p = (7C + 2D)2 + 14(C - D)*, 

it follows that (lb) and (lc) are solvable with K, K’ = 1 or -3. Then 
Theorem 2 implies that p = A ’ + 14B*, that is, K = 1, if and only if 
M + NE 5 (mod 8) if M is even, or M + N = 1 (mod 8) if N is even. Upon 
noting that M is even if and only if p = 7 (mod 8), we obtain Theorem 3. 

A similar situation prevails for q = 23 = 7 (mod 16). If (p ( 23) = 1, then 
(la) holds with H = 1 or H = -3. (The latter corresponds to the reduced 
forms [ 3, &2, 81 in the principal genus of discriminant -92.) If also p = f 1 
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(mod 8), then (lb) and (lc) hold with K, K’ = 1 or 5 (the relevant reduced 
forms are [I, 0,461 and [2,0,23]). We may formulate for q = 23 a theorem 
similar to Theorem 3. 

Here are several examples for q = 7 and q = 23: 

4 P H M N K A B K’ C D 

7 23 1 4 1 1 -3 1 -3 1 10 
7 71 1 8 1 -3 17 5 1 -3 2 

23 31 -3 16 1 5 -19 -3 1 1 2 
23 167 1 12 1 l-11 15 9 34 

In contrast, consider the case q = 31 = 15 (mod 16). Let (p 131) = 1 and 
p = f 1 (mod 8); then (la) is solvable with H = 1 or H = 5 (the relevant 
reduced forms are [ l,O, 311 and [5, f4, 71). If M + N= 5 (mod 8), then 
(lb) and (Ic) are solvable with K = K’ = -3; if it4 + N = 1 (mod 8), then 
they are solvable with (K, K’) = (1, -7) or (-7, 1). Thus K 3 K’ (mod S), 
which is consistent with the inclusive predictive restriction in this case. 
Examples follow: 

P H M N K A B K’ C D 

7 5 12 l-3 1 1 -3 1 4 
71 5 16 -7 1 -3 1 -7 -3 40 

7. THE CASE r ODD 

Let r = 1 (mod 4). We open this section by relating the quadratic 
characters (mod r) of HA f KM and HC i K’N. The result, Lemma 14, is 
needed in the proofs of Theorems 4 and 5. We acknowledge with gratitude 
the assistence of Emma Lehmer at this point. 

LEMMA 13. Let x, y, and z be integers, v an odd prime dividing 
z2 - x2 - y2. Then none of the four products 

w f x)tz f Y> 

is a quadratic nonresidue (mod v). 

Proof: If v divides z f x, assume, without loss of generality, that z =x 
(mod v). Then v 1 y, so that 

2(z + x)(z f y) E 4z2 (mod v), 

2(z-x)(z fY)EO (mod v). 
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Otherwise, put z - x = w (mod v). Then w(z + x) =y* (mod 0). Also 
2wz = w* +y* (mod v), so that 2w(z i v) z (w rt JJ)’ (mod v). The result is 
now apparent. 

LEMMA 14. Let r = 1 (mod 4). If Eqs. (1) hold, then (p 1 r) = (q j r) = 1, 
and for all choices of sign, 

(a) (HA k KM / r) = (K(Hp”* k M) 1 r), 

(b) (HC f K’N j r)(ZK’q”*(Hp”* zk M) 1 r) = 0 or I. 

Proof. Since Eqs. (1) hold, by Lemmas 2 and 3, (p ( r) = 1 = (q / r). 
Thus p’l* and q”* are integral (mod r). Denote by e an integer such that 

pze’ (mod r). 

Then Eq. (lb) yields 

K*e* =A* (mod r). 

Choose the sign of e so that 

Then 

A z Ke (mod r). 

HA f KM = HKe f KM = K(HpLi2 f M) (mod r). 

Part (a) of the lemma is an immediate consequence. 
Equation (4 ’ ) yields 

qH*C* E qK’*N2 + K”M* (mod r). 

Then Lemma 13 with x = q ‘/*KIN y G K’M, z = q”*HC(mod r) implies that , 
none of the four products 

2q”*(HC + K’N)(q”‘HC i K’M) 

is a quadratic nonresidue (mod r). Equation (lc) permits replacing q”*C by 
p”*K’, thereby establishmg part (b) of the lemma. 

