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We show that a Nambu–Goto string has a nontrivial zero length limit which corresponds to a massless 
particle with extrinsic curvature. The system has the set of six first class constraints, which restrict the 
phase space variables so that the spin vanishes. Upon quantization, we obtain six conditions on the state, 
which can be represented as a wave function of position coordinates, xμ , and velocities, qμ. We have 
found a wave function ψ(x, q) that turns out to be a general solution of the corresponding system of six 
differential equations, if the dimensionality of spacetime is eight. Although classically the system is just 
a point particle with vanishing extrinsic curvature and spin, the quantized system is not trivial, because 
it is consistent in eight, but not in arbitrary, dimensions.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Before the occurrence of string theories, elementary particles 
were described as point particles. They could live in principle in 
arbitrary dimensions, interacting by gravitational and other three 
fundamental forces. In string theories, particles and fields are ex-
citations of a string. Quantized bosonic string theory is consistent 
in 26 dimensions. As an approximation, a string can be treated 
as a point particle with extrinsic curvature and spin [1–3], the 
so-called rigid particle [4–17]. In the description of Ref. [3], the 
system has two first class constraints, inherited from the string, 
and four additional constraints that are second class. In this pa-
per we consider the zero length limit of such a system, in which 
case all six constraints become first class, and effectively eliminate 
from the description all the degrees of freedom, except those of a 
point particle, whose extrinsic curvature and spin vanish. At first 
sight this could mean that we have arrived at the theory of a point 
particle, living, in principle, in arbitrary dimensions. But the six 
first class constraints are still present there, and, upon quantiza-
tion, they become restrictions on possible physical states. We have 
found that for a rather general class of solutions the quantum de-
scription can be performed consistently in eight dimensions, but 
not in other dimensions.

In Section 2 we derive a particle with extrinsic curvature from 
a string, and in Section 3 we consider its zero length limit. 
We obtain the same action that had already been considered by 
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McKeon [13]. However, in distinction to the case of Ref. [13], our 
system is subjected to a constraint, inherited from the string the-
ory, that was not taken into account in Ref. [13]. Therefore, our 
dynamical system is different, because it has two primary con-
straints, whose conservation gives additional four constraints. Alto-
gether, we obtain six constraints that turn out to be all first class. 
In the presence of those constraints, the particle’s center of mass 
momentum pμ , velocity qμ = ẋμ , and the conjugate momentum 
πμ are all parallel to each other. Therefore, the particle’s spin and 
extrinsic curvature are zero, which means that the particle’s po-
sition xμ(τ ) describes a straight worldline, and not a helix, as in 
the case of a rigid particle. In Section 4 we quantize the system by 
imposing the six constraints as restrictions on physical states, and 
find a wave function that solves the latter system of equations, 
provided that the dimension of the space in which the particle 
lives, is eight. In Conclusion section we argue why this is a remark-
able, nontrivial, result, revealing yet another surprising property of 
string theories.

2. The particle with curvature from a string

In the previous paper [3] its was shown that one can obtain a 
particle with curvature as an approximation to a string, living in 
a target space with an extra time-like dimension. The string equa-
tions of motion in the conformal gauge are then

Ẍ μ̂ + X ′′μ̂ = 0, Ẋ μ̂ Ẋμ̂ − X ′μ̂ X ′
μ̂ = 0, Ẋ μ̂ X ′

μ̂ = 0, (1)

where μ̂ = (μ, D + 1), μ = 0, 1, 2, 3, . . . , D − 1. A possible solution 
is
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Xμ = Cμτ +
∑

n

(
aμ

n cosωnτ + bμ
n sinωnτ

)
eknσ ,

X D+1 = σ , σ ∈ [0, L], (2)

where

ω2
n − k2

n = 0, a2
n = b2

n, Cμaμ
n = Cμbμ

n = aμ
n bnμ = 0,

C2 = 1, kn = nπ

L
. (3)

In particular, if all higher modes with n > 1 vanish, we have:

