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Abstract

We define the nonic Rogers—Ramanujan-type functions D(g), E(g) and F(g) and establish several mod-
ular relations involving these functions, which are analogous to Ramanujan’s well known forty identities for
the Rogers—Ramanujan functions. We also extract partition theoretic results from some of these relations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the paper, we assume |g| < 1 and for positive integers n, we use the standard

notation
n—1 ‘ 00
@ qy:=1, (@qn:=]](1-aq’) and (a;q)oo:=]](1-aq").
j=0 n=0
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The famous Rogers—Ramanujan identities ([15,19], [16, pp. 214-215]) are

o0 2

q" 1
G(q) = = : 1.1
@ @ Dn (4597)00(q* 4700 (D
and
X n(n+1) 1
Hg):=) g (1.2)

@G Dn (@000 ¢

G(q) and H (q) are known as the Rogers—Ramanujan functions. S. Ramanujan [18] found forty
modular relations for G(g) and H (g), which are called Ramanujan’s forty identities. In 1921,
H.B.C. Darling [9] proved one of the identities in the Proceedings of London Mathematical Soci-
ety. In the same issue of the journal, L.J. Rogers [21] established 10 of the 40 identities including
the one proved by Darling. In 1933, G.N. Watson [24] proved 8 of the 40 identities, 2 of which
had been previously established by Rogers. In 1977, D.M. Bressoud [7], in his doctoral thesis,
proved 15 more from the list of 40. In 1989, A.F.J. Biagioli [5] proved 8 of the remaining 9 iden-
tities by invoking the theory of modular forms. Recently, B.C. Berndt et al. [4] have found proofs
of 35 of the 40 identities in the spirit of Ramanujan’s mathematics. For each of the remaining 5
identities, they also offered heuristic arguments showing that both sides of the identity have the
same asymptotic expansions as ¢ — 17.

Two identities analogous to the Rogers—Ramanujan identities are the so-called Gollnitz—
Gordon identities [10,11], given by

o (4367 2 !
S(q) = = 1.3
@ ; @5 @ 4@ M@ D)o (-
and
.- (=g qz)n n2+2n 1
T(@)i=) —ast = : 1.4
@ ,12:3 @% gD (@1 4%)00 (4% 4%)0(4°: 4%) o0 (4

S(q) and T (q) are known as the G6llnitz—Gordon functions. Motivated by the similarity between
the Rogers—Ramanujan and the G6llnitz—Gordon functions, S.S. Huang [14] and S.L. Chen and
Huang [8] found 21 modular relations involving only the Gollnitz—Gordon functions, 9 relations
involving both the Rogers—Ramanujan and Gollnitz—Gordon functions, and one new relation
for the Rogers—Ramanujan functions. They used the methods of Rogers [21], Watson [24] and
Bressoud [7] to derive the relations. They also extracted partition theoretic results from some of
their relations. N.D. Baruah et al. [2] also found new proofs for the relations which involve only
the Gollnitz—Gordon functions by using Schréter’s formulas and some theta function identities
found in Ramanujan’s notebooks [17]. In the process, they also found some new relations.

In [12] and [13], H. Hahn defined the septic analogues of the Rogers—Ramanujan functions as

o 2n?

q q@":9D00(q% a0 (g% a oo
A = =
@:=2 (4% 4®)n(—q; @)2n (4% 4%

, (1.5)
n=0
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Bg) = i R T B P U B P URT LS 16
= (@%qPn(=q: @)on @ Moo ’
and
o0 2n(n+1) 7. .7 .7 6. 7

(@R g (g D1 @ 4P
where the later equalities are due to Rogers [19,20]. She found several modular relations in-
volving only A(gq), B(q), and C(g) as well as relations that are connected with the Rogers—
Ramanujan and Gollnitz—Gordon functions.

Now, we define the following nonic analogues of the Rogers—Ramanujan functions

2
D) .zi @ D™ @4 4))@’1 470”1 4%) 18
= (@7 47n(q’ 4P (@ ¢¥)oo ’
E(q) = i @901 =g (%400 )@ e )
2 (@@ g @)oo ’ '
Fg) :i @ D314 (414%)00(0% 4M)0(q1 470 (1.10)
= (@ 4M)n(a* 4P @ g% ’

where the later equalities are due to W.N. Bailey [1, p. 422, Eqgs. (1.6), (1.8) and (1.7)]. It is
worthwhile to mention that Bailey used non-standard notation in the paper where these identities
first appeared. All three of these identities appear in the list of L.J. Slater [23, p. 156] as Eqs. (42),
(41), and (40) in that order. However, all three contain misprints. These misprints are corrected
as given in (1.8)—(1.10) by A.V. Sills [22]. The main purpose of this paper is to establish several
modular relations involving D(g), E(q), and F(g), which are analogues of Ramanujan’s forty
identities. We also establish several other modular relations involving quotients of D(q), E(q)
and F (g). Some of these are connected with the Rogers—Ramanujan functions, Gollnitz—Gordon
functions and septic Rogers—Ramanujan-type functions. Furthermore, by the notion of colored
partitions, we are able to extract partition theoretic results arising from some of our relations.

2. Definitions and preliminary results

In this section, we present some basic definitions and preliminary results on Ramanujan’s
theta functions. Ramanujan’s general theta function is

o0
fla.by= > a""tOP2pe=D2 - ap <1, 2.1)
n=—o0
In the following four lemmas, we state some basic identities satisfied by f(a, b).

Lemma 2.1. (See [3, p. 34, Entry 18(iv)].) If n is an integer, then

fla,by=a""tO2pr =012 £ (qab)", bab)™). 2.2)
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Lemma 2.2. (See [3, p. 45, Entry 29].) If ab = cd, then
f(a,b)f(c,d)+ f(—a,—=b)f(—c,—d)=2f(ac, bd) f(ad, bc), 2.3)
f@b) fle,d)— f(—a,—b) f(—c,—d) = 2af<§, aczd)f<§, acd2>. (2.4
Lemma 2.3. (See [3, p. 46, Entry 30(v)].) We have
fla.b)f(=a,~b) = f(~a*, ~b*)¢(~ab). (2.5)
where ¢ is defined in (2.8) below.

Lemma 2.4. (See [3, p. 48, Entry 31 with k =2].) We have
fla,b)= f(a’b,ab’) +af(§,a5b3). (2.6)
Jacobi’s famous triple product identity can be expressed in the following form.
Lemma 2.5. (See [3, p. 35, Entry 19].) We have
f(a,b) = (—a; ab)oo(—b; ab)so(ab; ab) . 2.7)
In the next lemma, we state three special cases of f(a, b).

Lemma 2.6. (See [3, p. 36, Entry 22].) If |q| < 1, then

@ =fla.a)=Y " =(~¢:4%)2 (6% ). (2.8)
n=0
v(g) = f(g.4°) = iq"(”“)/z _ @) 2.9)
' ’ = @3 4%)o0 '
and
[ =f(=q.—q%) =) _(=1)"g"" V24" (=1)"q" D2 = (¢; ¢)oo. (2.10)
n=0 n=1

The product representations in (2.8)—(2.10) arise from (2.7). Also, note that if ¢ = €™ T then
¢(g) = 93(0, t), where ¥3(z, T) denotes the classical theta-function in its standard notation
[25, p. 464]. Again, if ¢ = ™7, then f(—q) = e "!"/12(z), where n(t) denotes the classical
Dedekind eta-function. The last equality in (2.10) is a statement of Euler’s famous pentagonal
number theorem.

Invoking (2.7) and (2.10) in (1.8)—(1.10), we immediately arrive at the following result.
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Lemma 2.7. We have

f(_q4’ _qs)
D - - @ @ -
D=5
f(—q* —q")
E(gy=2~1> 1~
@ f(—=q%
f(_qv _qg)
Fgy=21—2"27
@ f(—=q?

Lemma 2.8. (See [3, pp. 3940, Entries 24-25].) We have

= LD _ 2@ 9@ _ o)
f=®» Vv fl@ v(q9)’

(@b (—q) = $*(—4?),

where x(q) := (—q; qz)oo.
The following lemma is a consequence of (2.7) and the above lemma.

