JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 140-160 (1997)
ARTICLE NO. SS971505

View metadata, citation and similar papers at core.ac.uk

brought to you b

provided by Elsevier - Publishe

Dale Schuurmans*

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada

Received March 10, 1997

We consider the standard problem of learning a concept from random
examples. Here a learning curve is defined to be the expected error of
a learner’s hypotheses as a function of training sample size. Haussler,
Littlestone, and Warmuth have shown that, in the distribution-free
setting, the smallest expected error a learner can achieve in the worst
case over a class of concepts C converges rationally to zero error; i.e.,
O(t~ ") in the training sample size t. However, Cohn and Tesauro have
recently demonstrated that exponential convergence can often be
observed in experimental settings (i.e., average error decreasing as
e®' 1), By addressing a simple non-uniformity in the original analysis
this paper shows how the dichotomy between rational and exponential
worst case learning curves can be recovered in the distribution-free
theory. In particular, our results support the experimental findings of
Cohn and Tesauro: for finite concept classes any consistent learner
achieves exponential convergence, even in the worst case, whereas
for continuous concept classes no learner can exhibit sub-rational
convergence for every target concept and domain distribution. We
also draw a precise boundary between rational and exponential
convergence for simple concept chains—showing that somewhere-
dense chains always force rational convergence in the worst case,
while exponential convergence can always be achieved for nowhere-
dense chains.  © 1997 Academic Press

1. INTRODUCTION

When learning a concept from random examples, we
naturally expect the accuracy of a learner’s hypotheses to
improve as the learner sees more training examples. In some
sense, it is the rate of this improvement that best describes
the learning performance of the system. Given i.i.d. random
examples, a hypothesizer’s learning curve is defined by the
expected error of its hypotheses as a function of training
sample size. Intuitively, this is what one measures by
repeatedly training a learning system on a fixed problem at
different sample sizes and plotting the average hypothesis
error that results as a function of training sample size. Since
we anticipate that a learner’s hypotheses will improve with
increased training sample size, we measure the quality of a
learning curve by the rate at which the average hypothesis
error converges to zero.
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Obviously, the quality of a hypothesizer’s learning curve
is determined by any prior knowledge it has about the
underlying target concept and domain distribution. For
example, if the exact target concept were known a priori
then zero error is trivially achieved. Obtaining rapid con-
vergence to zero error is more interesting if we know less
about the target concept and domain distribution
beforehand. Here we consider the model of prior knowledge
popularized by Valiant [ 25 ]: we assume that the target con-
cept is known to belong to some class C but nothing is
known about the distribution of domain objects P, which
could be arbitrary. Given this model we naturally consider
what can be achieved in the “worst case, distribution-free”
sense. Specifically, for a concept class C we are interested in
determining the best learning curve that can be obtained in
the worst case over all target concepts in C and all possible
domain distributions P.

An analysis of this form has been carried out by Haussler
et al. [ 14] who develop a special learning strategy 11GPS
(for “l-inclusion graph prediction strategy”) that always
achieves rational worst case convergence for any concept
class C. Specifically, they show that, given ¢ training
examples, 1IGPS always attains an expected error of at
most O(t~!) for any target concept ¢ e C and any domain
distribution P (provided C has finite VC dimension [26]).
Moreover, Haussler et al. [ 14] show that no learner can do
better than this: given ¢ training examples, any learner L
must obtain an expected error of at least Q(z~') for
some target concept ¢, € C and some domain distribution
P, (provided C is non-trivial). This shows that the best
achievable worst case expected error always behaves as a
“rational” function of ¢ (i.e., @(t~!)) for any reasonable
concept class.

1.1. Issue

These results would seem to suggest that we should always
expect to observe rational learning curves, at least in the
worst case (for any reasonable class C). However, one does
not always observe rational learning curves in practice! This
is clearly demonstrated in a recent study by Cohn and Tesauro
which shows that exponential learning curves can be
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obtained in many experimental settings [ 6, 7]. Specifically,
Cohn and Tesauro tested a backpropagation learning proce-
dure, BP, on pairs of concept classes defined by identical
neural network architectures on {0, 1}” and [0, 1]” respec-
tively. Although defined on different input domains, these
paired concept classes have identical VC dimension (in at
least one case considered), and hence are isomorphic under
the previous theory of [ 14 ]. However, in spite of this, Cohn
and Tesauro observe dramatically different learning curves
in each case: By repeatedly training BP at various sample
sizes ¢ and plotting the average error of its hypotheses, they
invariably observe that

1. BP’saverage hypothesis error decreases as @(¢ ') for
continuous concept classes (defined by networks with [0, 1]
inputs), with a specific rate of decrease that closely matches
the quantitative predictions of [ 14]; whereas,

2. BP’s average hypothesis error decreases as e®~" for
finite concept classes (defined by networks with {0, 1}
inputs).

Interestingly, these results were obtained by considering
the same set of target weights and uniform domain distribu-
tions in each case.

The exponential rate of decrease observed by Cohn and
Tesauro is clearly contrary to the predictions of the previous
HLW theory [14]. This raises the important question of
understanding why the HLW theory fails to predict
exponential learning curves even when they are readily
observable in practice. One possible explanation is that the
theory is worst case, whereas the experimental results
depend on a particular setup. That is, since the experimental
results only demonstrate exponential convergence for
specific target concepts and domain distributions, it could
still be the case that rational convergence is obtained in the
absolute worst case. However, this does not explain why
rational learning curves are typical in some circumstances
(e.g., continuous concept classes) but not in others (e.g.,
finite concept classes). Simply claiming that the worst case
theory fails to capture the typical situations encountered in
practice is not accurate; sometimes it does. An adequate
explanation of learning curve behavior must account for
the robust dichotomy between rational and exponential
learning curves that Cohn and Tesauro observe between
continuous and finite concept classes.

It turns out that this discrepancy can be resolved by
making a simple observation about the previous theory:
A close inspection of the results of [ 14] reveals that the
analysis is non-uniform in training sample size ¢. In
particular, the lower bound result presented in [14]
chooses a different domain distribution and possibly a
different target concept for each training sample size .
Clearly, this does not reflect the situation normally encoun-
tered in practice, nor that investigated by Cohn and Tesauro,
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where these are held fixed. This raises the question of
whether, in a model where the domain distribution and
target concept are held fixed, there are situations where the
best achievable worst case learning curve is exponential and
other situations where it is rational. It turns out that the
answer to both questions is yes.

1.2. Results

By performing an analysis of worst case learning curves
where the domain distribution and target concept are held
fixed, this paper shows how the dichotomy between rational
and exponential convergence can be recovered in the worst
case distribution-free setting. In particular, we show that
there are concept classes that permit exponential learning
curves, even in the worst case over all target concepts and
domain distributions; but there are other concept classes
that force any learner to produce rational learning curves
for some fixed distributions and target concepts.

Our first results, presented in Section 3 below, establish
the basic dichotomy between rational and exponential
worst case learning curves. We first show (Proposition 1)
that for any finite concept class C, any learner that
guesses consistent concepts from C will obtain exponential
convergence, even in the worst case. We then show
(Proposition 2) that it is impossible to achieve better than
exponential convergence in the worst case for any non-
trivial concept class, so this must be the optimal form of
worst case learning curve. However, exponential convergence
cannot be guaranteed for every possible concept class: Next
we show that continuous concept classes force any learner to
obtain rational learning curves even for fixed target concepts
and domain distributions. In particular, we show
(Theorem 4) that for any continuous concept chain C there
is a fixed domain distribution P that forces any learner to
exhibit a rational convergence for a significant portion of
targets in C. Note that this is a stronger result than the
lower bound in [ 14], in the sense that it is easier to force
bad behavior by choosing a different domain distribution
and target concept for each training sample size ¢ than it is
to show bad behavior results even when these are held fixed.
Note also how these results corroborate the experimental
findings of Cohn and Tesauro: observing exponential learning
curves for finite concept classes is no accident since this is
achieved by any consistent learner. On the other hand, any
continuous concept class forces rational convergence in the
worst case.

Of course, there is still a significant gap between finite and
continuous concept classes. For example, the results say
nothing about what happens for countably infinite classes.
This leaves open the question of identifying the exact condi-
tions that dictate between rational and exponential worst
case learning curves, and determining whether any other
intermediate forms of worst case convergence are possible
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under the distribution-free model (e.g., ©(¢~") or some
other form). It turns out that precise answers to these
questions can be obtained for the special case of concept
chains; ie., classes which are linearly ordered under set
inclusion.

In Section 4 below we draw an exact boundary between
rational and exponential worst case learning curves for the
special case of concept chains. Here we establish that the
determining condition is the presence or absence of any
dense subchains in the original concept chain (ie., a
subchain where between any two concepts there is a third).
Specifically, we show (Theorem 5) that for any somewhere-
dense concept chain C there is a domain distribution P that
forces any learner to exhibit rational convergence for some
targets in C. On the other hand, we also show (Theorem 6)
that for any nowhere-dense chain C there is a special
learning strategy CHOLC that always obtains exponential
convergence, even in the worst case over all possible target
concepts in C and domain distributions P. Together, these
two results characterize the exact boundary between
rational and exponential worst case convergence for concept
chains. This also shows that no other form of worst case
convergence is possible (for concept chains) in the distribu-
tion-free setting.

Finally, in Section 5 we address the point that the concept
classes considered by Cohn and Tesauro in their computer
simulations were represented with limited precision and
hence fundamentally finite. This implies that all of the
learning curves they observed must have been exponential.
However, we demonstrate that, at the scale of training
sample sizes considered, convergence can appear rational
even when it is fundamentally exponential.

1.3. Significance and Related Work

These results show how the dichotomy between rational
and exponential learning curves can be recovered in the dis-
tribution-free setting. Previous results on distribution-free
learning curves [ 14] suggested that rational convergence
was the only possible worst case form; however, this was
based on a non-uniform analysis. By pursuing a uniform
analysis, we are able to distinguish the conditions under
which rational and exponential worst case convergence
takes place based solely on the structure of the concept
class C. This contradicts the common suggestion [ 13, 24]
that such a characterization must take into account special
properties of the domain distribution P.

Most theoretical studies of learning curve behavior adopt
a distribution-specific model that assumes the learner
knows the domain distribution P a priori. Given these
stronger assumptions, many researchers have demonstrated
that exponential learning curves are possible. For example,
several researchers have analyzed the behavior of particular
learning procedures for specific concept classes and domain
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distributions and shown that exponential convergence results
[10, 11, 16, 20]. Others have shown that even general learning
procedures can obtain exponential learning curves for
specific concept classes and domain distributions [ 3, 4, 13,
18]. This paper shows how, in a general way, exponential
convergence can still be revealed under much weaker
assumptions.