Xμ = Cμτ + (
aμ cosωτ + bμ sinωτ

)
ekσ ,

X D+1 = σ , σ ∈ [0, L], (4)

where we have denoted aμ
1 ≡ aμ , bμ

1 ≡ bμ , ω1 ≡ ω. Such a string 
satisfies the Dirichlet boundary condition

δX μ̂
∣∣

B = 0, (5)

such that the string ends move on a D-brane [3].
For a fixed σ , Eq. (4) describes a helix in D dimensions. If the 

string length L is small in comparison with the radius of the helix, 
then the string effectively behaves like a point-particle, tracing a 
helical worldline.

The string embedding functions can be expanded according 
to [1–3],

Xμ(τ ,σ ) = xμ(τ ) + yμ(τ )kσ +O
(
k2σ 2),

X D+1(σ ) = σ , (6)

where k is a constant. For the solution (4) this gives

xμ(τ ) = Cμτ + aμ cosωτ + bμ sinωτ,

yμ = aμ cosωτ + bμ sinωτ . (7)

From now on, we will consider the expansion (6), and search 
for the action satisfied by the variables xμ(τ ) and yμ(τ ). In Ref. [3]
we started from the Polyakov action

I
[

X μ̂, γ ab] = T

2

∫
d2ξ

√
γ γ ab∂a X μ̂∂b Xμ̂, (8)

where T is the string tension, and ξa = (τ , σ).
Using the expansion (6), the action (8) becomes [3]

I = LT

2

∫
dτ

[
1

e

(
ẋ2 + Lkẋ ẏ

) + e
(
1 + f 2)(k2 y2 + 1

) − 2 f kẋy

]

+O
(
k2L2), (9)

where e(τ ) and f (τ ) comes from the expansion of √γ γ 11 and √
γ γ 12, respectively, whereas the expansion of √

γ γ 22 gives 
e(τ )(1 + f 2(τ )) +O(σ ). The equations of motion are:

δe: − 1

e2

(
ẋ2 + Lkẋ ẏ

) + (
1 + f 2)(1 + k2 y2) = 0, (10)

δ f : f e
(
1 + k2 y2) − kẋy = 0, (11)

δy: −Lk
d

dτ

(
ẋμ

e

)
+ 2e

(
1 + f 2)yμ − 2 f kẋμ = 0, (12)

δx:
d

dτ

(
ẋμ

e
+ Lk ẏμ

2e
− f kyμ

)
= 0. (13)

In a gauge in which f = 0, the action (9) is

I = LT
∫

dτ

[
ẋ2

+ e + Lkẋ ẏ + ek2 y2
]
. (14)
2 e e
If we plug the equation of motion

yμ = L

2k

1

e

d

dτ

(
ẋμ

e

)
, (15)

and introduce the parameters

m = LT , μ = L3T

8
, (16)

then the action (14) becomes [3]:

I
[
xμ, e

] =
∫

dτ

[
m

2

(
ẋ2

e
+ e

)
− μ

e

d

dτ

(
ẋμ

e

)
d

dτ

(
ẋμ

e

)]
. (17)

This action contains first and second order derivatives of the vari-
ables xμ(τ ). According to the Ostrogradski formalism [18], higher 
derivative theories contain negative energies. In the presence of an 
interaction such a system can become unstable. A relatively recent 
finding is that this is not always so. As shown in Refs. [19–22], 
there exist interacting second order systems that are uncondi-
tionally stable. Moreover, as pointed out by Woodard [23], the 
presence of a sufficient number of gauge constraints can stabilize 
the system. As an example, Woodard cited the second derivative 
model of a massless point particle with rigidity, considered by 
Plyushchay [7].