Lemma 2.9. We have

_ 5 B
B _f12 L _Nfa _ V5 _
?( q)——fz, Y ( 61)——f2 , f(q)_—f1f4 and x(q) =

where f, := f(—q"), and this notation will be used throughout the sequel.
Lemma 2.10. (See [3, p. 49, Corollary (ii)].) We have
V@) =f(a>.a") +av(a’)-
Lemma 2.11. (See [3, p. 51, Example (v)].) We have
fa.@°) = x@v (=)

Lemma 2.12. (See [3, p. 350, Eq. (2.3)].) We have

fa.4*) =o(=¢°)/x (—q).

179

@2.11)

2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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3. Main results

In this section, we present the modular relations for the functions D(g), E(q), and F(q)
as well as relations of these three functions with the other Rogers—Ramanujan-type functions.
Proofs of these relations will be given in Sections 4-6. It is worthwhile to note that by replacing
g by —¢q in each of the following relations one can get more relations. For simplicity, we define,
for positive integers n, D, := D(q¢"), E, := E(@"), F, := F(q").

The identities (3.1)—(3.23) involve D(q), E(g), and F(q).

DIE\ +qE}F) —qDFf =1, (3.1)
D{F\ — E{Di +qFLE| =0, (3.2)
fi
D3 —qE;—q°Fy=—, 3.3)
Jo
215 fo1 fsa
DGE3F3 + qEcD3Fs + q* FeD3 Ey = — 22—, (3.4)
Sifefg f18
DsDy+ g EsE4 + q°FsFy = Do _ (3.5)
f1/12.f15 f20
2
9
D¢D3 + q°EgE3 + ¢°FgF3 = fzfz -4, (3.6)
flf18
7 13 15 1o 2
DyE| —q ExF+q "FyDy = ——F—+q", 3.7
S3 fafs feo
DyE| —qE F1 +gFDy =1, (3.3)
DsFi +qEsDy — ¢*FsEy =1, 3.9)
D1D8+C]3E1E8+Q6F1F8:ﬂ_q, (3.10)
f1/3f8f24
1S
D11E1—q4E11F1+617F11D1=ff +q, (3.11)
f3/33
DyD7 4+ ¢* E2E7 4¢P FaFy = ﬂ —q (3.12)
Sf1fe fiafa1
4 9 f12f124
DuuFi+q¢"D1Eva—q EyFlu=———+¢q, (3.13)
N faffa
7 15 N3, o
DysFi+q ' ExsDy —q " F3Ep = +4q°, (3.14)
J3 fe9
S1fafsf32
Dy Fi +q'"EpnDy — ¢*' FpEy = 222222 4 g, (3.15)
213 f6 fos
f517
D\Ds3s +q"?E | E3s + ¢**Fi F3s = ——— — ¢* (3.16)

f3 f105
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1/38
¢’ D2E19+ D19F> — q'?FioE, = 1 +q, (3.17)
fefs7
13 25 _ afo 4
D3gEy —q "Esgk1 +q~ F3sD1 = +4q°, (3.18)
f3/114
15 30 Sfafu 5
D\Dss+q E\Esa+q F1Fuu=-"———¢q", (3.19)
f3f132
Ds¢E1 — q"EseFi +q°' Fs¢ Dy = afrfals +4°, (3.20)
f3faf1afies
D2y F3 4 q®ExuD3 — P Fay B3 = fijatis +4q. (3.21)
f2f9 f36
D\ Dso+ g7 By Exo + g™ Fyo Fy = 1253116120 o (3.22)
/31810 f240
DigssE1 — q%2 Ejgss Fy + ¢ Fioss Dy = ¢°7. (3.23)
The identities (3.24)—(3.32) involve quotients of the functions D(q), E(g), and F(q).
D3 —qE3 — ¢*F
3 612 3 6163 :f1f27’ (3.24)
D9 —q°E9y—q°Fy  f3fo
DnEi—q—q*EnFi+q FiuDi _ fifo (3.25)
D33 — g E33 — q?2 F33 3133’
DiDss+q* +q"2EssE\+q** FiF3s _ fs5fe3 (3.26)
Dy —q7Ey1 — g4 Fay f3.fi0s’ ’
Dy Fi—q*+q ExDi—q P FuE _ fifan (3.27)
Dego — q* Ego — q* Fo f3feo’
DyDys+q° +q°ErExs + g8 FaFas o f3 25 f150 (3.28)
DsoF1 —q° +q'SEsoDy — g3 FsoE1  fifefs0f75 ’
D;3Fy—q' +q2E;Dy—q®F3Ey  f3fasg (3.29)
DisE1 — q'® — q¥EucFi1 + ¢ FlusD1  fofa19’ '
DyFy —q+q' EDs — ¢ FaoEs  f3fuie (3.30)
D3 F1 —q®¥ +q30E30,D — q* ' F300E1  foa f147’ ’
DesFi —q" + g2 EsD1 — g FsE1 _ fi2fs1 (331)
Di7Es—q —q"E17Fs+q'°F17Ds  f3 fa04 '
D1 Dy + 4% +q* E1Exo+q' " FiFaso _ fi2f195 (3.32)

DesFis—q° +q¥E¢sDy — g% FesEs f3frso

The following identities are relations involving some combinations of D(q), E(g) and F(q)
with the Rogers—Ramanujan functions G(q) and H(q). Here, for positive integers n, we define
G, :=G(¢") and H, := H(q").
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Dy—q*E9—q°Ey _ fifo

. = , (3.33)
GoG1+q°HoH1  f3f27
DysDy+q° +q ExsEx +q" FasFa— fs fio (3.34)
GsGio+q>HsHo fefrs’ '
D3Dy; +q* +qEsEx +¢* F3Fs  fu (3.35)
G9G11 +q*HoH\ foo' '
D3Dyp+q° +q EsEp+q F3Fin  figfr (3.36)
G13G7 +q°HisHy fofize’
DiDys+q° +q E1Exs+q'8FiFas 13 (3.37)
G13G2+q*Hi3Ha ffs '
Di3Ey —q—q°EisFy+q*FisDy  fi fas (3.38)
Ga6H1 — q3G1Hag e .
DyEy —q° —q'""ExwFi +q"FoDi _ fif (3.39)
G29G1+q°HyH, fafsr’ '
Dy, Ey — q® — g EyF1 + ¢ FuDy  f3fm (3.40)
G37Hy — q' G2 Hyy fafsr’
DiDis+q"” +¢ EiEnis+q FiFiis _ fafss (3.41)
Ga9Hy — g>GaHag f3f38
DiDis+q' +q*EiEns +¢* FiFias  fsfas (3.42)
GasHs — q*GsHas ffas '

The following identities are relations involving some combinations of D(gq), E(q), and F(q)
with the Gollnitz—Gordon functions S(¢) and T (g). For simplicity, for positive integers n, we
define S, := S(¢") and T;, := T (¢").

Dis—¢°Eis—q'°Fis _ fifsfw

; = , (3.43)
8581 +q°T5Th 2 fiofss

Deo — q*°Eco — q** Feo _ Jafs f20 (3.44)
SsTy — q*TsS) f2fiofiso’ )

DesFi — q" + q*?Ees D1 — g™ Fs E _ S1fa 117 fes (3.45)
S17T1 — ¢8T178, 213 /34 fr0s ’

DigEy — q'"* — g¥EngF1 + ¢* Fios Dy _ 218 f16 foea (3.46)
Si16T» —q75:Tis f3faf32f384 ’

DeoF3 — q° + q'8EqoD3 — ¢*° Foo E3 _ Sf1fafas (3.47)
SasS1 + g2 TusT f2fo foo’ ’

{S4581 + ¢ Tus T} SasT1 — ¢%TusS1) _ frhisfay (3.48)

DeD3o +q* +q2EcE30 + g FoFso  fifafss fiso’
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D3Dgo+q" +q* EsEeo + ¥ F3Feo _ f5/20/3

SoSs+q'ToTs ~ fofisfiso’

DiDys+q” +qPE1Exs+q"°FiFons  fafiafiefse

S14Ts — ¢°T14S4 f3f3fsfer2’

DooE3 —q'° — g Eos F3+ 9% Fos D3 fofs f36./144

S3682 +q ' T36 T fafofrfoss’

DiFr—q+q'"EqaD7r — q* FisEr  fifaf faos
S17T1 — q*8 TS f2far fizz fise”

DesEs — q° — g EssFs +q*' FsaDs  f2 fs fa0 f160
$2840 + ¢ T2 Tuo fafisfsofion”

D30 F1 — ¢ —q'"EsoD1 —q*PEFs0  fafiof32./50

S10T3 — q*SsTio 13 f16 120 foso

183

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

The following identities are relations involving some combinations of D(q), E(g), and F(q)
with the septic analogues A(g), B(q), and C(g). Here also, for positive integers n, we define

An = A(g"), By := B(q") and C, := C(q").