The largest body of work concerning the analysis of learn-
ing curves is the Bayesian statistical mechanical approach,
which not only assumes that the learner knows the domain
distribution a priori, but also has access to a prior distribu-
tion of possible target concepts. These analyses consider the
average case learning curves obtained by the Bayes and
Gibbs learning procedures. Here too rational convergence
appears to be a natural form, as suggested in general by [ 1],
proved more rigorously by [12], and demonstrated in a
specific case study by [19]. Given the much stronger
assumptions of this model, it is not too surprising that many
researchers have indicated a dichotomy between rational
and exponential average case learning curves [ 3, 23, 24].
The common suggestion is that this dichotomy is deter-
mined by the existence of “gaps” between target concepts.
However, it is easy to refute this suggestion in general [9]
(see also the counterexample in Section 6), so this really
must be an informal observation. Our purpose here is to
rigorously establish that this dichotomy already exists
under the much weaker distribution-free model.

We also draw a clean boundary between the two types of
convergence in terms of a simple structural property of
concept classes; namely, the presence of a dense subchain.
As most distribution-specific analyses address particular
case studies, they do not provide general characterizations
of the concept space properties that permit or prohibit
exponential convergence. Interestingly, only two possible
modes of worst case convergence appear possible in the
distribution-free setting: rational and exponential (proved
for concept chains, but only conjecture in general). This is
unlike the distribution-specific case where all intermediate
forms of convergence are evidently possible [ 13]. Clearly
the distribution-specific analyses give tighter characteriza-
tions of the learning curves one might observe in practice,
but require more problem-specific information [ 13], in fact,
more than is generally available in practice. The benefits
of the distribution-free theory are its wider range of
applicability in practical situations.

Finally, note that from a practical perspective it is
important to predict the specific rates of convergence not
just the functional forms of learning curves. A reasonable
characterization of convergence rates has obvious applica-
tions for choosing the “complexity” of a hypothesis class
relative to the amount of available training data, or deter-
mining whether sufficient data are available to achieve
desired error levels, etc. Another interesting application,
considered by Vapnik et al [27], is to estimate the
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“effective” VC dimension of a learning machine by fitting
empirical learning curves to a theoretically derived
(rational) form. Of course, a necessary prerequisite for any
practical characterization of empirical learning curves is
predicting whether rational versus exponential convergence
will take place: obviously one cannot accurately predict
specific rates of convergence without being able to predict
the underlying functional form of the learning curve.

We now turn to the development of the main results of
this paper.

2. FORMAL MODEL

We are considering the standard problem of learning a
concept from examples. Formally, we have a domain of
objects X on which a target concept ¢ < X is defined. An
example is a pair {x, 1,(x)) specifying a domain object
xe X and giving the value of ¢’s indicator function 1,
at x. (For simplicity, we denote this training example
ex=<x,1,x)), and for a sequence of domain objects
x'=<{xy, .., X,», we denote the corresponding sequence of
training examples by ex’'= & x;, 1 (x)), .., {x,, 1 (x,)).)
Formally, a learner L is just a mapping from training
sequences cx’ to hypotheses i = X, ie., L: (X x {0, 1})* - 2%,
So we denote L’s hypothesis for a training sequence ¢x’ by
L(cx') =h < X. Here we consider a batch training protocol,
where after a fixed training period ¢, any hypothesis £
produced by L is then tested ad infinitum on subsequent test
examples. A hypothesis & makes classification error on any
test example cx = {x, c¢(x)) for which h(x)#c(x). We
denote the entire set of such objects by 2 A ¢ (the symmetric
difference between 4 and ¢) and use /1 = ¢ to denote (& A ¢)*.

As in most theoretical analyses of concept learning, we
adopt the iid. random example model, which assumes
domain objects are independently generated by a fixed
domain distribution P and labelled according to a fixed
target concept c. This is a natural model of many practical
learning situations where the sequence of training objects is
unpredictable and there is no correlation between successive
objects. Under this model, the error of a hypothesis /4 with
respect to target concept ¢ and domain distribution P is
given by P(4 A ¢). Note that this defines a natural
(pseudo)metric on the space of concepts dp(h, ¢) =P(h A ¢),
which gives a natural measure of distance between concepts.

Given this model, note that a learner L maps training
sequences ¢x’ to hypotheses, and that each such hypothesis
L(cx') will have an error with respect to the target concept
¢ and domain distribution P. We will denote this error by
err(L, P, ¢, x") =dp(L(cx"), ¢). Now consider L’s behavior
for a fixed training sample size #: Since the training examples
are 11.d., a fixed domain distribution P induces a corre-
sponding product distribution P’ on X”, and a fixed target
concept ¢ then induces a fixed distribution over training
sequences c¢x’. Thus, from this distribution over training
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sequences, L induces a distribution over hypotheses, and in
turn a distribution over hypothesis errors. Therefore, for
fixed ¢ and P, we can determine the expected error of L’s
hypotheses given 7 training examples by

err(L, P, ¢, x') dP'(x").

E,.err(L, P, c, x’)=J (1)

X!

Given these definitions we define L’s learning curve with
respect to ¢ and P by its expected error, E . err(L, P, x’), as
a function of the training sample size ¢.

As mentioned, the quality of a hypothesizer’s learning
curve depends strongly on its prior knowledge about the
domain distribution and target concept. Here we adopt the
simple model of prior knowledge introduced by Valiant
[25], which assumes the extent of a learner’s prior
knowledge can be captured solely by a class C to which the
target concept is known to belong. Given this model, we are
interested in determining the best learning curve that can be
achieved in the worst case over a class of concepts C, given
arbitrary domain distributions P. Below we pursue a
uniform analysis of this question, where the domain
distribution and target concept are held fixed for all training
sample sizes ¢. Since we are primarily concerned with
the distinction between rational and exponential learning
curves, we also focus on the worst case asymptotic form of
a learner’s curve. Thus, for a concept class C, we investigate
the worst case asymptotic form of learning curve a
learner obtains for fixed target concepts ¢ € C and domain
distributions P:

DeriNiTION 1 (Worst Case Learning Curve). We say
that a concept class C has a ®'(g(¢)) worst case learning
curve, written Lc(C) = O'(g(1)), if

1. there exists alearner L that achieves E . err(L, P, ¢, x’)
=0(g(t)) for every target concept ce C and domain
distribution P; and

2. for every learner L, there is a target concept ¢’ € C
and a domain distribution P that forces L to obtain
E,err(L, P, ¢, x") =Q'(g(1)).

Thus we say Lc(C)=0"(g(¢)) if some learner achieves
O(g(t)) worst case convergence, but every learner can be
forced to have an expected error of at least £2'(g(¢)) for some
fixed domain distribution P and target concept ¢’ € C. Here
the notation f(¢) = Q'(g(¢)) means there exists a constant o
such that f(¢) > ag(¢) for infinitely many t >0. We use this
weaker definition instead of the standard “for all but finitely
many ¢>0” because there is no way to prevent a learner
from periodically guessing right on large training sample
sizes. That is, we want to rule out the case where a learner
systematically cycles through a finite (or countable) concept
class, ignores the training data, and yet periodically
achieves zero error for any target in the class.
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3. BASIC DICHOTOMY

We first establish the basic dichotomy between rational
and exponential worst case learning curves in the distribu-
tion-free model. Here we show that any finite concept class
has an exponential worst case learning curve, whereas any
continuous concept class forces rational convergence in the
worst case.

3.1. Finite Concept Classes

First observe that for any finite concept class C, it is
reasonably obvious that any consistent learner always
obtains an exponential learning curve for any fixed target
concept and domain distribution. (We say that a learner L
is consistent for a class C if, given any sequence of training
examples cx’ generated by some ceC, L produces a
hypothesis L(cx’) € C that correctly classifies every training
example in ¢x’.)

ProrosiTioN 1 (Finite UB).  For any finite concept class
C: any consistent learner L for C obtains an exponential
learning curve (ie., E err(L, P, c, x")=e“ =) for every
target concept c € C, regardless of the domain distribution P.

Proof. Fix an arbitrary target concept ce C and
an arbitrary domain distribution P. There will be at
most N=|C|—1 non-zero difference sets D,={c A ¢;:
P(c A ¢;)>0}. Let p, be the minimum such probability.
Then the probability that some difference set remains
unobserved after ¢ training examples is at most N(1 — p,)".
Note that observing a domain object from each difference
set implies that a consistent learner L for C will produce a
hypothesis with zero error. Therefore, E . err(L, P, ¢, x') <
N(1—po)'=e?"". 1

Of course this is not a practically useful bound in that it
does not accurately reflect the learning curves observed in
practice. However, it does establish that exponential
convergence can indeed take place in the distribution-free
model. (The question of how to achieve more accurate
bounds on the specific rate of convergence is raised below
and discussed in detail in Section 6.)

Given that we have demonstrated the possibility of
achieving exponential worst case convergence for finite
concept classes, we now show that it is impossible to achieve
better than exponential learning curves for any non-trivial
concept class C. (A class C is said to be non-trivial if it
contains at least two concepts ¢, d e C such that ¢ A d# &
and c=d+# J.) That is, for a non-trivial class C we can
always find a domain distribution P that forces any learner
to obtain an exponential learning curve for some fixed
target concept in C.

ProrosITION 2 (Universal LB). For any non-trivial
concept class C: there is a domain distribution P that forces
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any learner L to obtain an exponential learning curve (i.e.,
E, err(L, P, ¢/, x") =e? ") for some target concept ¢’ € C.

Proof. Since C is non-trivial there must be two concepts
¢1,c, €C such that (¢, Ac,)#J and (¢, =c,)#J.
Therefore we can fix a domain distribution P such that
dp(cy, c;) = pforsome 0 <p<1.(E.g., choose x, €(c; A ¢5)
and x, €(¢; =¢,), and set P(x,)=p and P(x,)=1—p).
For this distribution, given any training sample size ¢, any
learner L must obtain

avg Egerr(L, P, c;, x)

cefer el
>1E [err(L, P, ¢y, x')
+err(L, P, c,, X") | ¢; X' =¢,X"] P(c,; X = c¢,X')
=1E [err(L, P, ¢;, X")
+err(L, P, ¢, x) [ ¢1x" =, X" ](1 — p)’

> p(l—p)=e®0.

The last inequality holds since for any x’ such that ¢, x’=
¢, x" we get L(c,x")=L(c,x")=h, and hence dp(h, ¢;) +
dp(h, ¢,) = dp(c,, ¢,) = p by the triangle inequality. Finally,
note that obtaining an average expected error of at least
e?=" for every ¢ implies that L must obtain at least this
expected error on one of ¢; or ¢, for infinitely many ¢. ||

This shows that exponential convergence is in fact the
best achievable form of worst case learning curve in the
distribution-free model for any non-trivial concept class. So,
from Propositions 1 and 2, we have that any non-trivial,
finite concept class C has exactly an exponential worst case
learning curve, and this is achieved by any consistent
learner L for C.