3. Zero length limit

We will now consider the limit in which the string length L
tends to zero. For such purpose let us introduce a new parameter 
τ ′ = h(τ ), and a new Lagrange multiplier ẽ(τ ′) according to the 
relation

dτe = dτ ′mẽ. (18)

Under such a reparametrization the action (17) becomes

I
[
xμ, ẽ

] =
∫

dτ ′
{

1

2

[(
dx

dτ ′

)2 1

ẽ
+ m2ẽ

]

− μ

m3

1

ẽ

d

dτ ′

(
1

ẽ

dxμ

dτ ′

)
d

dτ ′

(
1

ẽ

dxμ

dτ ′

)}
. (19)

The parameter τ ′ can be renamed into τ , and the latter action can 
be written as∫

dτ

[
1

2

(
ẋ2

ẽ
+ m2ẽ

)
− μ

m3ẽ

d

dτ

(
ẋμ

ẽ

)
d

dτ

(
ẋμ

ẽ

)]
. (20)

Expressing m and μ according to Eq. (16), the coefficient in 
front of the second term of the latter action becomes μ/m3 =
1/(8T 2) ≡ μ̃. In Eq. (20) we have a term that corresponds to the 
Howe–Tucker action [24], and an extra term that corresponds to 
the particle’s curvature.

The action (20) has two important limits:
(i) T → ∞, implying μ/m3 ≡ μ̃ = 1/(8T 2) → 0. The term with 

curvature then disappears from the action. The term containing 
m = LT would become infinite, unless we also impose the limit 
L → 0 such that m = LT remains finite. Then Eq. (20) becomes the 
well-known Howe–Tucker action for massive point particle.

(ii) T finite, L → 0. In such limit, we have m = LT → 0, whereas 
μ/m3 ≡ μ̃ = 1/(8T 2) remains intact, and the action (20) becomes

I
[
xμ, ẽ

] =
∫

dτ

[
1

2ẽ
ẋ2 − μ̃

ẽ

d

dτ

(
ẋμ

ẽ

)
d

dτ

(
ẋμ

ẽ

)]
. (21)

The latter action is identical to the action for the “massless” parti-
cle with curvature, considered by McKeon [13].
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In the following we will investigate in some detail the case (ii). 
From now on, we will rename ẽ into e, and μ̃ into μ, and write 
the action (21) as

I
[
xμ, e

] =
∫

dτ

[
1

2e
ẋ2 − μ

e

d

dτ

(
ẋμ

e

)
d

dτ

(
ẋμ

e

)]
. (22)

The canonical momenta are

pμ = ∂L

∂ ẋμ
− d

dτ

(
∂L

∂ ẍμ

)
= ẋμ

e
+ 2μ

e

d

dτ

(
1

e

d

dτ

(
ẋμ

e

))
, (23)

πμ = ∂L

∂ ẍμ
= −2μ

e2

d

dτ

(
ẋμ

e

)
, (24)

pe = ∂L

∂ ė
= 2μ

e3
ẋμ d

dτ

(
ẋμ

e

)
. (25)

The equations of motion are

δxμ: ṗμ = 0, (26)

δe:
∂L

∂e
− d

dτ

∂L

∂ ė
= ẋ2

e2
+ 3μ

1

e

d

dτ

(
ẋμ

e

)
1

e

d

dτ

(
ẋμ

e

)

− 2μ

e

d

dτ

(
ẋμ

e2

d

dτ

(
ẋμ

e

))
= 0. (27)

The Hamiltonian is

H0 = pμẋμ + πμẍμ + peė − L0. (28)

Let us introduce the new variables

ẋμ = qμ, ė = β. (29)

From Eqs. (23), (24) we have

ẍμ = e3

2μ
πμ + ė

e
qμ, pe = −πμqμ

e
, (30)

and after inserting the latter expressions into the Hamiltonian (28), 
we obtain

H0 = e

(
pμqμ

e
− e2π2

4μ
− q2

2e2

)
+ β

(
pe + πμqμ

e

)
. (31)

In deriving the action (17) we used a gauge in which f = 0. In 
such a gauge the constraint (11) becomes

ẋμ yμ = 0. (32)