What is the significance of these congruences? By Lemma 11, if r = 1 
(mod 8), then HA f KM and HC f K’N cannot be quadratic nonresidues 
(mod r). When the solution to (la) is given, we can predict from these 
congruences whether or not K and K’ are quadratic residues (mod r). When 
r = 5 (mod 8) we need also the parities of the powers of 2 exactly dividing 
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HA f KM and HC f K’N. In some cases these parities can be predicted 
from the solution to (la); this is discussed later, 

Assume now that q = 2. 

Proof of Theorem 4. By Lemma 2, r z 1 (mod 8). Equation (la) is 
solvable with H = 1. By Lemma 11, A f KM and C f K’N cannot be 
quadratic nonresidues (mod r). If we define u by 

(p*l* f M ) r) = 0 or u, 

then Lemma 14 implies 

W I r> = u, (K’ ) r) = (23’2 1 r)u = (2’12 J r)u = (2 ) r), u. 

Remark. Theorem 4 gives a predictive restriction, because A, B, C, and 
D are not involved. It is inclusive or exclusive according as (2 / r)4 = 1 or 
-1. 

As an example, consider the case r = 17. The principal genus of 
discriminant -136 = -4 . 34 contains just the two classes having reduced 
forms [ 1, 0, 341 and [2,0, 171. This implies that exactly one of (lb) and (lc) 
is solvable with p having coefficient 1; this is consistent with (2 ) 1 7)4 = -1. 
Specifically, p = A2 + 34B2 or 2C2 + 17D2 according as (p”* f M 1 17) = 0 
or 1, or 0 or -1. A similar statement holds for r = 4 1. 

Here are some numerical examples: 

(a) r=17,p=137=3*+2~8*~12(mod17). 

(2 / 17), = (6 ) 17) = -1. 

(p”2+M~17)=(flf3~17)=l,so(K~17)=1,(K’/17)=-l. 

12. 137=12+34~22,(l~17)=1. 

5’. 137 = 2. 362 + 17. 7’, (5 1 17)= -1. 

(b) r = 17, p = 2393 = 9’ $2. 342 = 92 (mod 17). 

(21 17),=-l. 

(p1”kM(17)=(f9f9(17)=Oor l,so(K(l7)=1, 

(K’I 17) = -1. 

1*~2393=43*+34~4*,(1)17)=1. 

5* . 2393 = 2 - 182 + 17 . 59*, (5 ( 17)= -1. 

(c) r=41,p=73=12+2~62~142(mod41). 

(2 ) 41), = (17 ) 41) = -1. 

(p”2~M~41)=(f14~1)41)=-l, so (K/41)=-1, (K/141)=1. 

72. 73=572+82.22, (7141)=-l. 
12.73=2~4*+4112,(1~41)=l. 
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(d) r=73,p= 19= l*f2. 3*-26* (mod73). 

(2 ( 73), = (32 173) = 1. 

(p”* kM173)= (k26 51173)= 1, so (K(73)=(K’173)= 1. 
3* + 19 = 5* + 146. l* = 2. 72 + 73 . 12, (3 173) = 1. 

Now let q be odd. 

Proof of Theorem 5. If r = 1 (mod S), then (2 1 r) = 1, and the 
conclusions of the theorem are immediate consequences of Lemma 11, parts 
(a) and (c), and Lemma 14. 

Henceforth assume r = 5 (mod 8). Define s, s’, z, and z’ by 

2” 11 HA f KM, 2”’ I( HC f K’N, 2’ /I HA -KM, 

2” I( HC - K’N. 

By Eqs. (4) and (4’) and Lemma 12, s = z (mod 2), and s’ = z’ (mod 2). It 
suffkes, accordingly, to show that (2’ 1 r) = (-1)“ and (2”” ( r) = (-l,“, in 
view of Lemma 14 and Lemma 11, part (b). 