Dy —q*E9 — q°Fy 2 fs
A1A27+q*B1By1+q"2Ci1Cy1 fofor
Dis—¢’Eis—q'°Fis  frfao

A1A2+q3B 1By +q°CiCo  fafas
DyE)—q° —q'"°EqFi+¢*' FiuD1  fafos

AyBi —q'ByCi —q®CqAy  f3fin’
DsoFy —q%+q""EsoDy —q®FsoE1 _ f>f118
AsoC1 — ¢¥Bso A1 +q*Cs9 B fham’
D3 Ey—q® —q""Es P+ qF3 Dy frfing
A1A62 +q°B1 By + ¢*'C1Cep fofos
DiDog+q'"' + ¢ E1Eog + q°°F1 Fog  fiafas
A14B7 — q*B14C7 — g3 C1447 f3f201°
DsD3o+q° +q EcEs9+q FsF3o _ f5
AgAz +q°BoBas + 13 CoCag fur’
DiDais +q** +q?E1Exis + ' FiFais  fiofse
A43Cs — q*Bi3As +q'7Cy3Bs f3foas’
DyDis+q" + ¢ ExEns +q FaFuis — fiofo
A46Bs — q8BaCs — 19 CagAs Jo 1345

DiDigs+q*' +q%E1Eisg +q'°FiFigs _ fsfos
A47Cs — @O Ba7As + q'°Cua7By f3fs64”

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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Dy30F1 — g% +q"°Ex30D1 — ¢' P Fi0E1 _ fiofas
A10B23 — q8B19Caz — qC10A23 f3fe00

Remark. From (3.3) and (3.33), we readily obtain
G9G1 +q*HoHy = f—32
VL

which is the sixth of Ramanujan’s forty identities [4].
4. Proofs of (3.1)-(3.4)
Proof of (3.1). From Entry 2(viii) [3, p. 349], we find that

f(=q*. =@ = f(=q*>.—q")  f(—q.—q® =g

R W e e e e S o o T o

Using (2.11)—(2.13) in (4.1), we obtain
f4
D{E\ +qE{F) =qD F{ + D\E\F|—=.
fl f9

Again, from Entry 2(vi) [3, p. 349], we note that

f(=a.-4°) f(=a*> = a") f(~4". ~4°) = i )

(=4
With the aid of (2.11)—(2.13), the above identity can be written as
3
DEF| = %
f

Using (4.4) in (4.2) we easily arrive at (3.1). O
Proof of (3.2). From Entry 2(vii) [3, p. 349]

f(—q* - . f(=q4.-4% _ f(=¢*>.—q")
f(=q*>—q") " f(—=¢*.—¢>)  f(—q—4q%) "

Using (2.11)—(2.13) and (4.4) in (4.5), we obtain (3.2) to complete the proof. O

Proof of (3.3). Replacing ¢ by ¢ in Entry 2(v) [3, p. 349], we obtain
f(=¢"% =¢") —af (—=¢®. —¢*") —a* F(—4°. —¢**) = f (—9).

Dividing both sides by f(—¢”) and using (2.11)~(2.13), we complete the proof.

(3.65)

(3.66)

4.1

4.2)

(4.3)

4.4)

(4.5)

(4.6)

This result can also be obtained from Theorem 5.1 in Section 5 by setting €] = 1, e =0,

a=qg=b,c=1l,d=q,a=1,8=3,andm=9. O
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Proof of (3.4). Replacing ¢ by g3 in Entry 2(iv) [3, p. 349] and using (2.18) and (2.20), we find
that

_¢(=¢)
x(—q) "

(@ q")+af(q® ¢*) +a*f(a’. 4*) 4.7)

Employing (2.5), (2.11)—~(2.13), and (2.17), we complete the proof. O
5. Second proof of (3.3) and proofs of (3.5)-(3.7)

To present a second proof of (3.3) and proofs of (3.5)—(3.7), we use a formula of R. Bleckmith,
J. Brillhart, and I. Gerst [6, Theorem 2], providing a representation for a product of two theta
functions as a sum of m products of pair of theta functions, under certain conditions. This formula
is a generalization of formulas of H. Schréter [3, p. 65-72].

Define, for € € {0, 1} and |ab| < 1,

fela.b)y= > (=D (ab)" *(a/b)"*. (5.1)

n=—oo

Theorem 5.1. Let a, b, ¢, and d denote positive numbers with |ab|, |cd| < 1. Suppose that there
exist positive integers o, B, and m such that

(ab)? = (cd)*m—eP) (5.2)
Let €1, €3 € {0, 1}, and define 61, 5, € {0, 1} by
81 =€1 —aey (mod 2) and 6 = Pe1 + pey (mod 2), (5.3)

respectively, where p =m — af. Then if R denotes any complete residue system modulo m,

f (a b)f (C d)_Z(_l)ezrcr(r-i-l)/Zdr(r—l)/2f8 (a(Cd)a(a+l_2r)/2 b(Cd)a(a+l+2r)/2>
€] ’ AN - 1 ’

c? dv
rer

(b/a)P?(cd)PT1=2/2 (ab)P/2 (cd)Pm+1+21)/2
X f52< P s ar )

(5.4)

Second proof of (3.3). Applying Theorem 5.1 with the parameters €] = 1, =0,a = 1, b = ¢8,
c:q,d=q3,a=2,,B=3,andm=9,weﬁndthat

f(_qlo’ _q14){f(_q69’ _q39) —qf(—q33, _q75) —q“f(—q3, _q105)}
+qf(—q2, _q22){f(_q57’ _qSI) —q5f(—q21, _q87) —q7f(—q15, _q93)}
— (=g {f(=4*, —4*) -’ f(=4°. —4*°) =’ f (=", —¢*")} =0,  (5.5)
where we also used (2.2).

Again, applying Theorem 5.1 with e; =1, &2 =0,a=q¢*, b=¢q* c=¢q,d =¢>, a =2,
B =3, and m =9, we obtain
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v(p(—q*) = f(-a" —a"){f(—q 6151) (="' =4%) —q" f(—4*.-4")}
v (=g =) [ F (=P %) - f( . —q'%) - qf(— B "))
+qv (=) {f(—=4*. —-4®) =’ F (=4’ —¢*°) = &’ F (—4*". —¢"") }. (5.6)

Multiplying (5.5) by g and adding with (5.6), we deduce that

Y (@)¢(—q 4)= (— 0 —g"{ (4%, —¢*) —¢q f( q”.-¢")} = f(-q"°. —q")
q

x[a*{f ( ~4P)+ @’ f(=¢*. —a")} = {f ( > =)

~4"f(~q 105)}] 0> f(=a* =) (4. —¢”)

—q f(—q =q")a -’ f(- 612 —4?)[{f(=4%.—4")

+q3f(—6121,—q Na*—{r(-¢". -4"7) - quf( 7. —q'"")}] (5.7

Employing in turna = —¢® and b =¢*';a = —¢'> and b =¢">; a = ¢° and b = —¢** in (2.6),
we find that

f(=4%a*") = f(=4”,—4%) — ¢° f(—q", =4, (5.8)
F(=0"%q"%) = f(=¢" ~¢%) — 2 f (~4° ’_q105)’ (5.9)
(@ =) = f(=4P.-¢") +¢* f(—¢*'. —4""), (5.10)