By using Eqs. (15), (24) and (29), the latter equation can be written 
as

πμqμ = 0. (33)

Our action (17) and its L → 0 limit (22) is then subjected to 
the constraint (33). Therefore, the Lagrangian L0 must be supple-
mented with the above constraint:

L = L0 − απμqμ, (34)

and the Hamiltonian H0 with

H = H0 + απμqμ. (35)

The equations of motion derived from the Hamiltonian H are
ẋμ = {
xμ, H

} = qμ, (36)

ė = {e, H} = β, (37)

q̇μ = {
qμ, H

} = −e3πμ

2μ
+ αqμ + βqμ

e
, (38)

ṗμ = {pμ, H} = 0, (39)

π̇μ = {πμ, H} = −
(

pμ − qμ

e
+ απμ + βπμ

e

)
, (40)

ṗe = {pe, H} = −3e2π2

4μ
+ q2

2e2
− β

πμqμ

e2
. (41)

Variation of the action 
∫
Ldτ with respect to e and α, gives the 

constraints

φ̃1 = 3e2π2

4μ
− q2

2e2
= 0, (42)

φ2 = πμqμ = 0. (43)

From the requirement that those constraints must be preserved 
in time, we obtain another three constraints,

φ3 = epμπμ, (44)

φ4 = pμqμ

e
+ e2π2

2μ
− q2

e2
, (45)

φ5 = p2 − pμqμ

e
. (46)

The linear combination

φ1 = −φ̃1 + φ4 = pμqμ

e
− q2

2e2
− e2π2

4μ
(47)

is an expression that enters the Hamiltonian (31).
Variation of the action 

∫
Ldτ with respect β gives the con-

straint

φ6 = epe + πμqμ = 0. (48)

The equation φ̇6 = {φ6, H} for conservation of φ6 does not give a 
new constraint.

The constraints φi , i = 1, 2, 3, 4, 5, include only the momenta 
pμ and πμ , conjugated to the dynamical variables xμ and qμ , 
whereas the constraint φ6 includes also the momentum pe which, 
due to (43) vanishes on the constraint surface. Thus, pe is merely 
an auxiliary momentum, and the constraint associated with it is 
treated as the “last” one.

From φ1 = 0, φ4 = 0, φ5 = 0 it follows that

pμqμ

e
= p2, (49)

q2

e2
= 3

2
p2, (50)

e2π2

μ
= p2. (51)

Because qμ is supposed to be a time-like vector and πμ a 
space-like vector, and because their scalar product, πμqμ , vanishes 
on the constraint surface, it follows that q2 = 0, π2 ≤ 0. Taking 
also into account that Eq. (42) implies the proportionality between 
q2 and π2, it follows that π2 = 0. Eqs. (49)–(51) then become

pμqμ

e
= 0, (52)

q2

e2
= 0,

e2π2

μ
= 0, (53)

implying p2 = 0.
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Because p2 = 0, it follows that all constraints φi , i = 1, 2, . . . , 6, 
are first class, i.e., {φi, φ j} = 0. This can be verified by calculating 
the Poisson brackets between all the constraints. In fact, the con-
straints become φ1 = pμqμ/e, φ2 = qμπμ , φ3 = epμπμ , φ′

4 = π2, 
φ′

5 = p2, φ′
6 = epe , where φ′

4, φ′
5 and φ′

6 are the appropriate linear 
combinations of the constraints φi .

Eqs. (43), (44), (49) and (51) imply that qμ , πμ and pμ are 
parallel. Consequently, the spin tensor Sμν = qμπν − qνπμ van-
ishes. The parallelism between qμ = ẋμ and pμ means that the 
4-velocity oscillations are tangential to the worldline of the parti-
cle’s center of mass. Therefore, the center of mass worldline

xT (τ ) = xμ
0 + pμτ , (54)

and the particle’s position worldline

xμ(τ ) = xμ
0 + pμτ + aμ cosωτ + bμ sinωτ, (55)

which are both solutions of the equations of motion (36)–(40), are 
not different worldlines. Both equations, (54) and (55), represent 
the same curve, they differ only in the choice of parameter. If in 
Eq. (54) we change τ according to τ → 1 + α cosωτ + β sinωτ , 
where α and β are proportionality factors, defined according to 
pμ = αaμ and pμ = βbμ , we obtain Eq. (55).