We first study q = 1 (mod 4). Considering Eqs. (1) (mod 4) reveals that 
H, K, and K’ are odd. Then Eqs. (4) and (4’) yield 

(HA + KM)(HA -KM) = q(N2 + 3B*) (mod 8) 

q(HC + K’N)(HC - K’N) = M2 + 3D2 (mod 8), 

respectively. 
If N and B are both odd, then 2* /I (HA + KM)(HA -KM). Thus s = 1. 

Similarly, if M and D are odd, then s’ = 1. 
If N + B is odd, then also HA + KM is odd, so that s = 0. Similarly, if 

M + D is odd, then s’ = 0. 
If N and B are even, then M and A are both odd. Choose signs so that all 

odd variables are = 1 (mod 4). Then HA + KM = 2 (mod 4), and s = 1. 
Similarly, if M and D are even, then s’ = 1. 

In summary, s = N + B f 1 (mod 2) and s’ = M + D t 1 (mod 2). The 
conclusion in the theorem aboutf’ in this case follows from noting that since 
H is odd, M and N have opposite parities. 

It remains to investigate q E 3 (mod 4). Choose signs so that all odd 
variables are rl (mod 4). Considering Eqs. (1) (mod 8) yields the following: 

If q 3 3 (mod 8), then HE 1 or 2 (mod 4), and K, K’ s 0 or 1 (mod 4). 
If q 5 7 (mod S), then H E 0 or 1 (mod 4), and K, K’ E 1 or 2 (mod 4). 
Assume that q = 3 (mod 8). If K 3 0 (mod 4), then A is odd, so that 

HA+KMrH-1 or 2 (mod4). Thus s=H-lrH+K+l (mod2). 
Similarly, if K’ = 0 (mod 4), then s’ z H + K’ + 1 (mod 2). 

Now let K s 1 (mod 4). If H is even, then M is odd, so that s = 0 = H + 
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K + 1 (mod 2). Similarly, if K’ G 1 (mod 4) and H is even, then s’ z H + 
K’ + 1 (mod 2). 

Finally consider K = H = 1 (mod 4). Then HA + KM = A + M (mod 4). 
Similarly, if K’ = Hz 1 (mod4), then HC + K’N= C + N (mod 4). By 
considering Eqs. (1) (mod S), we obtain the following table, in which all 
variables are given (mod 4), except for p, which is given (mod 8): 

P A M C N 

I 1 1 2 0 
3 2 0 1 1 
5 1 1 0 2 
7 0 2 1 1 

In every case A + M = C + N _= 2 (mod 4). Hence 

s=s’=lrHtKt1rHtK’tl (mod 2). 

In summary, if q = 3 (mod 8), then s= H + K+ 1 (mod 2) and 
s'=HtK'+ l(mod2). 

If q = 7 (mod 8), the analysis is almost identical to that for q 3 3 (mod 8). 
In particular, if HE K z K’ = 1 (mod 4), the above table remains valid, 
provided the entries 3 and 7 in the p column are interchanged. 

Remark. If r = 1 (mod 8), then Theorem 5 yields predictive restrictions 
that are inclusive or exclusive according as (ql’* 1 r) = (q 1 r)4 = 1 or -1. 
Likewise, if r G 5 (mod 8) and q = 3 (mod 4), the restrictions are predictive. 
One may formulate the restrictions as 

(-l)K(KIr)=-(-l)HU, (-l)K’ (K’ 1 r) = (-1)” (q 1 r)4 u. (8) 

Observe that the restrictions on (-l)K (K ( r) and (-l)K’ (K’ 1 r) are inclusive 
or exclusive according as (q ( r)4 = -1 or 1. If, however, r = 5 (mod 8) and 
q = 1 (mod 4), th en the restrictions involve the variables B and D, so they 
are not even predictive. 

We now present the proofs of two special cases of Theorem 5, motivated 
by [8, Theorems 4 and 51 and [8, Theorem 61, respectively. 