Applying (5.8), (5.9), (5.10) in (5.7), we obtain
v(@)o(—q") ={r(=4" —4") + ¢’ F (—=4*. —47)}
x{af(=a%a*") =@’ F(d*. —*) + F(=¢"%.¢")}. 1D
Again, putting a = g%, b=¢*, c =¢,d = ¢° in (2.3) and (2.4), we find that
d*a) (@) + F(=a* -4 f(-a.—4°) =27 (4*. ) F(@°.q7),  (5.12)
and
1@ a) fa. @) = fF(=a* =) f(=a.—a°) =2f(a>.a") Fa~ " 7). (5.13)

Employing (2.19), (2.20), (2.9), and (2.2), the above two identities can be written as

2 3
2 gl =M_ -3 x(=q), 5.14
af(a.q"") YT f(=a*)x (=) (5.14)
and
2f(¢°.q") = ) + f(=a*)x (). (5.15)

V(g x(—q)
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Replacing g by —¢g in (5.14) and (5.15), and then using (2.15) and (2.14), we find that

3
2F (g, —gTy = 247 5.16
f(=4.—4") @) q (5.16)
and
3
24f(~q.—q") = iﬁZ)——f() (5.17)

Adding (5.16) and (5.17), we obtain
(=4’ =d") +af(-a.—4"") = f @) (5.18)
Replacing g by g2 in (5.18), and then using the resulting identity in (5.11), we deduce that
v(q’)o(—a*) = f(a*)af (=a°.¢°") —a*f (@, —a**) + F(—4"*.4P)}.  (5.19)

Dividing both sides by f(q9), using (2.16), (2.17), (2.11), (2.12), and (2.13), and replacing g by
—q, we arrive at (3.3) to finish the proof. O

Proof of (3.5). Applying Theorem 5.1 with the parameters €; = 1, e =0,a=¢'"=b, c =,
d=1,a=5,=1,and m =9, we find that

(4" (@) = f(—=4*°. —a%) f (4", —a®) + afis fra + @ £ (@', =4 ) f (—4®. —*®)
+4°f(—=4°. —¢*) f (-4, —4?). (5.20)

Using (2.16) and (2.17) in (5.20), we readily arrive at (3.5).

In a similar way, we can obtain the identities (3.7) and (3.6) by settingm =9, €1 =1, e, =0,
a=b=qg’c=q¢’,d=1,a=1,=5andm=9,e;=1,6,=0,a=b=q°,c=1,d=q,
a =6, B =1, respectively, in Theorem 5.1. O

6. Proofs of (3.8)-(3.65)

In this section, we present proofs of (3.8)—(3.23) by adopting ideas of Rogers [21] and Bres-
soud [7]. We replace Bressoud’s notation P, and x by ¢/** f(—g") and g, respectively. Let

gép ™ and @, p,m,p be defined as

8" (@) =g (@)

12n 1202 12043—p (1 — (g)Pr+p=2n+D/2y (1 — (g@)Pr+(p+2n=1)/2)

_ R H — . (6.1

[T0=, (1 = (go)Pr+k)

For any positive odd integer p, integer n, and natural number «, let
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¢a,/3,m,p = ¢a,;‘3,m,p(Q)

)4 o0

ZZ Z (_1)r+sql/2{pa(r+m(2n—l)/2p)2+p/3(s+(2n—l)/2p)2}’

n=1rs=—00

6.2)

where «, B, and p are natural numbers, and m is an odd positive integer. Then we can obtain

immediately the following propositions.

Proposition 6.1. (See [7, Egs. (2.12) and (2.13)].) We have

gOD =g7/0G,,

g = g~Ma/60 gy

Proposition 6.2. (See [12, Egs. (6.3)—(6.5)].) We have

1D _ ,—aj42 f(=4*)

Sa T g
7.2 _ 5a/42f( q> )B

S T
1.3) _ 17a/42f( q> )C
e

Proposition 6.3. We have

3
©.1) —ay36 S (=47) D

R e
8 = q“/lz%,

g —q““/“%&x,
gé{9 4) _q23a/36%Fa.

Proof. Setting p =9, and n =1 in (6.1), we find that

(9 1) —ot/36 1—[ (1 — (qa)9r+4)(1 _ (qot)9r+5)
i Hl%:l(l _ (qa)9r+k)

q—a/36

(g% @7 (@25 ¢ (g3 ¢%) (g% %) (g7 ¢) (g3 %)

Employing (2.7), (2.10), and (2.11) in (6.12), we arrive at (6.8).
In a similar fashion, we can prove (6.9)—(6.11). O

(6.3)
(6.4)

(6.5)

(6.6)

6.7)

(6.8)

(6.9)

(6.10)

6.11)

(6.12)
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Lemma 6.4. (See [7, Proposition 5.1].) We have

gép»n) — gép,n*ZP), g((xp,n) — géprnﬂ),

2p—n+1 -
gép,n) zg(gpy p—ntl) gépyn) — _g(gpﬂ 125

ép,n) — _gép,p—nH) and g((xp,(p+l)/2) =0.

Theorem 6.5. (See [7, Proposition 5.4].) For odd p > 1,

(p—1)/2
by =2 )3 ),

n=1
Lemma 6.6. (See [14, Lemma 5.1].) We have

S 28 far2 f82

bap.1.4 =20 TP S50 S0 +q TP ATy 0 T 0 )
fotfﬁ

b

Ga,p3.4 =24 (9a+’3)/32{5ﬂ/2Ta/2 - tI(ﬁ_awSa/z Tg)2}
fotfﬁ

Lemma 6.7. (See [7, Lemma 6.5].) We have

b p15 =20 TP F(—g*) f(—4P)GpGo + ¢ PP HR H, |,
bap3s =290 TP/ f(—q%) f(—qP)|GpHy — TP HEG, .

Lemma 6.8. (See [12, Lemma 6.6].) We have

ba.p.1.7=2q PO f(—q>) f(—q7F)

« {AﬁAa +q(a+ﬂ)/7B;;Ba +q(3"+3ﬂ)/7CﬁCa},
ba.p3.7=2q" PP (=) f(—¢*F)

x {AgBa — gD T B C, — gDy A L)
o p.5.7 =297 f(—g*) f(—q7F)
x [ApCo — g BT By A, 1 g2y )

Lemma 6.9. We have

bap,1,0 =29 TP £ (=) f (=P ) {DaDp + PP + PP EGEg

+ q2(a+ﬁ)/3FaFﬂ}s

Ga.p39= Zq(9°‘+ﬁ)/72f(—q3°‘)f(—q3ﬁ){Dﬂ _ qﬁ/3Eﬂ _ qzﬁ/3Fﬁ},

¢a,ﬂ,5,9 — Zq(25(x+ﬂ)/72f(_q3c{)f(_q3ﬂ) {Dﬂ Ea _ q(ﬂ—Za)/9 _ q(a+ﬂ)/3Eﬂ Fot

189

(6.13)

(6.14)

(6.15)

(6.16)
6.17)

(6.18)

(6.19)

(6.20)

6.21)
(6.22)

(6.23)



190 N.D. Baruah, J. Bora / Journal of Number Theory 128 (2008) 175-206

ba.p1.0= zq(49a+/3)/72f(_q305)f(_q3/3){DﬂFa _ q(ﬂ—50l)/9 + q(ﬂ—ZOl)/3EﬂDa
— g PP E, ). (6.24)

Proof. Applying Theorem 6.5 with m =1 and p =9, we find that

Po.p.1.9 = 2q(°‘+‘3)/24f(—qa)f(—qﬂ){g,(gg’l)gég’l)

9,2 9.3 9.4
+85 Ve +85 Ve +85 Y80}, (6.25)

o

Using (6.8)—(6.11) in (6.25) and then simplifying, we arrive at (6.21). The identities (6.22)—(6.24)
can be proved in a similar way by setting m = 3, 5, and 7, respectively, and p =9 in Theorem
6.5. O

Corollary 6.10. (See [7, Corollaries 5.5 and 5.6].) If ¢, g,m,p is defined by (6.2), then
¢a,ﬂ,m,1 =0, (6.26)
bap.13 =29 TP f(—q%) F(—4P). (6.27)

Corollary 6.11. (See [7, Corollary 5.11].) If o and B are even positive integers, then

(@+B)/16 f(—qz"‘)f(—q”)f(—q“/z)f(_qm).
f(—=q*) f(—q?)