The six first class constraints diminish the number of indepen-
dent degrees of freedom of our dynamical system. It turns out that 
qμ and πμ are not dynamical degrees of freedom at all. Since qμ

and πμ are parallel to pμ , they bring nothing new to the clas-
sical dynamics system. In the following we will investigate what 
happens if we nevertheless pursue with the quantization of our 
constraint system.

4. Quantization

Upon quantization the phase space variables become the oper-
ators, satisfying the commutation relations

[
x̂μ, p̂ν

] = iδμ
ν,

[
q̂μ, π̂ν

] = iδμ
ν, (56)[

x̂μ, x̂ν
] = 0,

[
p̂μ, p̂ν

] = 0,[
q̂μ, q̂ν

] = 0,
[
π̂μ, π̂ν

] = 0, (57)

and the constraints become restrictions on physical states:

p̂μ q̂μ

e
|ψ〉 = 0, (58)

1

2

(
q̂μπ̂μ + π̂μq̂μ

)|ψ〉 = 0, (59)

eπ̂μ p̂μ|ψ〉 = 0, (60)

π̂μπ̂μ|ψ〉 = 0, (61)

p̂μ p̂μ|ψ〉 = 0, (62)

ep̂ê|ψ〉 = 0. (63)

We do not impose the condition

q̂2|ψ〉 = 0, (64)

but only

〈ψ |q̂2|ψ〉 = 0. (65)

In the representation in which x̂μ and q̂μ are diagonal, whereas 
p̂μ = −i∂/∂xμ , π̂μ = −i∂/∂qμ , Eqs. (62) and (61) become massless 
Klein–Gordon equations in the xμ-space, and the qμ-space, respec-
tively.
A particular solution of Eqs. (62), (61) is

ψp,q
(
xμ,qμ

) = eipμxμ
eiπμqμ

. (66)

Here pμ and πμ are now eigenvalues of the corresponding op-
erators. The eigenvalues must satisfy the relations pμ pμ = 0 and 
πμπμ = 0.

We will now show that a general solution of the system of 
Eqs. (58)–(63) that satisfies condition (65), is

ψ
(
xμ,qμ

) =
∫

dD p dDπa(p,π)eipμxμ
eiπμqμ

δ
(

p2)

× δ
(
π2)δ(q2)δ(qμπμ

)
δ
(

pμπμ

)
δ
(

pμqμ
)

(67)

where the constraints and the condition (65) are expressed in 
terms of the δ-functions.

(i) Eq. (58) gives

p̂μq̂μψ =
∫

dD p dDπa(p,π)pμqμeipμxμ
eiπμqμ

× δ
(

p2)δ(π2)δ(q2)δ(qπ)δ(pπ)δ(pq) = 0, (68)

because the integral of pμqμδ(pμqμ) over dD p gives zero. We dis-
tinguish the operators from their eigenvalues by the hat symbol.

(ii) For Eq. (59) we obtains(
q̂μπ̂μ − i

2
D

)
ψ = 0 (69)

q̂μπ̂μψ = (−i)

∫
dD p dDπa(p,π)eipν xν

× ∂

∂qμ

(
eiπνqν

δ
(
π2)δ(qπ)δ

(
q2)δ(pq)

)
δ
(

p2)δ(pπ).

(70)

In Eq. (69) we took into account the commutation relation (56), 
which gives π̂μq̂μ = q̂μπ̂μ − iD .