COROLLARY 1. Any non-trivial, finite concept class C
has an exponential worst case learning curve: Lc(C) = e®' (=9,

It is interesting to observe now these results compare to
the non-uniform theory of [14]. Although we obtain
exponential learning curves for any fixed domain
distribution, it turns out that there is no single “worst case”
distribution that maximizes the expected error for all training
sample sizes z. That is, we obtain a different worst case
domain distribution for each training sample size ¢. So
although each individual curve is exponential, any universal
upper bound over all curves happens to be rational.
Figure 1 illustrates this discrepancy between the worst case
bounds of [ 14], which consider a different domain distribu-
tion P, for each 7, and Proposition 1, which considers a
single P for all ¢. This figure also illustrates how the precise
learning curve obtained depends strongly on the specific
domain distribution and target concept under considera-
tion. This means that for exponential learning curves we
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FIG. 1. Comparing uniform versus non-uniform learning curve bounds.
This illustrates how a series of exponential learning curves determined by
distributions P, P,, ..., etc., actually has a rational upper envelope.

cannot expect to obtain a tight characterization of specific
convergence rates in the distribution-free model. Instead
we know that such an analysis would require us to take
additional distribution and target information into account
beyond just the structure of the concept class C (this point
is revisited in Section 6 below).

3.2. Continuous Concept Chains

We have shown that a uniform analysis can yield
exponential learning curves for certain concept classes, even
though the non-uniform HLW theory [ 14] predicts only
rational forms. This raises the question of whether every
concept class permits exponential convergence under a
uniform analysis, or whether there are concept classes that
can still force rational learning curves even for fixed domain
distributions and target concepts. Here we show that there
are indeed concept classes that force rational convergence,
even in a model where the target concept and domain
distribution are held fixed. In particular, this is true of any
continuous concept class.

DEFINITION 2 (Chains and Continuity). A concept chain
is a class C that is totally-ordered under set-inclusion; i.e.,
for every distinct ¢; and ¢, in C, either ¢; ¢, 0orc; 2c¢,. A
continuous chain is a concept chain that is order-isomorphic
to R; i.e., a chain that can be indexed C= {cy: y€ R} such
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that ¢, cc, for y<z. (A simple example of a continuous
chain is the class of initial segment concepts on [0, 1].)

Below we establish that any continuous concept class
forces at least rational convergence in the worst case, even
under a uniform analysis. However, before proving this, we
first observe that any consistent learner already achieves
rational worst case convergence for any concept chain.

ProposiTiON 3 (Chain UB). For any concept chain C:
any consistent learner L for C obtains a rational learning
curve (ie., Egerr(L,P,c,x)=0(t"") for every target
concept c € C, regardless of the domain distribution P.

Proof. Since any non-trivial chain obviously has VC
dimension 1, the results of Haussler ez al. [ 14] show that the
special learning strategy 11GPS obtains E . err(11GPS, P, c,
x)=0(t"") in this case. Also, by [14, Theorem 6.1]
we know that any consistent learner L for C must obtain
E err(L, P, ¢, x') = O((In t)/t). Here, we strengthen these
results slightly by showing that any consistent learner L for
C actually obtains E_err(L, P, ¢, x’)=0O(¢t~"). Proving
this also allows us to introduce some definitions and
notation that will be useful later.

DEerINITION 3 (Uncertainty Interval). For a concept
chain C, notice that any training sequence c¢x’ determines an
uncertainty interval about the target concept ¢ given by
[s(ex), Z(ex)] ={he C:s(ex") chc/(cx")}, where s(¢x)
and 7 (¢x') are the smallest and largest concepts consistent
with ¢x’ respectively. Formally, we define the smallest
concept consistent with a training example cx by s(¢x) = &
if xéc, s(ex)={heC:hccandxeh} if xec; and the
largest consistent concept by Z(cx)=X if xec, /(cx)=
U{he C:h>candx¢h} if x¢c. Then, for a sequence ¢x’
we define s(ex’) =, cxs(cx) and Z(ex’)=()rex £ (€X).
Any uncertainty interval [s(cx’), Z(cx’)] has a width with
respect to a domain distribution P given by wid(C, P, ¢, x)
=P(/(cx") — s(exh)).

Thus for a concept chain, we can think of the training
examples as monotonically reducing the interval of
uncertainty about an unknown target concept. Clearly, any
consistent learner L for C must guess a hypothesis from this
interval, so the error of L’s hypothesis must be bounded by
the interval width: err(L, P, ¢, x*) <wid(C, P, ¢, x’). There-
fore, all that remains to show is that E_, wid(C, P, ¢, x) =
O(t~"). To this, we make the observation that the worst
case situation is represented by the uniform chain.

DEFINITION 4 (Uniform Chain). Foradomain X=1[0, 1],
let I={i=[0,i]:ie[0, 1]} be the class of initial segment
conceptsion [0, 1], and let U denote the uniform distribu-
tion over [0, 1]. Then the uniform chain is the concept space
(1, U) formed from I and U. (Note that we can think of a
class C and distribution P as comprising a metric space
(C, P) with inter-concept distances given by the metric dp.)
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Note that the uniform chain (/, U) satisfies the identity
dy(i, j) =1li—jl.

LemMA 1. For any ce(C, P) there is an ie (I, U) such

that
E, wid(C, P, ¢, x") <E, wid(7, U, i, x").

So it suffices to determine how quickly uncertainty inter-
vals shrink in a uniform chain. Here it turns out that we can
determine an exact rate of decrease for this simple space.

LEMMA 2. For any initial segment concept i=1[0,i] €,

e+ 1 i+ 1
B wid(L U, i, x)=2—d=0" ="
t+1

This rate of decrease is explicitly rational in ¢, so combining
the fact that err(L, P, ¢, x') <wid(C, P, ¢, x*) with Lemmas
1 and 2 we have shown that any consistent learner L for C
must obtain E . err(L, P, ¢, x") = O(¢t ") for any c € C. This
ends the proof of Proposition 3. |

Thus, the worst case learning curve for any concept chain
can never be worse than rational. It remains to show that
rational convergence is the best that any learner can achieve
in this case.

THEOREM 4 (Continuous LB). For any continuous
concept chain C: there is a domain distribution P that forces
any learner L to obtain a rational learning curve (i.e.,
E.err(L, P, ¢, x")=Q'(t~ ")) for some target concept ¢’ € C.

Proof. Since C is continuous it can be indexed
C={c,:y€[0, 1]} such that ¢, cc. for y <z. Given this
indexing, we can fix a domain distribution P such that
dp(c,, c.) =]y —z|. (One can always construct this distribu-
tion by the same procedure used to construct the Lebesgue
measure on [0, 1]; see e.g., [ 2, Chapter 1]). Note that the
resulting concept space (C, P) is isomorphic to the uniform
chain (7, U) in Definition 4. Therefore, it suffices to establish
the lower bound for (Z, U).

For this space, we already know by Lemma 2 that the
width of any uncertainty interval only decreases ration-
ally to zero (ie., E,wid(Z, U, i x)=Q(t"") for any
i=[0,i]el), so it would be surprising if a learner could do
significantly better than this for every i€l To prove that
any learner will be forced to exhibit rational convergence for
some fixed target i’ e/, we employ the same averaging
argument used in Proposition 2. In particular, we fix a prior
distribution Q on the collection of initial segment concepts
I and argue that any learner L must obtain a large expected
error on average over targets in I.

Let Q be the uniform prior on I. For this prior it turns out
that the simple “midpoint” guessing strategy, MP, is Bayes
optimal.
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Strategy MP. For a training sequence ix’, which yields
the uncertainty interval [ s(ix’), I(ix’)], guess the midpoint
concept m = [0, m] defined by the endpoint m = (s + £)/2.

It is easy to show that no learner L can obtain a smaller
average expected error than MP, when target concepts i are
chosen randomly according to Q.

LeEmMMA 3.  For any learner L,

E,Ecerr(L, U,i, x") = E;E . err(MP, U, i, x").

Therefore, it suffices to establish a rational lower bound
on MP’s average expected error. Here we see that, not
surprisingly, MP achieves an average expected error that is
a fixed fraction of the expected width of the uncertainty
interval.

LEMMA 4. For the learning strategy MP,
E;E err(MP, U, i, x') = 1E;E wid(Z, U, i, x').

Therefore, combining the results of Lemmas 3, 4, and
finally 2, we see that any learner L must obtain

. 1 12_(1_l')r+i_l~r+l
E;E,. L N=- di
i xerr( ,U,l,X) 4\[0 [+1 1
1
= . 2
2(1+2) 2)

Clearly, since this lower bound holds on average over all
concepts in /, it must hold for some i, € I at each training
sample size r. However, we need to establish the stronger
claim that there is a single i’ in [ that forces E . err(L, U,
i, x)=Q(¢~") for infinitely many training sample sizes .
To this end, we show that any learner will be forced to
obtain an expected error above the bound infinitely often
for a non-trivial portion of the concepts in 7, as measured by
to the prior distribution Q.

LEmMMmA 5. For any A>0,

1-2
Q {iel: E . err(L, U, i’xr)>2(t+2) i.o. t}>0.

Applying this lemma gives the result. ||

(Notice that this is a stronger result than the lower bound
of Haussler et al. [ 14]: we have shown that there is a single
domain distribution P that forces any learner to exhibit
rational convergence for a non-trivial portion of the
concepts in C. In work subsequent to [ 14], Haussler et al.
[ 15, Theorem 3.2 ] have independently established a similar
result to Eq. (2) above, however their argument is quite
different and they do not supply the final step (Lemma 5).
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The proof presented here generalizes more readily to
Theorem 5 below.)

Combining Proposition 3 and Theorem 4 shows that the
worst case learning curve for a continuous concept chain
must be exactly rational.

COROLLARY 2. Any continuous concept chain C has a
rational worst case learning curve: Lc(C) = 0'(t ™).

Together, Corollaries 1 and 2 establish the existence
of the fundamental dichotomy between rational and expo-
nential worst case learning curves in the distribution-free
model.

4. EXACT BOUNDARY

The previous section revealed the basic dichotomy
between rational and exponential learning curves by
demonstrating how continuous concept chains can have
rational worst case learning curves, while finite concept
classes always have exponential such curves. Of course, this
characterization is far from complete as there is a significant
gap between finite and continuous concept classes. For
example, none of the preceding results apply to countably
infinite concept classes. This gap leaves open the question of
identifying the precise conditions that dictate between
rational and exponential learning curves, and determining
whether other (intermediate) forms of convergence are
possible under a uniform worst case analysis (e.g., @'(t™")
or some other form).