Proof of Theorem 6. Here q = 3, r = 13. Since (p ( 3) = 1 by Lemma 3, 
Eq. (la) is solvable with H = 1. In addition, (p 1 13) = 1, and the reduced 
forms of the only classes in the principal genus of discriminant 
-156 = -4 . 39 are [ 1, 0,391 and [3,0, 131, so that either (lb) is solvable 
with K = 1 or (lc) is solvable with K’ = 1. This exclusive restriction is 
consistent with (3 ) 1 3)4 = (4 ] 13) = 1. Then according to (8), K = 1 if and 
only if u = -1, while K’ = 1 if and only if u = 1. The conclusion of the 
theorem now follows. 
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Here are some numerical examples. Note in this context that 
P=A2+39B2 implies 4*p= 3(A 5 138)’ + 13(A i 3B)‘, while 
p = 3C2 +- 130’ implies 4’~ = (3C f 130)’ + 39(C F D)‘. 

P M N p”’ + M(mod 13) K A B K’ C D 

43 4 3 *6. +2 I 2 1 4 11 5 
4 15 1 

61 7 2 *3, *4 4 1 5 1 4 1 
4 25 3 

Proof of Theorem 7. Here 9 = 11, r = 5. The reduced forms of 
discriminant -44 are [ 1, 0, 111 and 13, k2.4 1; all are in the principal genus. 
If p = 3.~’ f 2x-r + 4y2, then 

4p = (x f 44q2 + 1 1X2. 

Thus Eq. (la) is solvable with H = 1 or 2. 
The only reduced forms in the principal genus of discriminant 

-220=-4. 55 are [1,0,55] and [5,0, 111. Hence either (lb) is solvable 
with K = 1 or (lc) is solvable with K’ = 1. (This exclusive restriction is 
consistent with (11 ) 5)4 = 1.) Then Theorem 5 implies that (1 b) is solvable 
with K = 1 if and only if (-1)‘1 (HP”* f M 15) =0 or 1, while (lc) is 
solvable with K’ = 1 if and only if (-l)H(Hp”Z f M / 5) = 0 or -1. 

The conclusion as stated in Theorem 7 is now obtained by working out 
the possibilities (mod 5) of the above conditions, using the fact that 
(plS)= 1 implies either 5/M or 5jN. 

Here are some numerical examples. Note that p = A2 + 55B* implies 
4*p = 1 l(A f SB)* + 5(A $ 1 lB)‘, while p = llC* + SD2 implies 42p = 
(11C i 50)’ + 55(C F 0)‘. 

P H M N HP”’ + M(mod 5) K A B K’ C D 

31 2 5 3 f2 4 13112 
4 21 1 

59 2 15 1 iI 1 2 1 4 3 13 
4 7 9 

71 2 3 5 0, *l 1 4 1 4 1 15 
4 9 7 

8. CONCLUDING REMARKS 

It is clear from Lemma 9 that the form(s) [a, G, c] of discriminant -4qr 
determine a pair (K, K’). (The numbers are not unique, but we choose those 
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whose absolute values are least.) Note that it is not always possible to 

recover the form when K or K’ is given. For example, if q = 73 and r = 89, 
we find the following pairs (K,K’): (1,57), (3, 19), (9,57), (1 I, II), 
(13,29), (19, 3), (29, 13), (39,39), (57, l), (57,9); the number 57 has two 
different “mates,” and K = 57 is associated with the forms [ 73,0,89] and 
[2, 2, 32491. 

In this $xample the values of K (or K’) are divided into two subsets, in 
accordance with Theorem 5. The quadratic residues (mod 89) are 1, 9, 11, 
39, 57; the quadratic nonresidues (mod 89) are 3, 13, 19, 29. Since 
73 z 89 = 1 (mod 8), we may interchange q and r and still have a predictive 
situation. The prediction still applies to the classes of forms of discriminant 
-4 . 73 . 89 = -25988, so we obtain the same values of K and K’. But now 
the values of K and K’ are considered with respect to the modulus 73. The 
quadratic residues are 1, 3, 9, 19, 57; the quadratic nonresidues are I I, 13, 
29, 39. Note that if we make both predictions, with respect to q = 73 and 
with respect to q = 89, we are able to divide the values of K and K’ into four 
subsets, rather than two: 1, 9, 57; 11, 39; 3, 19; 13, 29. 

There are indications that the theory of spinor genera of binary quadratic 
forms of Estes and Pall [4] may yield a deeper understanding of the 
significance of Theorems 2, 4, and 5, and in particular, the phenomenon 
noted in the previous paragraph. We propose to probe this in a future study. 
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