We will use

∂

∂qμ
δ
(

f (q)
) = ∂ f (q)

∂qμ

∂δ( f (q))

∂ f (q)
, (71)

which in particular gives

∂

∂qμ
δ
(
qνπν

) = πμ
∂δ(qνπν)

∂(qνπν)
. (72)

We then have

∂

∂qμ

(
eiπνqν

δ(qπ)δ
(
q2)δ(pq)

)

= iπμeiπνqν
δ(qπ)δ

(
q2)δ(pq) + πμ

δ(qπ)

∂(qπ)
δ
(
q2)δ(pq)

+ 2qμ
∂δ(q2)

∂q2
δ(qπ)δ(pq) + pμ

∂δ(pq)

∂(pq)
δ(qπ)δ

(
q2). (73)

Inserting the latter expression into Eq. (70), we obtain

q̂μπ̂μψ = (−i)

∫
dD p dDπa(p,π)eipν xν

× eiπνqν
(

iqμπμδ(qπ)δ
(
q2)δ(pq)

+ qμπμ
δ(qπ)

∂(qπ)
δ
(
q2)δ(pq) + 2qμqμ

∂δ(q2)

∂q2
δ(qπ)δ(pq)

+ qμpμ
∂δ(pq)

δ(qπ)δ
(
q2))δ

(
p2)δ(pπ). (74)
∂(pq)
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Using the relation

xδ′(x) = −δ(x) (75)

we obtain

q̂μπ̂μψ = 4iψ. (76)

Eq. (69) then becomes(
4i − iD

2

)
ψ = 0, (77)

which is satisfied if D = 8.
(iii) Eq. (60) gives:

p̂μπ̂μψ =
∫

dD p dDπa(p,π)pμπμeipν xν
eiπνqν

δ
(

p2)

× δ
(
π2)δ(q2)δ(qμπμ

)
δ
(

pμπμ

)
δ
(

pμqμ
)
, (78)

which vanishes, because of the expression pμπμδ(pμπμ) under 
the integral.

(iv) In order to calculate Eq. (61), we will use Eq. (73), in which 
we express the derivative of the δ-function as

δ′(x) = −δ(x)

x
+ �(x). (79)

The latter expression gives∫
dxF (x)δ′(x) =

∫
dx

(
F (0) + F ′(x)

∣∣
x=0x

)(−δ(x)

x
+ �(x)

)

= −F ′(x)
∣∣
x=0 − F (x)

x

∣∣∣∣
x=0

+
∫

dxF (x)�(x)

= −F ′(x)
∣∣
x=0, (80)

if we define �(x) according to∫
dxF (x)�(x) = F (x)

x

∣∣∣∣
x=0

, (81)

so that after the integration the term containing �(x) cancels out. 
Then Eq. (73) becomes

∂

∂qμ

(
eiπμqμ

δ(qπ)δ
(
q2)δ(pq)

)

= eiπμqμ
δ(qπ)δ

(
q2)δ(pq)

(
2iπμ − πμ

qνπν
− 2qμ

q2
− pμ

pνqν

)

+ terms with �. (82)

If we use the above expression in Eq. (70), we also obtain the same 
result (76).

By using Eq. (82) in Eq. (61), we obtain

π̂μπ̂μψ = − ∂2ψ

∂qμ∂qμ

= −
∫

dD p ddπeipν xν
eiπνqν

δ(qπ)δ
(
q2)δ(pq)

×
{[

πμ

(
2i − 1

qπ

)
− 2qμ

q2
− pμ

pνqν

]

×
[
πμ

(
2i − 1

qπ

)
− 2qμ

q2
− pμ

pνqν

]

+ ∂

∂qμ

(
−πμ

q2
− pμ

pq

)}

= 2
2
(D − 8)ψ. (83)
q

All other terms, including those with �, vanish.
We have found that the constraint (61) is satisfied by the wave 

function (67) in eight dimensions, just like the constraint (59).
(v) Eq. (62) becomes

p̂μ p̂μψ = − ∂2ψ

∂xμ∂xμ
= 0, (84)

which vanishes because of the expression p2δ(p2) under the inte-
gral over dD p.