In this section we derive the exact boundary between
rational and exponential learning curves for the special case
of simple concept chains. Specifically, this boundary is
determined by the presence or absence of a dense subchain
in the original class C.

DEerFINITION 5 (Dense versus Scattered Concept Chains).
A chain C is dense if between any two concepts ¢; < ¢, in C
there is a third c¢; € C such that ¢, = ¢; c¢,. (We require
that a dense chain contain at least two, and hence, infinitely
many concepts.) Thus we say a chain C is somewhere-dense
if it contains a dense subchain (not necessarily a subinterval),
and nowhere-dense if it contains no such subchain.
Nowhere-dense chains are also referred to as scattered [ 21].

The main contribution here is to show that any some-
where-dense concept chain has a rational worst case learning
curve, whereas nowhere-dense chains have exponential such
curves. This gives an exact and complete characterization of
worst case convergence forms (for concept chains) under
the distribution-free model.

4.1. Dense Concept Chains

From Corollary 2 above we know that continuous
concept chains have rational worst case learning curves.
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Since any continuous chain is obviously dense, it is natural
to consider whether this is the key property that forces
rational worst case convergence. Here we show that density
is indeed sufficient to force any learner to exhibit rational
learning curves for some fixed target concepts and domain
distributions.

THEOREM 5 (Dense LB).  For any dense concept chain C:
there is a domain distribution P that forces any learner L to
obtain a rational learning curve (ie., Egerr(L, P, ¢, x") =
Q*(t™"Y) for some target concept c' € C.

Proof. We establish the slightly weakened proposition
that B err(L, P, ¢, x') = Q'(¢t ' ~¢) for any & > 0 (hence the
notation 2%*). The basic idea is to generalize the proof of
Theorem 4 to handle arbitrary dense chains. However, we
must face the fact that C need not be continuous in general
(e.g., C might only be countably infinite) so we cannot
directly reduce the problem to a uniform chain as before.
Instead, we have to define a domain distribution P that
simulates the structure of a uniform chain as closely as
possible. To this end, we explicitly construct a dense
subchain of C on a countable subdomain of X and then
define appropriate distributions P and Q.

Construction. First construct a dense chain C, on a
countable domain X, by selecting concepts from C and
domain objects from X in a series of Stages k=0, 1, 2, ... as
follows: At Stage 0, select any two concepts ¢, < ¢, from C
and choose a domain object x, between them (i.e., choose
X, €¢; — ¢y such that there remains c¢,, ¢y € C with ¢, <
¢, <53 <c; and x; € Cy—c¢,; see Fig. 2). Next, at Stage 1,
choose a domain object x, and concept ¢, between ¢, and
x,, and then a concept ¢ and domain object x5 between x,
and ¢, ; maintaining the alternation between domain objects
and target concepts shown in Fig. 2. Then for all subsequent
Stages k > 2, choose a domain object and target concept in
each gap left from previous stages, maintaining the alterna-
tion between target concepts and domain objects after each
stage, again, as shown in Fig. 2. Note that the density of C
permits us to continue this process indefinitely, and therefore
we obtain a dense subchain C,, defined on a countable sub-
domain X,,. This construction provides us with a canonical
structure on which to define our probability distributions.
(We now drop the subscript 0 for the remainder of this
proof, with the understanding that C and X now refer to the
constructed C, and X,.)

Now to define a domain distribution P on X: Note that
P cannot be uniform since X is only countably infinite.
However, we can approximate a uniform distribution by
assigning probabilities as follows. First, at Stage 0, assign
P{x,} =0 to the only domain object added at Stage 0. Then
for Stages k=1, 2, ..., assign a probability of p, =(3°—1)/
(2.3%1+9=1) o each of the domain objects x, added at
Stage k. This gives a well-defined probability distribution
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FIG. 2. Constructing a dense subchain on a countable subdomain: Each line indicates a concept that contains the domain objects (indicated by
bullets) to the left of the line. Repeating this construction for stages k =0, 1, 2, ... results in a dense chain C = {¢, ¢,, ...} being defined on a countable

domain X = {x, x5, ...}.

for any ¢ > 0, since there are a total of N, =2-3*~! objects
added at each Stage k, and summing over stages 1,2, ...
yields a total probability of (3°—1) ¥7*_, 3~ = 1. Notice
that we can use the parameter ¢ to control the “uniformity”
of P. That is, choosing smaller values of ¢ forces the
probabilities p, assigned at each stage to converge more
slowly to 0, and hence make the distribution more uniform.

Finally, to define the prior distribution Q on C we
proceed in exactly the same way as P on X above: In
particular, at Stage 0 assign Q{¢,} =Q{c,} =0, and then
at each subsequent Stage k > 1 assign a probability ¢, = p,.
to each of the concepts ¢; added at Stage k. This yields a well
defined probability distribution Q on C exactly as above
since during each Stage k>0 an equal number of domain
objects and target concepts are added to the construction.

Given this explicit construction of C, X, P, and Q, we can
now repeat the lower bound argument from Theorem 4.
First we must verify that P is indeed a “hard” domain
distribution in the sense that it forces uncertainty intervals
to shrink rationally as a function of z.

LEMMA 6. For any ce C, there is a constant o, >0 such
that

E, . wid(C, P, ¢, x") > e
t+1

Given that this slow convergence holds for all concepts
in C it would be surprising if a learner could achieve
significantly faster convergence for every possible target in
C. To prove this, we follow the same averaging argument
used in Proposition 2 and Theorem 4 above: Given the
prior distribution Q over C, we argue that any learner L
must achieve a large expected error on average over the
target concepts in C. To do this, we consider a simple
learning strategy MC that achieves near-optimal average
expected error for the distributions P and Q defined above.

Strategy MC. For a training sequence cx’, guess the
consistent concept ¢* € [ s(¢x’), £ (cx’)] that has maximum
prior probability according to Q.

It can be shown that no learner L can obtain a smaller
average expected error than MC, up to a small multi-
plicative constant, when target concepts i are chosen
randomly according to Q.

LEmMmA 7.
learner L,

There is a constant >0 such that for any

E.E,.err(L, P, c,x") = E.E,.err(MC, P, ¢, x").

Therefore it suffices to establish a rational lower bound
on MC’s average expected error. Not surprisingly, MC must
obtain an average error that is at least some fixed fraction
of the width of the uncertainty interval (discounting the fact
that MC will guess the target concept exactly with a small
non-zero probability).

LEmMMA 8. For a constant 6 >0,

E.E, err(MC, P, ¢, x") > 5 E.E . wid(C, P, ¢, x').

(t+2)

Finally, combining Lemmas 7, 8, and 6, we see that any
learner L must obtain

V

E_E, err(L, P, c, x') >W,

(3)

for a constant y = affd > 0 (where & > 0 is the average value
of o, over ¢ € C). Clearly, since this bound holds on average
over all concepts in C it must hold for some ¢, € C for each
training sample size z. However as in Theorem 4, we need to
establish the stronger claim that there is a single ¢’ in C that
forces E . err(L, P, ¢/, x")=Q(t~'~*) for infinitely many
training sample sizes . To this end, we show that any
learner must exhibit (near) rational convergence for a non-
trivial portion of the concepts in C, as measured by the prior
distribution Q.
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Lemma 9. For any 1> 0,

(1-2)y

Q {ce C:Eerr(L, P, ¢, x") >W

i.o. t} >0.

Finally, notice that we can freely choose ¢ to be any
positive quantity arbitrarily close to zero, establishing the
theorem. ||

Combining Theorem 5 and Proposition 3 shows that the
worst case learning curve for a somewhere-dense concept
chain must be rational.

COROLLARY 3. Any somewhere-dense concept chain C
has a rational worst case learning curve: LC(C) = @ *(t~1).

4.2. Scattered Concept Chains

We now turn our attention to the complementary class of
nowhere-dense (scattered) concept chains. Here we wish to
show that exponential learning curves can always be
obtained for any fixed target concept and domain distribu-
tion. From Proposition 2 above, we know that it is
impossible to achieve better than exponential worst case
convergence for any non-trivial chain C, so it remains only
to show that exponential convergence can always be
achieved in this case. This turns out to be hard: we must
demonstrate a learning strategy that achieves exponential
convergence for any scattered concept chain, or least prove
that such a strategy exists. Below, we develop a special
learning strategy, CHOLC, that achieves this for arbitrary
scattered chains.

THEOREM 6 (Scattered UB). For any scattered concept
chain C: there is a special learning strategy CHOLC that
obtains an exponential learning curve (i.e., E . err(CHOLC,
P, ¢, x") = e =) for every target concept c € C, regardless of
the domain distribution P.

Proof. Fix an arbitrary domain distribution P, and
consider the chain (C, P) that results from collapsing equiv-
alent concepts under P together. Clearly, this chain is still
scattered since a nowhere-dense chain cannot be made
somewhere-dense by removing concepts, so it suffices to
consider a scattered chain where no two concepts are
equivalent under the dp metric. We saw in the proof of
Proposition 1 that exponential convergence results when-
ever the learner can identify the target concept (up to
P-equivalence) with non-zero probability after a finite
number of training examples. Here, we attempt to apply this
idea to arbitrary scattered concept chains.

First, for an isolated target concept ¢ (i.e., a concept that
has a least larger neighbor /> c¢ and a greatest smaller
neighbor s < ¢ in (C, P)) it is clear that ¢ is identified with
non-zero probability after just two training examples
(eliminating both s and /). Thus, any learner L that guesses

149

consistent hypotheses from C will achieve exponential
convergence to an isolated target. The only difficulty then
must be in dealing with /imit concepts; i.e., concepts that are
the limits of infinite ascending ({J}° ¢;) or descending
(N ¢;) sequences of concepts in C. (Note that this can
easily happen without the chain being dense; see Fig. 3a.)
The problem with limit concepts is that they permit a
consistent learner L to guess an infinite sequence of hypo-
theses that converges to, but never reaches the target
concept. For example, in Fig. 3a, if the rightmost concept is
the target, then a learner which guesses the smallest consistent
concept will never reach this concept, and as we saw in the
proof of Theorem 5 (Lemma 6) this can lead to rational
convergence for certain distributions. Therefore, the trick to
achieving exponential convergence must be to avoid guessing
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FIG. 3. This figure depicts three scattered concept chains defined on
X=[0, 1]. Here, each line y indicates the concept c, that contains all
points x < y. Note that each of these chains is nowhere-dense since every
concept (except the last) has a least larger concept. (a) A scattered concept
chain with a first order limit concept at the end (i.e., a chain of order type
w+1). (b) A scattered concept chain with a series of first order limits and
a finally a second order limit concept at the end (i.e., a chain of order type
®*+1). (c) A scattered concept chain with a series of limit concepts of
progressively higher order, followed finally by a limit concept with infinite
order (i.e., a chain of order type w® + 1).
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infinite sequences of hypotheses that slowly converge to
limit concepts without ever reaching them. (Notice that the
special learning strategy 11GPS developed by Haussler ez al.
[14, 15] does not automatically do this, and hence might
produce a rational learning curve when in fact exponential
convergence is possible.)