Pa,p,1,2 =129 (6.28)

Theorem 6.12. (See [7, Corollary 7.3].) Let «;, Bi, m;, pi, where i = 1,2, be positive integers
with my, ma be odd. Let | .= (alm% + B1)/p1 and Ay := (azm% + B2)/ p2. If the conditions

M =Xy, «aif1=af2, and oim|=xaymy (mod Ay)
hold, then Gq, g, .m\,py = Pas, r,m2, p-
In the following sequel, let N denote the set of positive integers.
Proposition 6.13. For u € N, we have
Du21,59 = Pou,u,1,1- (6.29)
Furthermore, the identity (3.8) holds.
Proof. By setting o1 =u, 81 =2u,m; =5, p1 =9, 00 =2u, f=u,my=1,and p) =1, we
see that the equality (6.29) holds by Theorem 6.12.

Using (6.26) in (6.29), we obtain

Gu,2u,59 =0. (6.30)

In particular, setting # = 1 in (6.30) and then using (6.23), we obtain (3.8). O



N.D. Baruah, J. Bora / Journal of Number Theory 128 (2008) 175-206 191

Proposition 6.14. (See [7, Proposition 8.1].) Let u be an odd integer > 5, then
¢l,u—4,u—2,u =0. (6.31)
Corollary 6.15. The identity (3.9) holds.
Proof. Setting # = 9 and employing (6.24), we readily obtain (3.9).
The above result can also be proved by settinge; =1, e =1,a=1,b= q5, c=1,d=gq,
a=2,8=2,and m =9 in Theorem 5.1. O
Proposition 6.16. (See [ 14, Proposition 5.4].) For a positive integer u > 1, we have
bru—11a=9"f(1.¢*) f(=¢""". =" 7). (6.32)
Corollary 6.17. The identity (3.10) holds.
Proof. Setting u =9 and using (6.21), we readily obtain (3.10).
This identity (3.10) can also be established by setting €] =1, ¢ =0, a = q4 =b,c=1,
d=q,a=1,8=1,and m =9 in Theorem 5.1. O
Proposition 6.18. (See [7, Proposition 8.5].) Let u be an odd integer > 7, then
D1,3u—16,u—4,u = P1,3u—16,1,3- (6.33)
Corollary 6.19. The identity (3.11) holds.

Proof. We set u =9 in (6.33) and then use (6.23) and (6.27) to arrive at the desired identity. O

Proposition 6.20. (See [7, Proposition 8.11].) If u is an odd integer > 3, then

00
¢2,u—2,1,u — 2q1/8 l_[(l _i_q(n+l))2(1 _ qn+l)(1 _ (qu—2)2n+1)2(1 _ (qu—2)2n+2). (6.34)
n=0

Corollary 6.21. The identity (3.12) holds.

Proof. Setting u =9 in (6.34), we find that

i (1-— 7(2}1—4—1)) _ _1/4X(_q7) 6.35
$2,7,1,9= 1_[ 7(1 winy 4 ) (6.35)

Employing (6.21), (2.14), and (2.17) in (6.35), we easily arrive at (3.12). O

This result can also be proved by applying Theorem 5.1 withm =9,¢1=1,e2=0,a=b =
q7,c:1,d=q,a=2,andﬁ=1.
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Proposition 6.22. (See [7, Proposition 8.8].) Let u be an odd integer > 3. Then

Ol 2wt urn = zq(u—Z)/8 lo—o[(l + q(u—Z)(n+l))2(1 _ q(u—2)(n+1))(1 _ q2n+1)2(1 _ q2n+2).
n=0

(6.36)
Corollary 6.23. The identity (3.13) holds.
Proof. Setting # =9 in (6.36), we find that
o
Br147.0 = 2q7/8 l—[(l +q7(n+l))2(1 _ q7(n+l))(1 _ q2n+1)2(1 _ q2n+2)
n=0
=278 f f 5L ") 6.37)
x*(=q7)

Invoking (6.24), (2.14), and (2.17) in (6.37), we deduce (3.13). O

This result can also be proved by employing Theorem 5.1 withm =9,¢; =0,e2=1,a=1,
b=q',c=q,d=qg,a=1,and B =2.

Proposition 6.24. (See [7, Proposition 8.3].) Let p be an odd integer > 5. Then
A1 3u—4u—2,u = P1,3u—4,1,3- (6.38)
Corollary 6.25. The identity (3.14) holds.
Proof. Setting # =9 in (6.38) and using (6.24) and (6.27), we easily deduce (3.14). O
Proposition 6.26. For u € N, we have
Gut14,u,1,2 = D1 124140 7 047 (6.39)
Furthermore, the identity (3.15) holds.

Proof. The equality (6.39) follows from Theorem 6.12 with A; = A, = u + 7. Furthermore, by
setting u = 2, and using (6.24) and (6.28), we readily arrive at (3.15). O

Proposition 6.27. For u € N, we have
D2u+2,u+4.1,3 = D2 124 5u+4.1.ut3- (6.40)
Furthermore, the identity (3.16) holds.

Proof. The equality (6.40) follows from Theorem 6.12 with A = Ay = u + 2. In particular, if
we set u = 6 and use (6.21) and (6.27), we deduce the proffered identity. O
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Proposition 6.28. (See [7, Proposition 8.12].) Let u be an odd integer > 5. Then
$2,3u—8,u—2.u = P1,6u—16,1,3- (6.41)
Corollary 6.29. The identity (3.17) holds.

Proof. Setting u = 9 in (6.41), we derive the identity (3.17) with the help of (6.24) and
(6.27). O

Proposition 6.30. (See [7, Proposition 8.13].) Let u be an odd integer > 5. Then
$2,3u—8,1,3 = P1,6u—16,u—4,u- (6.42)
Corollary 6.31. The identity (3.18) holds.
Proof. We set u =9 in (6.42), and then use (6.23) and (6.27) to arrive at the desired identity. O
Proposition 6.32. (See [12, Proposition 6.19].) For u € N
D212 4 3u,1,u+1 = P2u+6,u,1,3, (6.43)
Corollary 6.33. The identity (3.19) holds.
Proof. Setting u = 8 in (6.43), we obtain the identity (3.19) by using (3.14) and (3.4). O
Proposition 6.34. (See [12, Proposition 6.15].) For u € N, we have
DL 410u,5,u+5 = Put10,u,1,2- (6.44)
Corollary 6.35. The identity (3.20) holds.
Proof. Setting u =4 in (6.44) we can easily obtain (3.20) with the aid of (6.23) and (6.28). O
Proposition 6.36. For u € N, we have
Put1,6u2,7,u+7 = Pubuu+ 1), Lu- (6.45)
Furthermore, the identity (3.21) holds.

Proof. The equality (6.45) follows from Theorem 6.12 with A1 = Ay = 6u + 7. Now, setting
u =2 1in (6.45) we arrive at (3.21) with the help of (6.23) and (6.28). O

Proposition 6.37. For u € N, we have

D112 +18u-+80.1,u+9 = Pu+8,u+10,1,2. (6.46)

Furthermore, the identity (3.22) holds.
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Proof. The equality (6.46) follows from Theorem 6.12 with A = A» = u + 9. In particular, if
we set # = 0 and use (6.21) and (6.28), then we readily deduce (3.22). O

Proposition 6.38. (See [12, Proposition 6.26].) For u € N, we have
1, 1603417202 4+472u+195,2u+1,u+7 = 0- (6.47)
Corollary 6.39. The identity (3.23) holds.

Proof. We set u = 2 in (6.47) and then use (6.23) and (6.26) to arrive at the proffered iden-
tity. O

Proposition 6.40. For an odd number u, we have
Dut 1 +4u+4.ut2. w22 = P+ @+2)2 42, (u+2)2 (6.48)
Furthermore, the identity (3.24) holds.