(vi) Eq. (63) becomes

−i
∂

∂e
ψ = 0, (85)

which is fulfilled, because ψ does not explicitly depend on e.
A remarkable feature of the above calculations is that the wave 

function (67) does not solve the quantum constraints (58)–(63)
and the condition (65) in arbitrary dimension D , but only in 
D = 8. If (67) is indeed the most general solution of the system 
of Eqs. (58)–(63), (65), and there is no other solution, then the 
system, obtained by quantizing the zero length limit of the string, 
is consistent in eight dimensions. Though the zero length limit is 
just like a point particle, the system inherits from the string a set 
of constraints, which upon quantization can be satisfied in eight 
dimensions, but not in an arbitrary number of dimensions.

If we act on ψ with the operator Ŝμν = q̂μπ̂ν − q̂νπ̂μ , which is 
the generator of rotations in the qμ-space, we obtain

Ŝμνψ =
∫

dD p dDπ

[
(qμπν − qνπμ)

(
2i − 1

qπ

)

+ 1

q2
(qμpν − qν pμ)

]

× epρ xρ
eπρqρ

δ
(

p2)δ(π2)δ(qπ)δ
(
q2)δ(pπ)δ(pq). (86)

The latter expression vanishes, because the δ-functions restrict the 
range of the variables pμ , qμ , πμ on the surface, on which they 
are all parallel to each other, so that on the surface, qμπν −qνπμ =
0 and qμpν − qν pμ = 0. The wave function ψ(xμ, qμ) is thus a 
scalar under rotations generated by Ŝμν . The particle has vanishing 
spin.

5. Conclusion

We have found yet another surprising property of strings. So far 
it was well known that a bosonic string can be consistently quan-
tized in 26 dimensions, but not in other dimensions.1 In this paper 
we considered a zero length limit of a bosonic string. At first sight 
one would expect that such a system is just a point particle, whose 
quantized counterpart can live in arbitrary dimensions. But a thor-
ough treatment of the constraints reveals, that upon quantization 
we obtain a system of equations that can be solved by a certain 
rather general wave function only in eight dimensions. This means 
that a quantized point particle that is obtained as a limit of a string 
must live in eight dimensions, it cannot live in four dimensions. 
A consequence is that, according to Kaluza–Klein theory, such a 
particle, in the case when the 8-dimensional space is curved, ex-
periences the force that from the point of view of 4-dimensional 
subspace manifests itself as gravitation and Yang–Mills forces. This 
means that the zero point limit of the string leads to a theory 
that besides gravitation contains other fundamental forces as well. 

1 However, see Ref. [25], where slightly more general strings were shown to be 
consistent in arbitrary dimensions.
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The original string theory (of strings with finite extension) also 
leads to gravitation and Yang–Mills fields, though within a rather 
different theoretical procedure.

Zero length limit of a string and the corresponding theoretical 
description, is merely a theoretical idealization. In reality, a string 
remains finite, approximately being described as a zero length 
string living in eight dimensions. In the approximate theory, only 
eight dimensions are necessary for the consistency, the remaining 
eighteen dimensions are superfluous. In fact the approximate the-
ory is not consistent in 26 dimensions. The remaining eighteen di-
mensions are necessary for consistent description of the remaining 
degrees of freedom that are truncated in the approximate theory. 
Thus, treating a string as a point particle, decouples eighteen di-
mensions from the description. The point particle “sees” only eight 
dimensions, and, if the space is curved, feels gravitational and 
Yang–Mills forces. Effectively, by treating the string approximately 
as a point particle, we have reduced spacetime from twenty six 
to eight dimensions, without really compactifying the remaining 
eighteen dimensions; we have only eliminated them from the dy-
namics, and thus rendered them invisible to the particle. In other 
words, although there might be present additional dimensions, the 
particle moves only in an eight-dimensional subspace.
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[2] M. Pavšič, Class. Quantum Gravity 7 (1990) L187.
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