The obvious way to avoid this difficulty is to guess limit
concepts before isolated concepts. Then provided that the
limit concepts are themselves isolated from one another, we
always expect to achieve exponential convergence since any
target will be guessed with non-zero probability after just
two training examples. Of course, it also possible to have
limits of limit concepts in a scattered chain (i.e., second
order limits; cf. Fig. 3b). In fact, limit concepts of each order
1, 2, 3, ... are certainly possible; and in general one can even
have limits of these (i.e., concepts of infinite order!); see
Fig. 3c. The following lemma shows that it is possible to
have target concepts of any ordinal order in a scattered
chain, but nevertheless, all concepts of a given order are
isolated from concepts of the same or higher order.
(This fact follows from Hausdorff’s Theorem [21], which
provides a suitably constructive characterization of the class
of scattered linear orderings.)

Lemma 10 (Corollary to Hausdorff’s Theorem). For a
scattered concept chain C, there is some least ordinal y such
that (1) every concept in C has order f <7y, and (i1) all limit
concepts of a particular order f are isolated in concepts of the
same or higher order.

This is the key property of scattered concept chains that
permits us to develop a learning strategy that always
achieves exponential convergence. In fact, the following
strategy almost works in general.

Strategy HOLC. Guess the highest order limit concept
consistent with all the training examples.

Intuitively, we expect this strategy to always achieve
exponential convergence since any target concept is isolated
in the class of concepts with the same or higher order, and
this means HOLC will guess a zero-error hypothesis with
non-zero probability after two training examples (eliminat-
ing the greatest smaller neighbor and least larger neighbor).
However, there is one final problem: HOLC requires that a
consistent concept of maximal order always exists for any
sequence of training examples. Unfortunately, this need not
be the case in general and therefore HOLC is not always well
defined. (For example, consider removing the last concept
in Fig. 3c.)

This difficulty can be circumvented by first compactifying
the chain in a natural way: Let ¢(C) denote the closure of
Cunder n and u. We will call such a chain compact for the
following natural reasons.
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LemMmA 11. Any chain C that is closed under U, N is
also complete and bounded, and satisfies a natural version of
the Bolzano—Weierstrass property.

A key property of this closure € ( C) is that it cannot make
a scattered chain dense.

Lemma 12.  If Cis a scattered chain, then the chain €(C)
formed by closing C under U, N is still scattered.

Moreover, because of compactness, ¢(C) provides a
maximum order limit concept in any uncertainty interval.

Lemma 13.  For a scattered chain C that is closed under
N, U, there is always a concept ce C of maximal order
consistent with any finite sequence of training examples.

This leads to the final proposal for a learning strategy that
is guaranteed to achieve exponential convergence for any
scattered concept chain:

Strategy CHOLC. First close the chain C under U, N
to obtain % (C), then guess the highest order limit concept
in ¢(C) consistent with the training examples.

By Lemmas 12 and 13, CHOLC is well defined for any
scattered concept chain C, and by Lemma 10, CHOLC is
guaranteed to achieve exponential convergence for any
target concept ¢ in C. (Note that fixing a domain distribu-
tion preserves the order structure of the chain, or collapses
subintervals of the chain together. Collapsing subintervals
cannot produce new limit concepts or increase the order of
existing target concepts; beyond identifying them with
already existing such concepts. Therefore, the result holds
for any domain distribution P.) |

Obviously Procedure CHOLC has little practical impact,
but the issues it addresses shed light on the fundamental
nature of worst case learning curves: Combining Theorem 6
with Proposition 2 shows that any non-trivial, nowhere-
dense concept chain must have exactly an exponential worst
case learning curve.

COROLLARY 4. Any non-trivial, scattered concept chain
C has an exponential worst case learning curve: Lc(C) = e® (.

Together, Corollaries 3 and 4 establish a complete and
exact boundary between rational and exponential learning
curves (for concept chains) in the worst case, distribution-
free model.

CoRrOLLARY 5 (Exact Boundary). Any concept chain C
must have either a rational or exponential worst case learn-
ing curve: rational if and only if the chain is somewhere-dense;
exponential if and only if the chain is nowhere-dense.
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5. SCALING EFFECTS

Although the previous results draw a precise boundary
between rational and exponential worst case learning
curves, in one sense they miss the point demonstrated by the
experimental results of Cohn and Tesauro [6, 7]: Since
their computer simulations were conducted with finite
precision, every concept class Cohn and Tesauro considered
must have been fundamentally finite, and hence every learn-
ing curve they obtained must have been asymptotically
exponential. The fact that they obtain rational learning
curves seems to contradict the theoretical results presented
here. However, the real source of the dichotomy in these
experiments is a scaling effect: Every learning curve
observed by Cohn and Tesauro really is asymptotically
exponential, it is just that at the scale of training sample
sizes they consider (relative to the size of the inter-concept
distances) convergence appears rational. This is easily
demonstrated by a simple example. Consider a finite concept
chain C, consisting of n+ 1 concepts ¢, ¢, < --- <¢,,
and fix a domain distribution P, that imposes a distance of
1/n between adjacent concepts.

ProrosiTION 7 [22, Proposition 4.24]. For any
ce(C,, P,),

N 1 2\" 2
l1——) —<E.wid(C,, P,, ¢, x’ 11— ) —-.
(1-3) 3Ty <Bvwid G Prex <(1-2) =4

Notice that this convergence is exponential in ¢ and well
approximated by e ""a(t+1)~" for large n. Now if we
focus on training sample sizes ¢ that are small relative to n,
the e """ factor will behave like a constant near 1 and the
(t+1)~"' factor will dominate. In this case we would
observe apparently rational convergence, even though
convergence remains asymptotically exponential. To reveal
exponential convergence, we must consider training sample
sizes on the order of t=n,2n, 3n,.., which in the
“continuous” case considered by [6, 7] is on the order of
“computer BIGNUM.” This partly explains the dichotomy
observed by Cohn and Tesauro, as they considered the same
training sample sizes for concept classes with vastly different
interconcept distances: observing exponential convergence
when the gaps were large, and rational convergence when
the gaps were small. (A similar observation has been made
by Barnard [3].)

This suggests that there is no definitive scale where train-
ing sample sizes are inherently “interesting” for a given gap
size in practical settings. That is, contrary to the common
suggestion in statistical mechanical analyses [13], one
cannot simply look at a concept space and ascertain what
sample sizes are inherently interesting to consider: some-
times the practically available sample sizes are small relative
to the inverse gap size, and sometimes they are large. This is
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what yields the practical dichotomy between rational and
exponential convergence.

6. DISCUSSION AND RESEARCH DIRECTIONS

This paper establishes the fundamental dichotomy between
rational and exponential learning curves under a worst case,
distribution-free analysis; contrary to the common sugges-
tion that strong distributional assumptions and average
case analyses are needed to reveal this distinction [ 13, 241].
Our results reveal that the precise characteristic that
dictates between rational and exponential convergence is
the existence of a dense subchain in the concept class.

However, these results are still limited in a practical sense.
The main limitation is the restriction to simple concept
chains, and the theory needs to be scaled-up to handle
arbitrary concept classes. Note that scaling-up to product
chains is trivial, but characterizing the boundary between
rational and exponential convergence for general concept
classes is a difficult open problem. One source of difficulty is
the fact that a concept class might not contain a dense chain
directly and yet still form a dense chain over a restricted
subset of the domain. (For example, consider the concept
class C={[0, yJu{l+y}:ye[0,1]} on X=[0,2]. This
class directly contains no chain longer than one, and yet
defines a continuous chain on the subdomain [ 0, 1].) Proving
that such a class forces rational worst case convergence is
easy. However, proving that exponential convergence can
always be achieved in the contrary case is hard: one would
have to generalize CHOLC to somehow cope with arbitrary
nowhere-dense concept classes (with finite VC dimension).

Beyond characterizing the conditions when rational
versus exponential convergence can be achieved, it would
also be useful to have tight bounds on the specific conver-
gence rates. From the discussion in Section 3.1 we saw that,
for exponential learning curves at least, it is impossible to
obtain a tight characterization of convergence rates without
taking into account the specific domain distribution. This
means that any reasonable characterization of learning
curve convergence rates must adopt a distribution-specific
analysis rather than the distribution-free model adopted in
this paper. Unfortunately, it turns out that a distribution-
specific analysis of worst case convergence rates is much
more difficult than a distribution-free analysis. The most
comprehensive theory to date is due to Haussler ef al. [ 13],
which characterizes the rates with which the diameters of
consistent neighborhoods converge to target concepts.
However this approach cannot be fully general, since there
are concept spaces which have consistent neighborhoods that
do not converge and yet special learning strategies can still
achieve asymptotic convergence to zero error in these cases
[22]. A step towards a general distribution-specific theory
of worst case learning curves is taken in [22] where a
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generic learning procedure BC is developed that achieves
asymptotic convergence to zero error for any concept space
(C, P) that is finitely a-coverable at all scales o> 0.
Moreover, it can be shown that no learning procedure can
converge to all targets if this is not the case. (An a-cover of
a concept space (C, P) is a set of concepts A4 such that for
every c € C there is a ¢’ € A such that dp(c, ¢') <a.)

THEOREM 8 [22, Theorem 4.29]. For any concept space
(C, P) where the size of the minimal o-covers of (C, P)
behaves as N,(C, P)=0O(1/x)" for some d as o — 0:

1. The learning strategy BC achieves E . err(BC, P, ¢, x’)
= O((d/t) In(t/d)) for any target c € C.

2. Any learner L must obtain E_ err(L, P, ¢, x")=
e =D for some target ¢’ € C.

So BC is a universal learning strategy in the sense that it
achieves worst case convergence to zero error whenever
this is possible under the distribution-specific model. Unfor-
tunately, these bounds on the rate of worst case convergence
admit both rational and exponential forms.