Proof. The equality (6.48) follows from Theorem 6.12 with A; = A, = u + 2. Furthermore, by
setting u = 1 in (6.48) we readily deduce (3.24) with the help of (6.22). O

Proposition 6.41. Let u > 4 be even. Then
¢1,3u2—9,u—3,2u—3 = ¢3,u2—3,u—1,2u—3' (649)
Furthermore, the identity (3.25) holds.

Proof. The equality (6.49) follows from Theorem 6.12 with Ay = A =2p. We set u = 6 in
(6.49) and then employ (6.22) and (6.23) to arrive at (3.25). O

Proposition 6.42. (See [13, Proposition 3.4.1].) For u € N, we have
Buta 202490 3.u+3 = Pu,2u+17u+36,1,u+3 (6.50)
Corollary 6.43. The identity (3.26) holds.

Proof. Setting u = 6, in (6.50) and then employing (6.21) and (6.23), we easily obtain
(3.26). O

Proposition 6.44. (See [7, Proposition 8.16].) Let u be an odd integer > 5. Then
D1 36236, u—6l.u = P32~ 12.u—2.u° (6.51)
Corollary 6.45. The identity (3.27) holds.

Proof. We set u =9 in (6.51) and then use (6.22) and (6.24) to arrive at the desired identity. O
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Proposition 6.46. (See [7, Corollary 9.2].) Let u be an odd integer > 3. Then
®2,.3u—2,1,u-P1,6u—4,1,3 = P2,3u—2,1,3P1,6u—4,u—2,u- (6.52)
Corollary 6.47. The identity (3.28) holds.

Proof. Setting u =9 in (6.52) and then using (6.21), (6.24), and (6.27), we easily arrive at
(3.28). O

Proposition 6.48. (See [7, Proposition 8.17].) Let u be an odd integer > 5. Then
b1 202 16,u—4u = P2u2—8.u—2.u° (6.53)
Corollary 6.49. The identity (3.29) holds.
Proof. We set u =9 in (6.53) to arrive at (3.29) with the aid of (6.23) and (6.24). O
Proposition 6.50. For an odd positive integer u > 4, we have
Pu—3,12—8u+16,u—4,u—2 = 1,13 — 1142 +40u—48,u—4,u—2- (6.54)
Furthermore, the identity (3.30) holds.

Proof. Equality (6.54) holds by Theorem 6.12 with A} = A, = (u —4)2. Setting u = 11 in (6.54)
and then using (6.24) we complete the proof. O

Proposition 6.51. For u € N, we have
D1, Qu+9)u,2u—1,2u+1 = Pu,2u49,5,9- (6.55)
Furthermore, the identity (3.31) holds.

Proof. Equality (6.55) holds by Theorem 6.12 with A1 = Ay = 3u + 1. Setting u = 4 in (6.55)
and then employing (6.23) and (6.24), we readily deduce (3.31). O

Proposition 6.52. For u € N, we have

Du,260u,1,9 = Pdu,65u,7,9- (6.56)

Furthermore, the identity (3.32) holds.

Proof. Equality (6.56) holds by Theorem 6.12 with A1 = Ay = 29u. We set u = 1 in (6.56) and
then use (6.21) and (6.24) to arrive at (3.32). O

Proposition 6.53. For u € N, we have

D5, 5u+40,3,5u-+4 = P5u,5u+40,1,u+4- (6.57)

Furthermore, the identity (3.33) holds.
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Proof. Equality (6.57) holds by Theorem 6.12 with A1 = A, = 10. Now, we set u = 1 in (6.57)
and then use (6.13), (6.21) and finally replace ¢° by ¢ to arrive at (3.33). O

Proposition 6.54. For u € N, we have
P u(u+5),1,u+4 = Pu+5.4u,1,5- (6.58)
Furthermore, the identity (3.34) holds.

Proof. Equality (6.58) holds by Theorem 6.12 with A1 = A» = u + 1. Setting u = 5, using (6.13),
and (6.21), and then replacing g2 by ¢, we obtain (3.34). O

Proposition 6.55. (See [13, Proposition 3.4.11].) For u € N, we have
D62 +5u.1 u+3 = P2u+103u,1,5- (6.59)
Corollary 6.56. The identity (3.35) holds.

Proof. We set u = 6 in (6.59), use (6.21) and (6.13), and then replace q2 by ¢ in the resulting
identity to deduce (3.35). O

Proposition 6.57. (See [13, Proposition 3.4.21].) For u € N, we have
B6.u2+5u.1.u+2 = P3u+152u.1,5- (6.60)
Corollary 6.58. The identity (3.36) holds.

Proof. Setting u = 7 in (6.60) and using (6.21) and (6.13), and then replacing ¢ by ¢, we arrive
at (3.36). O

Proposition 6.59. For u € N, we have
Pudu+5,1.5 = P2 450,11, 4ut 1- (6.61)
Furthermore, the identity (3.37) holds.

Proof. Equality (6.61) holds by Theorem 6.12 with Ay = Ay =u + 1. We set u =2 in (6.61) to
deduce (3.37) with the aid of (6.13) and (6.21). O

Proof of (3.38). Setting u =2 in (6.55), we obtain
$1,26,3,5 = $2,13,5,9. (6.62)

Employing (6.17) and (6.23) in (6.62), we deduce (3.38). O
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Proposition 6.60. For u € N, we have
¢u,5u+24,5,5u+4 = ¢5u+24,u,1,u+4- (663)
Furthermore, the identity (3.39) holds.

Proof. Equality (6.63) holds by Theorem 6.12 with A} = A = 6. Setting u = 1 in (6.63), we
readily obtain (3.39) by means of (6.13) and (6.23). O

Proposition 6.61. For u € N, we have

D1, (16u+5)u,2u+1,4u+1 = Pu,16u+5,3,5- (6.64)

Furthermore, the identity (3.40) holds.

Proof. Equality (6.64) holds by Theorem 6.12 with A1 = A = Su + 1. Setting u = 2 in (6.64),
we readily obtain (3.40) by means of (6.17) and (6.23). O

Proposition 6.62. For u € N, we have

¢1,(6u+5)u,1,2u+1 = ¢u,6u+5,3,5- (665)

Furthermore, the identity (3.41) holds.

Proof. Equality (6.65) holds by Theorem 6.12 with A; = Ay =3u + 1. We set u = 4 in (6.65)
and then use (6.17) and (6.21) to deduce (3.41). O

Proposition 6.63. For u € N, we have
O1.(6u—3)u.1,2u—1 = Pu.6u—53.5- (6.66)
Furthermore, the identity (3.42) holds.

Proof. Equality (6.66) holds by Theorem 6.12 with A; =X, =3u — 1. We set u =5 in (6.66)
and then use (6.17) and (6.21) to deduce (3.42). O

Proposition 6.64. (See [14, Proposition 7.7].) For u € N and u even, we have
D4, 12u+21,u+1,2u+5 = D6,8u+14,1,4- (6.67)
Corollary 6.65. The identity (3.43) holds.

Proof. Setting u = 2 in (6.67) and employing (6.22) and (6.14), then replacing ¢> by ¢ in the
resulting identity, we complete the proof. O

Proposition 6.66. (See [ 14, Proposition 7.5].) For u € N and u even, we have

D1, 24u+84,u—1,u+5 = P6,4u+14,3,4- (6.68)
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Corollary 6.67. The identity (3.44) holds.