Surprisingly, just determining the boundary between
rational and exponential convergence is harder in the
distribution-specific case than the distribution-free model.
In fact, it is not even obvious what property distinguishes
rational from exponential convergence for simple chains in
this case. It has often been suggested [ 3, 23, 24 ] that density
in the metric dp should distinguish rational from exponen-
tial worst case learning curves. However, this suggestion can
easily be shown to be false: Consider a concept chain (C, P)
where C={q=[0,¢]:¢qeQ[0, 1]} consists of rational
initial segments [ 0, ¢ ] of the unit interval X=[0, 1], and P
is any distribution on [0, 1] such that P(¢) > 0 for all (and
only) rational points g € Q[ 0, 1]. Clearly, C is dense under
dp (since for any q e C and ¢ > 0 there is an r € C such that
dp(q, r)<e) and yet a simple learning procedure always
achieves exponential convergence for this space: simply
guess the smallest rational initial segment r consistent with
the training sequence. Since each q € C has a gap between it
and all smaller concepts (because ¢ € q but g ¢ r for all r < q)
we will guess q with non-zero probability for each training
example, and therefore achieve exponential convergence.
(Notice that this result does not contradict Theorem 5 as we
have only shown that exponential convergence can be
achieved for some, but not every domain distribution.)

This example shows that density in the induced metric dp
is not sufficient to force rational convergence in general.
Instead we need some property of “density from all sides.”
Unfortunately, generalizing this notion to arbitrary concept
spaces appears difficult, and the prospects for a general
theory seem remote. If we cannot even distinguish between
rational and exponential convergence it seems unlikely that
we can ever develop a tight characterization of empirical
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convergence rates for general spaces. Therefore, this dif-
ficulty has serious implications for any theory (distribution-
specific or otherwise) that purports to provide a general,
tight characterization of the learning curves observed in
practice.

APPENDIX A: PROOFS OF LEMMAS

Proof of Lemma 1. (There is a slight ambiguity here as
the sequences x’ actually range over different domains X* in
each case, but this has no bearing on the result.) First,
consider the space (C, P) and choose an arbitrary target
ce(C, P). For this ¢, define the random variables S¢(x) =
P(¢c—s(ex)) and H(x) = P(/(cx) — ¢), which measure the
distance between ¢ and the smallest and largest concepts in
the uncertainty interval [s(cx), /(cx)] respectively. Then
the variables S°,(x’) =min{S‘(x,), .., S(x,)} and H®(x’)
=min{ H(x,), .., H°(x,)} measure the distance between ¢
and the smallest and largest concepts in [s(cx’), Z(cx’)].
Thus,

wid(C, P, ¢, x") =P(£(ex’) — s(ex?))
=P(/(cx') —¢) + P(c — s(ex?))
:;[(Xr) +it(xt)

Now, turning our attention to the space (/, U), consider a
corresponding target concept i=[0, P(x)]el For this
concept we can define S, and H', as above. Notice that, by
construction, this concept i has the property that the width
of its uncertainty interval can shrink no faster than ¢’s:

Pl. For any y <P(c) we have P{S“< y} > U{S <y},
and for any y <1 —P(c) we have P{H < y} > U{H' < y}.

Given P1 the result is obvious, since for positive random
variables X and Y, F > F, implies EXY<EY. To prove P1,
note that U{S'< y} =y for y<P(c) by construction,
whereas P{S“ < y} > y over this range; similarly U{ H' < y}
=y for y<1—P(c), and yet P{H <y} >y over this
range. (To see this for H¢, let /, = (\{he C: P(h—c) > y}
and notice that P{H‘<y}=P(/,—c)=y. A similar
argument also works for S¢.) |

Proof of Lemma 2. Consider an arbitrary target concept
i=[0,i] el Let S(x)and H(x) be random variables for i as
defined in the proof of Lemma 1 above (dropping the super-
script i). Then by definition we have wid(Z, U, i, x’) =
S,(x")+ H,[(x"), and hence

E. wid(Z, U, i, x’)

=E [S/(x")+ H,/(x)]
= Zt‘, <li> U)* UG (B[ Skl X1 ooy X €1]
k=0

+ B[ H i Xpe 15 on X, E1]).



RATIONAL VS EXPONENTIAL LEARNING CURVES

Obviously in this case U(i) = iand U(i) = 1 — i. Now notice
that for S(x) and H(x) defined as above, we have
S|(x €i) ~uniform[ 0, /) and H|(x €i°) ~ uniform(0, 1 — ).
For any random variable R(x) with a uniform(0, )
distribution, it is not hard to show that E [R,(x")] =
r/(t+1) [17, pp. 99]. Therefore, we get

E,. wid(Z, U, i, x")
LN e a0 1—i
- 1— O R
Eo<k>l( ) <k+1+t—k+1>

Finally, each of the two terms in the summation can be
reduced via the Binomial Theorem [ 5, Chapter 4] to yield
the stated result. |

Proof of Lemma 3. We will show that the hypotheses
produced by MP are Bayes-optimal for the uniform prior Q
on [ and the uniform domain distribution U on [0, 1].
The result then follows by a well known fact about Bayes-
optimal prediction; cf. [ 8, Chapter 2].

Intuitively, this result is clear. Given a training sequence
z'=&x1, Y10, {X;, ¥, » ylelding the uncertainty inter-
val [s(z'),1(z")), the posterior probability that a domain
object xe[s(z'), /(z")) gets classified as y=1 is just the
proportion of initial segment concepts i€ [s(z'), I(z)) that
contain x. Therefore, the Bayes-optimal classification for x
is y=1 just when x <m = (s(z") + £ (z"))/2.

To prove this formally, consider an arbitrary training
sequence z' = & x,, y; ), .., {X,, y,» consistent with some
target segment i € I. We can compute the posterior probability
that a particular domain object x gets classified as y=1 as
follows.

1
P(yIx.2)= | p(y.ilx,2)di
0
1
= [ P(yli,x 2) plilx, 2') di
0
1
= | P(1ix) plilz) di
since y is independent of z* given x and i, and i is independent
of x. Now, notice that
0 it ¢ [s(2'), /(2))

m if ie [S(Zt), /(ZZ)),

where s(z°) is the largest positive example and /(z’) is
the smallest negative example in z, and notice that
P(y=1]i,x)=1 if x>i and P(y=1|i, x)=0 if x<i.
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Therefore, the posterior probability that an object x is
classified as y =1 given z’ is given by

/(2 1

P(y=1|X,Z[)=J‘X mdl
£(z')—x

" =5t “”

for x e [ s(z"), £(z")). (Note that this posterior probability is
1 if x<s(z'), and 0 if x>/(z").) Then, following the
standard Bayes decision procedure: given z’, we classify x as
1 exactly when P(y=1]x, z’) > 1/2. But by (4) this occurs
when x <(s(z')+7/(z"))/2, which is exactly what MP’s
hypothesis does. ||

Proof of Lemma 4. First, notice that E;E . err(MP, U,
i, x")=EE, err(MP, U, i, x’) by Fubini’s Theorem. Now
consider an arbitrary (ordered) object sequence x’ = {x, <
X, < --- <x,} that partitions the chain 7 into 7+ 1 sub-
intervals  Ipo ., Irx xy)s oo Iy, 1, Where Iy, o=
{iel:x,<i<x,,}. Le, each subinterval contains initial
segment concepts that identically label the objects in x.
Consider an arbitrary subinterval Iy, . ,=[s,1). For this
subinterval, MP always guesses the same hypothesis, m,
defined by the endpoint m = (s + £)/2. Thus,

7 4
j err(MP, U, i, x') di:j dy(m, i) di

5

=J/ |m —i| di
=2J'mm—zdz
=%f//—sdl

The result then follows since

t
E; err(MP, U, i, x") = )’

n=0"Xn

Xn+1

err(MP, U, i, x") di

1
- %J wid(Z, U, i, x") di

0

=1B, wid(Z U, i x). [

Proof of Lemma 5. We want to use the result that a large
error is forced on average over all i e I to show that a large
error must be forced for a significant proportion of the
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concepts i€/ for each 7, and then show that this means a
large error must be forced for some particular i’ €/ for
infinitely many 7.

Let err(i, ¢) « E . err(L, U,i,x"). Focusing on the
distribution Q over I, we are first interested in the event

of |, . —2
B, &t {16[: err(i, [)ZZ(t—I—Z)}’

which contains the concepts i€ I that force a large error for
training sample size ¢. To prove that this event has signifi-
cant positive measure under Q for every ¢, fix an arbitrary
t>0 and think of R =err(i, #) as a random variable over i.
Then by (2) we know that ER>1/(2(t+2)), and by
Lemma 2 we know that if L is consistent for 7 then
R<2/(t+1). Combmmg these two facts gives 0 < R<8ER.
Now, lettmgq “'Q(B,) = Q{i: R(i)> (1 — 1) ER}, we have
ER<(1—g¢g)(1 —4) ER+ 8¢ ER. It is easy to see that this
holds if and only if ¢=>4/(A+ 7). (Note that if L is not
consistent for 7 then we can always construct a consistent
learner L' such that err(L’, U, i, x") <min{err(L, U, i, x),
wid(Z, U, i, x)} for allie I, x" € X*; so it suffices to consider
a consistent learner.)
Now we consider the event

which contains the concepts i€/ that force L to exhibit
err(i, 1) > (1 —1)/(2(¢+2)) for infinitely many training
sample sizes . We wish to prove that Q(B) >0 and hence
there exists some i’ € B that forces err(i’, )= (1—41)/
(2(+2)) for infinitely many ¢ To do this, let BT =

I, Uy, B,. Notice that B” | B, and hence Q(B”) | Q(B
by [2, Theorem 1.2.7]. But now see that B, = B” for all T,
and therefore Q(BY)>=Q(B;)= A/(A+7) for all T. This
implies Q(B) = 1/(1+ 7), and we are done. |

Proof of Lemma 6. The key reason we obtain rational
convergence here is that, by construction, the region around
any target concept is sufficiently dense to ensure (C, P)
behaves like a uniform chain. To show this, consider an
arbitrary concept ce C and let [¢— D, c+ D] denote the
subinterval of X containing all objects within a dp-distance
D of c. Also, let r =3'*+¢ Then we have

P2.

E [wid(C, P, ¢, x")|x,, .., x,€[c—D,c+ D]]

- D
rin+1)
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Given P2, it is easy to prove the lemma by a simple
application of the Binomial Theorem

E. wid(C, P, ¢, x")

~2, ()00

X1y X, €E[c—D,c+ D]]

-5 (oo

r(n+l)

"(1=2D)"~"E, . [wid(C, P, ¢, x") |

To prove P2: Consider an arbitrary concept ¢ added at
some stage K of the construction. Note that by the definition
of P, ¢ must have neighboring concepts (on both sides) at
each distance D,=(3"—1)(3/2) 2., ., “=A-r " for
every n>K (where A is just a fixed positive constant).
Let D=Dy=A-r % This means that inside a local
neighborhood [¢— D, ¢+ D] of ¢, the chain (C, P) must
behave as if it were a compressed version of the uniform
chain (Z, U). To see this, consider the right hand neighbor-
hood [ ¢, ¢ + D] and notice that the distribution of distances
from c¢ to its right-hand neighbors is bounded by r times a
uniform(0, 1) distribution (Fig. 4). In particular, for d< D
we have P{ H‘(x) <d} <rP{R <d} where R ~ uniform(0, 1).
That is, given the event x € [ ¢, ¢ + D], the distribution for
Hx)|x€e[c, c+ D] is upper bounded by a uniform(0, D/r)
distribution, as shown in Fig. 4.