Proof. Setting u =4 in (6.68) and using (6.22) and (6.15), and then replacing q° by ¢ in the
resulting identity, we deduce (3.44). O

Proposition 6.68. (See [ 14, Proposition 7.3].) For u € N and u even, we have
D1 8u+36,u+3,u+5 = P2,4u+18,3,4- (6.69)
Corollary 6.69. The identity (3.45) holds.
Proof. Setting u =4 in (6.69) and using (6.24) and (6.15), we readily arrive at (3.45). O
Proposition 6.70. (See [14, Proposition 7.4].) For u € N and u even, we have
D1 16u+64,u+1,u+5 = P4,4u+16,3,4- (6.70)
Corollary 6.71. The identity (3.46) holds.
Proof. Setting # =4 in (6.70), we obtain the identity (3.46) by means of (6.23) and (6.15). O
Proposition 6.72. (See [ 14, Proposition 7.6].) For u € N and u even, we have
D3,8u+28,u+3,u+5 = P2, 12u+42,1,4- (6.71)
Corollary 6.73. The identity (3.47) holds.
Proof. Setting u =4 in (6.71), we can easily arrive at (3.47) with the aid of (6.24) and (6.14). O
Proposition 6.74. (See [ 14, Proposition 8.1].) For u € N and u even, we have
2,12u+18,3,4 * B3, 8u+12,u+1,u+3 = 96,4u+6,1,u+3 - P2,12u+18,1,2- (6.72)
Corollary 6.75. The identity (3.48) holds.
Proof. Setting u = 6 in (6.72), we find that
$2,90,3,4 - $3,60,7,9 = $6,30,1,9 * $2,90,1,2- (6.73)
Now, setting u = 4 in (6.71) and then using the resulting identity in (6.73), we deduce that
$2,90,3,4-92,90,1,4 = ¥6,30,1,992,90,1,2, (6.74)

Employing (6.21), (6.28), (6.14) and (6.15), we deduce (3.48). O



N.D. Baruah, J. Bora / Journal of Number Theory 128 (2008) 175-206 199

Proposition 6.76. For u € N, we have
D18u,10u,1,4 = P3u,60u,1,9- (6.75)
Furthermore, the identity (3.49) holds.

Proof. Equality (6.75) holds by Theorem 6.12 with A1 = A, = 7u. Setting u = 1 in (6.75), we
obtain (3.49) with the help of (6.14) and (6.21). O

Proposition 6.77. (See [14, Proposition 7.9].) For u € N and u even, we have
1.32u+96,u—3,u+5 = P8 4u+12,3,4- (6.76)
Corollary 6.78. The identity (3.50) holds.
Proof. Setting # =4 in (6.76) and then using (6.21) and (6.15), we readily arrive at (3.50). O
Proposition 6.79. (See [14, Proposition 7.10].) For u € N and u even, we have
B3,16u-+32,u+1,u+5 = P4, 12u+24,1,4- (6.77)
Corollary 6.80. The identity (3.51) holds.
Proof. We set u =4 in (6.77) and then use (6.23) and (6.14) to deduce the desired identity. O
Proposition 6.81. (See [ 14, Proposition 7.8].) For u € N and u even, we have
B7,8u-+12,u+3,u+5 = $2,28u+42,3,4- (6.78)
Corollary 6.82. The identity (3.52) holds.
Proof. Setting u =4 in (6.78), we obtain (3.52) by invoking (6.24) and (6.15). O
Proposition 6.83. (See [12, Proposition 6.23].) For u € N, we have
But1 a2 5.u+5 = Pudu(u+1).1,u- (6.79)
Corollary 6.84. The identity (3.53) holds.
Proof. Setting u =4 in (6.79), we ca easily deduce (3.53) with the help of (6.23) and (6.14). O
Proposition 6.85. For u € N, we have
D161,20u,3,4 = Pu,320u,7,9- (6.80)

Furthermore, the identity (3.54) holds.
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Proof. Equality (6.80) holds by Theorem 6.12 with A; = A, = 41u. Setting u = 1 in (6.80), we

obtain (3.54) with the help of (6.14) and (6.24). O
Proposition 6.86. (See [13, Proposition 3.4.12].) For u € N, we have
Put6,12+6u.3,u+6 = Pu(u+6)2, 1u+4-

Corollary 6.87. The identity (3.55) holds.
Proof. Setting # =3 in (6.81) and then using (6.22) and (6.18), we easily obtain (3.55).
Proposition 6.88. (See [13, Proposition 3.4.15].) For u € N, we have

But2.20243u3,u+3 = Pu 2024 7u+6,1,u+1-
Corollary 6.89. The identity (3.56) holds.
Proof. We set u = 6 in (6.82) to obtain (3.56) by means of (6.22) and (6.18). O
Proposition 6.90. (See [12, Proposition 6.20].) For u € N, we have

D1 8u+7,2u+3,u+4 = P1,8u+7,2u+1,u+2-
Corollary 6.91. The identity (3.57) holds.
Proof. Setting u =5 in (6.83), we obtain
$1,47,13,9 = $1,47,11,7-

Using (6.13) and Lemma 6.4 in the above identity, we find that,

9,1) (9,3
84(17) )+g

7,1) (7,2
— _gIDgld) 4 ¢

9,2 9,3) (9.4 9,4) (9,1
9,2) ( )( ) g( )85 )

9,2
g+

(7 2) (7 3) (7.3) ,(1.1)

+847 8

Employing (6.5)—(6.11) in (6.85) and then multiplying both sides by ¢, we obtain (3.57).

Proposition 6.92. For u € N and u odd, we have

D1, 7u+10,u,u+2 = P1,7u+10,5,7-

Furthermore, the identity (3.58) holds.

6.81)

(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

Proof. Equality (6.86) holds by Theorem 6.12 with A} = Ap = u + 5. Setting u = 7, employing

(6.20) and (6.24), and then replacing g2 by ¢ in the resulting identity, we obtain (3.58).

O
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Proposition 6.93. (See [13, Proposition 3.4.19].) For u € N, we have
Pu+a.412-415u,5,u+5 = Pu.4u?+31u+60.1.u+3 (6.87)
Corollary 6.94. The identity (3.59) holds.
Proof. Setting u =4 in (6.87) and then using (6.23) and (6.18), we deduce (3.59). O
Proposition 6.95. For u € N, we have
G21u+154,u,1,u+7 = PTu,3u+22,3,3u+1- (6.88)
Furthermore, the identity (3.60) holds.

Proof. Equality (6.88) holds by Theorem 6.12 with A; = Ay = 22. Setting u = 2, using (6.19)
and (6.21), and then replacing ¢ by ¢, we readily deduce the required identity. 0O

Proposition 6.96. (See [13, Proposition 3.4.14].) For u € N, we have
P2u,3u430,1,u+6 = P2u+20,3u, 1,u+4- (6.89)
Corollary 6.97. The identity (3.61) holds.
Proof. We set u =3 in (6.89) and then use (6.21) and (6.18) to deduce (3.61). O
Proposition 6.98. (See [ 13, Proposition 3.4.7].) For u € N, we have
b2 502+23u+24,1,u+2 = Put3,10u+16,5.7- (6.90)
Corollary 6.99. The identity (3.62) holds.
Proof. Setting u =7 in (6.90), we obtain (3.62) with the help of (6.21) and (6.20). O
Proposition 6.100. (See [ 13, Proposition 3.4.23].) For u € N, we have
P 2u2+27u+90,1,u+5 = Pu+6.2u2+15u.3,u+3* (6.91)
Corollary 6.101. The identity (3.63) holds.
Proof. We set u =4 in (6.91) to obtain (3.63)with the aid of (6.21) and (6.19). O
Proposition 6.102. For u € N, we have
Du,188u,1,9 = Pdu,47u,5,7- (6.92)

Furthermore, the identity (3.64) holds.
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Proof. Equality (6.92) holds by Theorem 6.12 with A1 = A» = 21u. We set u = 1 in (6.92) to
deduce (3.64) with the help of (6.20) and (6.21). O

Proposition 6.103. For u € N, we have

Du,230u,7,9 = P23u,10u,3,7- (6.93)

Furthermore, the identity (3.65) holds.

Proof. Equality (6.93) holds by Theorem 6.12 with A; = A = 31u. Setting # = 1 in (6.93) and
then using (6.19) and (6.24), we obtain (3.65). O

7. Applications to the theory of partitions

The identities (3.1)—(3.65) have partition theoretic interpretations. We demonstrate this by
deriving partition theoretic results arising from (3.1)—(3.3), (3.8), and (3.9). In the sequel, for
simplicity, we adopt the standard notation

n
(ar,a2,...,an; @)oo := H(aj;q)oo
j=1

and define

(qri; qs)oo — (qr’ qsfr; qs)oo’
where r and s are positive integers and r < s.