P{H(2) < d} - £
//
’ .
7/
o/
A _.-'
// . -
)l
o
.
2 |
0 S — x
0 DD D D 1
r3 r? r

dp-distance from ¢

FIG. 4. The solid lines indicate the distribution of dp-distances from a
target concept ¢ to its right-side neighbors in a dense chain C. Here
D=/ -r* where K =stage(c), r=3"' "¢, and /s a fixed positive constant.
The dashed line shows how the distribution of d-distances, given that the

distance is less than D, is bounded by a uniform (0, D/r) distribution.
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Now, recalling that for positive random variables X and
Y, Fy<F, implies EX>EY, we can simply apply the
Binomial Theorem to obtain

E[wid(C, P, ¢, x")| Xy, .., X, €[¢c— D, c+ D]]
n n 1 n ‘
=) <><> (B[S )%y, x;€[c—D, c]]
iZo \i/\2
+Ex"*i[mn7i|xi+la"'sxne[czc'i—D]])

n\/1\" D D
0<i><2> [r(i+1)+r(n—i+l)

- D
r(n+1)

M=

=
i

Proof of Lemma 7. The main reason MC obtains
near-optimal average expected error is that the max-weight
concept in any uncertainty interval, J, possesses a minimum
fraction of J’s total weight under Q. Let ¢* =max,_, Q(c)
denote the maximum prior probability of any concept
in J.

P3. For any uncertainty interval J: q* = pQ(J) for a
fixed constant p = (1 —37%)/2.

Given P3, we prove the lemma as follows: First note that
we can rearrange the order of summation to obtain
E . Eerr(MC, P, ¢, x")=EE_ err(MC, P, ¢, x’), so it suf-
fices to consider an arbitrary fixed x’. Note that a sequence
x'={x, <x,< .- <x,} partitions the chain C into ¢+ 1
subintervals C(_ ), C(y,.xp)s = Cix,. -y, Where C o
={ceC:x,€ecandx, . ¢c}. Thatis, the concepts in each
subinterval identically label x’.

Now, consider an arbitrary subinterval J=C(, . ,and

compare the performance of MC to an arbitrary learner L
in this subinterval. Since x’ is fixed, we can think of the
target concepts ¢ € J as being drawn randomly according to
the distribution Q. Note that, since ¢,x’=c,x’ for any
¢y, ¢, €J, any learner must produce a fixed hypothesis for
all target concepts c € J. Thus, given targets ceJ, L pro-
duces a fixed hypothesis L(cx')=h, and MC guesses the
concept ¢* € J with maximum prior probability according
to Q. (The proof of P3 below notes that there can be (at
most) two concepts with maximum prior probability in an
uncertainty interval J, so we just assume MC deterministi-
cally picks one of them.) We now show that any hypothesis
h must obtain an average error over random concepts
drawn from J that is at least a fixed fraction of ¢*’s average
error. Let ¢*=Q(c*)=max,.,Q(c), 0=Y..,Q(c),
0*=0—¢q* and d* =dp(h, c*). Then, by the triangle
inequality, we get
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def

D(h) =}, dp(h, ¢) Q(c)

celJ

>dp(h, c*) q* + )

ceJ—{c*}
—dp(h, c*)]1 Q(¢)
=>d*q*+0[D(c*)—d*Q*], (5)

OLdp(c, c*)

where 6 is a threshold function such that 6(x)=x if x>0
and 0(x) =0 otherwise.

Now we just minimize this lower bound as a function of
d*. Here we have two cases: If ¢* > Q* then (5) is mini-
mized by choosing d* =0, which gives D(h) = D(c*). If, on
the other hand, ¢* < O* then (5) is minimized by choosing
d* = D(c*)/Q*, which gives D(h)>= D(c*) ¢*/Q*. In this
case we can just apply P3 to obtain D(h) = D(c*) p/(1 —p).
Thus, in either case we obtain D(k)>= fD(c*) for a fixed
constant = p/(1 —p)>0.

Finally, we note that this shows any learner L must
obtain

t

E err(L, P, ¢, x") =Y, )

n=0 ceC

(s X 41)

t
2py X
n=0 ceC(-"nv"'nJrl)

=p E, err(MC, P, ¢, x").

dp(L(cx"), ¢) Q{c}

dp(MC(cx"), ¢) Q{c}

Proof of P3. Note that any subinterval J of C contains
at least one, and at most two concepts of maximum weight
under Q. (This is true since, by construction, any interval
that contains three concepts from a stage K, must contain at
least one concept from an earlier stage N < K; cf. Fig. 2.)
Therefore, if ¢* is a max-weight concept of J, then J can
have: at most one other concept of maximum weight
g* = Q(c*); at most 6 concepts of weight ¢*/r, r =3"'"*% at
most 2 - 3* concepts of weight ¢*/r* for all stages k > 0; etc.
(That is, this is symmetric to considering J = C — {¢,, ¢} in
Fig. 2 and choosing c* =c¢,.) This gives a total weight of
QU <q* £7 o237 F=2¢*/(1-37%). |

Proof of Lemma 8. Asin Lemma 7 we can rearrange the
order of summation to obtain the identity E_E . err(MC, P,
o, x"Y=EE.err(MC, P, ¢, x"). So consider an arbitrary
fixed x" = {x, <x, < --- <x,}; think of the target concept ¢
as being randomly drawn according to Q, and consider
MC’s performance for x‘. First note that there is a nonzero
probability that MC guesses the target concept exactly. So
we need to argue that (a) MC does not guess the target with
too high a probability; and (b) given that MC does not
guess the target, it must achieve an average error that is at
least a fixed fraction of the uncertainty interval width. Let

—1IMC(x’) & {c: MC(cx") # ¢} denote the set of concepts in
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C that MC does not guess given any possible labelling of the
object sequence x’. Then for any fixed x* we have

P4. Q(MC(x")) = 1/3%(t+2)"
P5. E_[err(MC, P, ¢, x")| 7TMC(x’)]

1
>—E_[wid(C, P, ¢, x")| 7TMC(x")]

=
8r3

x Q(IMC(x")) for r=3'"e
Given these two facts, it is easy to prove the lemma as

follows. Applying P4 and PS5 yields

E, err(MC, P, ¢, x")
=E_[err(MC, P, ¢, x")| 7TMC(x")] Q(MC(x"))
>E [wid(C, P, ¢, x")| 7TMC(x")] (¢ +2) %,

for a constant J = (87°3%) ~! > 0. Now, averaging over x’
and re-arranging the sum yields

EE_err(MC, P, ¢, x')
>8(142) % E E,[wid(C, P, ¢, x') | 7TMC(x") ]
=0(t4+2)"*E_E_[wid(C, P, ¢, x")| 7MC(c)],
where =TMC(c¢) d=ef{x’: MC(cx") #c} is the set of object

sequences x‘ € X’ where MC does not guess ¢. This proves
the lemma, since for any ¢ we have

E, [wid(C, P, ¢, x")| 7TMC(¢)] Z E,  wid(C, P, ¢, x").

(Intuitively, this follows because the uncertainty intervals
where ¢ is the max-weight concept tend to be small. That is,
consider a fixed left boundary of an uncertainty interval
around ¢ and notice that every right boundary that
gives ¢c€ IMC(c) is strictly further away from ¢ than any
boundary where MC(c¢x’) =c.)

Proof of P4. We get this bound because x’ partitions C
into at most ¢+ 1 subintervals and MC can guess at most
one concept per subinterval. Thus, the probability that MC
guesses a random target concept ¢ € C is bounded by the
sum of the largest 7+ 1 probabilities in C. That is,
Q(—MC(x")) =3, ,q,;where {q,} 7, is the sequence of
probabilities assigned in the construction of Q. So, letting
Or=>7" rq;, we seek a lower bound on Q, for T=1+2.

To determine this lower bound, note that by the construc-
tion of C, the total number of concepts added in Stages 1
through K inclusive is YF_, 2.3 7' =3%—1, so the index
of the last concept added at Stage K is 3%. This means that

, def A —e .
01> 37 1110071 Qs Where 0, £ (3= 1)3-* is the
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total probability assigned at Stage k of the construction.
Thus

(o0}

Z 3731(

k=[1+logy T

Qr=(3"-1)

(37.3)|’1 +logy 77
1—-37°

1:(3 71:)|'1 +logy 771

=(3"-1)

3
3

\%

1:(3 71:)2+10g3 T_ 3 —eT e

Proof of P5. This inequality holds because the region
around the max-weight concept in any uncertainty interval
is sufficiently dense in both P and Q to simulate the effects
of a uniform prior on a uniform chain (as in Lemma 4).
Here we are interested in the conditional distribution of Q
given TTMC(x’), which is defined by

Q(c)/0* if ce IMC(x"),
0 otherwise,

Q*(¢) ={

where Q* is the normalizing constant given by Q* =
Q(MC(x")). Let EF denote expectation over ¢ with
respect to this conditional distribution. We seek a lower
bound on

EF err(MC, P, ¢, x')

zzj

n=0"c€(x,x, 1)

err(MC, P, ¢, x") dQ*(c), (6)

where (x,, x,,, ;) denotes the subinterval of concepts ce C
between x,, and x,, , .

To establish this lower bound, consider an arbitrary
subinterval J=(x,, x,,;) and let ¢*=argmax,..,Q(c).
Note that we can split the summation over J into two halves

j err(MC, P, ¢, x') dQ*(c)

celJ

= dele* 0 dQ¥(c)

ce(x,, c*)

v,

ce(c*, x, 1)

dp(c*, ¢) dQ*(c). (7)

So consider one of the halfintervals M = (¢*, x,,, ;). Itisnot
hard to show that the average dp-distance from ¢* to ce M
is at least a fixed fraction of M’s width under P: To see this,
note that for each ce(c* x,, ) added at Stage K of the
construction we can assign a distinct x from Stage K+ 1
between ¢* and c—namely, the x at Stage K+ 1 closest to
¢ in (c*, ¢); see Fig. 2. Then, for any subinterval (c*, ¢) we
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get P(c*, ¢) = Q(c*, ¢)/r= Q*(c*, ¢) Q*/r, where r=3'"*
(Here we are using the notation (c*, ¢) to refer ambiguously
to both the set of concepts and the set of domain objects
between ¢* and c¢. The intended meaning should be clear
from context.) This means that for any dp-distance d such
that d<P(M) we get Q*{ce M:dy(c*, c)<d} <rd/Q*.
So, thinking of dp(c*, ¢) as a random variable over ¢, we can
see that the distribution function for dp(c*, c)|ce M is
bounded by a uniform(0, P(M) Q*/r) distribution, as
shown in Fig. 5. Thus we get EX¥[ dp(c*, ¢)|M]=P(M)Q*/
(2r), and hence

f Y dp(c*, ¢) dQ*(c) = EZ[dp(c*, ¢) | M] Q*(M)

>%P(M) Q¥(M).