We also need the notion of colored partitions. A positive integer n has k colors if there are k
copies of n available and all of them are viewed as distinct objects. Partitions of positive integers
into parts with colors are called colored partitions. For example, if 1 is allowed to have two
colors, say r (red), and g (green), then all colored partitions of 2 are 2, 1, + 1,, 1, + 1, and
1, + 1. An important fact is that

1
(q"; gk,

is the generating function for partitions of 7, where all partitions are congruent to u (mod v) and
have k colors.

Theorem 7.1. Let p1(n) denote the number of partitions of n into parts congruent to +1, £2, +3
(mod 9) with £1 (mod 9) having two colors and 3 (mod 9) having three colors. Let py(n) de-
note the number of partitions of n into parts congruent to £1, £3, 4 (mod 9) with £3 (mod 9)
having three colors and +4 (mod 9) having two colors. Let p3(n) denote the number of par-
titions of n into parts congruent to £2, £3, £4 (mod 9) with £2 (mod 9) having two colors
and £3 (mod 9) having three colors. Let ps(n) denote the number of partitions of n into parts
congruent to £1, £2, 4 (mod 9) having two colors each. Then, for any positive integer n > 1,
we have

p1(n) + pa(n —1) = p3(n — 1) = pa(n).
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Proof. The identity (3.1) is equivalent to

3. .33
(@ ¢°) ™) +ala™: 0@ ¢°) —ala™: 0V (05 °) = S50 @

T (@% ¢
Noting that (4% 9% 00 = (3% 4%)00(@°; ¢°) 00, We can rewrite (7.1) as
1 q
@E P CEO TS’ @ OGE G )
1 : (7.2)

@2 02 0 (@3 @0 (I EEAE O

The four quotients of (7.2) represent the generating functions for py(n), p2(n), p3(n), and pa(n),
respectively. Hence, (7.2) is equivalent to

D o pimg"+qY pamg" —q Y pimg" =Y pan)g",
n=0 n=0 n=0

n=0

where we set p1(0) = p2(0) = p3(0) = p4(0) = 1. Equating coefficients of ¢" on both sides
yields the desired result. 0O

Example. It can easily be seen that pi(5) =24, p2(4) =6, p3(4) =4, and pa(5) = 26, which
verifies the case n =5 in Theorem 7.1.

Theorem 7.2. Let pi(n) denote the number of partitions of n into parts congruent to %1,
+2 (mod 9) with £2 (mod 9) having two colors. Let p>(n) denote the number of partitions
of n into parts congruent to 2, +4 (mod 9) with +£4 (mod 9) having two colors. Let p3(n)
denote the number of partitions of n into parts congruent to £1, 4 (mod 9) with =1 (mod 9)
having two colors. Then, for any positive integer n > 1, we have

p1(n) + p2(n — 1) = p3(n).
Proof. The identity (3.2) is equivalent to

1 q 1
+ = .
(@'*:1¢7)(@* 477 (0% 9))(@*:97)? (@147 (g 9?)
Note that the three quotients of (7.3) represent the generating functions for pj(n), p2(n), and
p3(n), respectively. Hence, we have

Y pimg" +q > pmg" = p3mg”,
n=0 n=0

n=0

(7.3)

where we set p2(0) = 0. Equating coefficients of ¢g” on both sides yields the desired result. O

Example. Table 1 illustrates the case n = 5 in Theorem 7.2.
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Table 1

p1(5)=6 pad) = p3() =9

2 42, +1 4, 5

2r +24 +1 4 441,

2 +2+1 242 441,

2+ 14+1+1 L+l +1+ 1 +1
28+1+1+1 1r+1r+1r+1r+1g
1+14+1+14+1 L+ 1+ 1+ 1+ 1g

L4 1+ 1g+ 1+ 1g
L+ lg+1lg+1g+1g
lg+1lg+1lg+1g+1g

Theorem 7.3. Let p1(n) denote the number of partitions of n into parts not congruent to +12,
27 (mod 27). Let p2(n) denote the number of partitions of n into parts not congruent to +6,
27 (mod 27). Let p3(n) denote the number of partitions of n into parts not congruent to £3,
27 (mod 9). Then, for any positive integer n > 2, we have

pi(n) = pa(n—1)+ p3(n—2).
Proof. The identity (3.3) is equivalent to

1 q

14,24, ll:l:,l3i; q27) (qlzl:,2:|: ..... 5+,74,.., 13:|:;

(q q%7)

6]2

(qlzl:,Z:I:,4:|:,.‘.,13:|:; q27)

1. (1.4)

Note that the three quotients of (7.4) represent the generating functions for pi(n), p2(n), and
p3(n), respectively. Thus, we have

x o0 o
Y pmg"—qYy g —q* Yy pamg" =1,
n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢g" on both sides, we arrive at
the desired result. O

Example. We note that p{(7) =15, p2(6) = 10, and p3(5) =5, which verifies the case n =5 in
Theorem 7.3.

Theorem 7.4. Let p1(n) denote the number of partitions of n into parts congruent to =1, £3,
+4, +5, 6 (mod 18) with £6 (mod 18) having two colors. Let py(n) denote the number of
partitions of n into parts congruent to £1, £3, £6, £7, £8 (mod 18) with £6 (mod 18) having
two colors. Let p3(n) denote the number of partitions of n into parts congruent to +2, £3, £5,
46, £7 (mod 18) with £6 (mod 18) having two colors. Let p4(n) denote the number of partitions
of n into parts congruent to £1, £2, +4, +5, £7, £8 (mod 18). Then, for any positive integer
n =1, we have

p1(n) + pa(n —1) = p3(n — 1) + pa(n).
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Proof. The identity (3.8) can be written as

@ 4@ 0™ + 9@ )@ 4" — a0 ) @ ¢
(@14¥)00(@% 4%
(0% 4" oo(q"3; ¢"®) oo

(7.5)

Expressing all the products in (7.5) to the common base ¢'8, for examples, writing (¢; ¢%)co

as (q’ q18)oo(q10; qIS)OO and (q3; q3)oo as (q3:|:; q18)m(q6i; q18)oo(q9; qIS)OO(QIS; q18)oo and
cancelling the common terms, we obtain

1 q
+
(qlzl:,3:|:,4:|:5:|:6:|:6:|:; qlg) (ql:I:,3:|:,6:|:6:|:7:|:8:|:; q18)
1 = ! (7.6)
(qZ:I:,3:|:,5:|:,6:|:6:t7:|:; q18) (ql:I:,Z:t,4:|:,5:|:7:|:8:|:; qIS) : :

Note that the four quotients of (7.6) represent the generating functions for pi(n), p2(n),
p3(n), and ps(n) respectively. Thus, we have

oo o [e¢) o
D o pimg" +q ) pamg" —q )y p3mg" =) patng”,
n=0 n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = p4(0) = 1. Equating coefficients of ¢” on both sides, we
arrive at the desired result. O

Example. Table 2 illustrates the case n = 7 in Theorem 7.4.

Table 2

pi(7) =38 p2(6) =5 p3©) =4 pa(7)=9

6, + 1 6, 6, 7

6g +1 6g 6g 5+2

443 343 343 S5+1+1

54+14+1 3414141 24242 44241
441414141 1+14+1+14+1+1 44+1+1+1
3+3+1 2424241
3+1+1+1+1 242414141
I+1+1+1+14+1+1 24141414141

I+1+1+1+1+1+1

Theorem 7.5. Let p1(n) denote the number of partitions of n into parts not congruent to 1, £8,
+10, £17, £19, £20, 45 (mod 45) with 15 (mod 45) having two colors. Let py(n) denote the
number of partitions of n into parts not congruent to =4, £5, +10, 13, 14, 22, 45 (mod 45)
with £15 (mod 45) having two colors. Let p3(n) denote the number of partitions of n into parts
not congruent to £2, £5, £7, £11, 16, £20, 45 (mod 45) with +15 (mod 45) having two
colors. Let ps(n) denote the number of partitions of n into parts not congruent to 3, 6, =10,
+11, £15, £21, 45 (mod 45). Then, for any positive integer n > 3, we have

p1(n) + pa(n — 1) = p3(n = 3) + pa(n).
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Proof. We express (3.9) in g-products and then proceed as in the proof of Theorem 7.4 to com-
plete the proof. O
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