(8)

Now, reconsidering the complete interval J, note that one
of the half intervals (x,,, ¢*) or (c*, x,,, ;) must be at least
half the dp-width of J. Without loss of generality, assume
P(M)=P(J)/2. Then we can argue that Q*(M)=
P(M)/r=P(J)/(2r) = Q*(J)/(2r?) as above. Combining this
with (7) and (8) gives

j ert(MC, P, ¢, x') dQ*(c) =j do(c*, ¢) Q*(¢)
celd cedJ

Lo

8r3

_2 f wid(J, P) dQ*(c).

- 3
87’ celdJ

P(J) Q*(J)

Substituting this back into (6) yields the stated bound. ||

Proof of Lemma 9. Follows from essentially the same
argument as Lemma 5. |i

Proof of Lemma 10. First we need to formalize the
notion of the order of a limit concept.

DErFINITION 6 (Limits and Order). For a chain C, let
i(C) denote the set of isolated concepts in C; ie., the
concepts with a least-larger and greatest-smaller neighbor
in C. Also let C°=i(C). Then we define C'* = C— C° to be
the limit concepts of C. The limit concepts with order
exactly 1 are given by C' =i(C'"). Continuing in this way
for arbitrary ordinals «, we define the concepts with order at
least . by C** = C— )4, C”, and the concepts with order
exactly a by C*=i(C*"). Notice that for any ordinal o we
have C=C** Uy, C”.

The key issue is to show that by collecting successively
higher order limit concepts in this way we eventually
exhaust a scattered chain.
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P6. For any scattered chain C, there exists some least
ordinal y such that C=),_, C’.

Note that by the definition of C#, P6 implies both proper-
ties (1) and (ii) of Lemma 10. To prove P6 we must resort to
an inductive characterization of scattered linear orderings
first developed by Hausdorff (an excellent treatment of this
subject is given in Rosenstein’s monograph [21]). This
characterization is based on constructing the following
“condensation” map: We say that two concepts are a finite
distance apart if there are only finitely many concepts
between them in the ordering. Then the finite condensation
map f: C— 2 is defined by f(c)={deC:c and d are a
finite distance apart}. The effect of this map is to collapse the
chain into a collection of subintervals (that is, subintervals
of the chain C, not the domain X). The key point is to notice
that these subintervals themselves form a linear-ordering, so
we can naturally define iterates of this map as follows: For
a successor ordinal f+ 1, define f**+'(¢) = { fA(d): f7(d)
and f*(c) are a finite distance apart}; and for any limit
ordinal 4, define /*(¢)= U4, {/#(c)}. Then we have the
following relations.

P7. fA(C)= f*(C) for all B=u if and only if f*(C) is
dense or a singleton.

(This proposition is more or less immediate from the
definitions; see e.g., [ 21, p. 81].) Now define y to be the least
ordinal for which f#(C)= f7(C) for all f=y. (We know
that such a y must exist, since for any chain C with
cardinality x there is an ordinal « < x 4+ such that /#(C) =
S4C)forall f=a [21, Theorem 5.9].) From P7 it is easy to
see that

P8. f7(C) is a singleton if and only if C is scattered [ 21,
Exercise 5.11.2].

This gives a necessary and sufficient characterization of
scattered concept chains in terms of f7(C). So now all we
need to do is related this characterization of a scattered
chain C to its decomposition into limit points given in
Definition 6 above. Below we prove

P9. For any ordinal 3, there can be at most 2 concepts
from CP* in any internal of f*(C).

This gives the result, since: From P8 we know that if C'is
scattered then f7(C) is a single interval. Combined with P9,
this means C”* contains at most 2 concepts, and hence
CU+ D+ = . Since by definition C=C** U (J;_, C” for
any a, we have shown that C=J,, C?; establishing P6
and hence the lemma.

Proof of P9. Proof is by induction on ordinals. Base:
Simply define /° to be the singleton intervals of C. Successor
ordinal: For any successor ordinal f + 1 we know there are
at most 2 concepts from C#* in any subinterval of /* by the
induction hypothesis. Now assume there are 3 concepts
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distribution.

achcc from CP+*VD* in a single interval of /™. Since
they are in a single interval in f#*', these concepts must
have belonged to intervals in f# that were only a finite
distance apart. But then, by the induction hypothesis,
acbcc must only be a finite distance apart in C**. But
this means b must be isolated in C#*, and hence cannot
belong to C#* Y+ a contradiction. Limit ordinal: For any
limit ordinal A we know there are at most 2 concepts from
C?7 in any subinterval of f#, for all 8 < A, by the induction
hypothesis. Now assume there are 3 concepts a = b < ¢ from
C** in a single interval of *. Since they are in a single inter-
valin f*, there must be some f, < 4 such that a and b belong
to an interval of f#, and some f, <A such that » and ¢
belong to an interval of /2. But then all 3 concepts must
belong to a single interval of f# for f=max{p,, B,} </
a contradiction. |

Proof of Lemma 11. We define the usual topological
concepts for linear orderings (see e.g., [ 21, Chapter 2]).

DerINITION 7 (Compactness Properties). For a chain
C, a Dedekind cut of Cis a partition of C into two nonempty
subsets < U, V) whereucvforallue Uandve V. A gap is
a Dedekind cut { U, V) where U has no maximal concept
and ¥ has no minimal concept. We say that a chain C is:
(1) closed if it is closed under N and U ; (ii) bounded if it has
a minimal and maximal concept; (iii) Dedekind-complete if
it has no gaps; (iv) complete if every upper (lower) bounded

subchain of C has a least upper (greatest lower) bound in C;
and (v) Bolzano—Weierstrass if every infinite subchain of C
has a limit in C.

The definitions and results of this lemma will be used to
prove the next two lemmas below. First observe that being
closed under U, n implies being Dedekind-complete and
bounded, complete and bounded, and Bolzano-Weierstrass.
Therefore we call such a chain compact.

((1)=>(i1)) Obvious: the maximal concept is just
(J{ce C} and the minimal concept is () { ¢ € C}, which both
must be in C since it is closed under N, U.

((1)=(ii1)) Consider any partition { U, V') of C. Since
Cis closed under N, U, both J{ue U} and N {ve V} are
in C, meaning that (U, V) cannot be a gap.

((ii1)=(iv)) For any subchain 4 of C consider the
partition defined by

U={ue C:3ae A such that u = a}.

Since (U, V) cannot be a gap, U must have a maximal
concept or V' a minimal concept. In either case we can supply
a least upper bound on 4.

((11) + (iv) =(v)) Without loss of generality, consider a

countably infinite subchain A of C. Since C is complete and
bounded, 4 must have a greatest lower bound a, € C. If
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a, ¢ A we are done (since then @, would be a limit concept
of A), so assume a, € A. Continuing in this way, find
a,=glb(A—{a,}), as= glb(A — {a,, a,}), etc. Note that if
any a; is not in A then it must be a limit concept of 4, so we
are left with the case where every a, ca, < --- belongs
to A. But then, since C is complete and bounded,
b=1Iub({a,} ) must also be in C, and since b ¢ {a,} by
construction, this must be a limit concept of 4. ||

Proof of Lemma 12. Note that every concept c € € (C)
either belongs to C, or is given by ¢={ue U} or
c=N{veV} for some gap (U, V). Thus, 4(C)=Cu
A (C)u v (C), where % (C) denotes the concepts added for
gaps where U has no maximal concept, and #"(C) denotes
the concepts added for gaps where 7 has no minimal concept.
Assume that C is scattered but (C) is somewhere-dense.
We will show that this leads to a contradiction.

First, since ¥(C) is somewhere-dense the following
proposition shows that one of % (C) or ¥ (C) must also be
somewhere-dense.

P10. Removing a scattered subchain S from a dense chain
D leaves a somewhere-dense chain D — S.

(This proposition is easy to prove: Since S is scattered
there must be two concepts s; =5, in S with no sy €S
between them. But then the subinterval (s,, s,) of D, which
is dense, is properly contained in D — S.) So, without loss of
generality, assume % (C) contains a dense subchain U.
Notice that C is between U in the sense that for every pair
U, < u,in U there must be a ¢ € C such that u, = ¢ < u, (for
if not, then there would be two distinct gaps < U,, V),
(U,, V,> of C with U,— U, =, which cannot be).
But then the following proposition shows that C must be
somewhere-dense as well; a contradiction.

P11. Ifa chain B is between a dense chain D, then B must
also be somewhere-dense.

To prove this proposition, first note that we can find con-
cepts by, b, € B, d,, d, € D such that b, =d, =d, = b, (just
pick four concepts d; =d, =d, =d, from D and choose
b,, b, between the first and last pairs respectively). Now, for
any such quadruple b, cd, =d, b, we can always find
bseB and d;,d, e D such that b, =cd, =cdy by cd, =
d, < b, (just choose d; and d, between d, and d,, and then
b, between d5 and d,). Thus, we can continue this process
indefinitely to construct a dense subchain of B. ||

Proof of Lemma 13. Recall that any sequence of training
examples ¢x’ determines an uncertainty interval [s(cx?),
/(cx')]. Also recall from the definition of an uncertainty
interval (Definition 3) that s and ¢ are defined by unions
and intersections of concepts from C, and hence must also
belong to C. This means that [s, /] is a compact subinterval
of C (i.e., [s, /] is also closed under n, v ). Since [s, /] is
also scattered, by Lemma 10 we know that there exists a
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least ordinal y such that [s, /] =4, [s, /]”. (Thatis, y is
the least ordinal such that all limit concepts in [s, /] have
order at most y.)

It suffices to show that [s, /]” is non-empty, as this will
supply the needed maximal order limit concepts. Assume
[s, /] is empty. Then clearly y must be infinite and [s, /]”
must be non-empty for all f <y (otherwise y would not be
the least such ordinal). But then consider the subchain
{c#eCP: <y} of [s, /] formed by choosing a single limit
concept of each order f <y. By the compactness of [s, /],
this infinite subchain must have a /imit concept ¢ in [s, /]
(cf. the Bolzano—Weierstrass property of Lemma 17]). This
concept ¢ cannot be in [ s, /]” for any <y, and hence must
belong to [s, /]7*; a contradiction. ||
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