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To assess the relation between extent of ischemia and
the magnitude of hemodynamic changes, 25 patients (5
with normal coronary arteries and 20 with significant
coronary obstructive disease) were studied with rapid
atrial pacing and thallium scintigraphy at the time of
cardiac catheterization. Hemodynamic variables were
measured before, during and after maximal pacing.
Thallium was injected intravenously during maximal
pacing and scans in three standard views were obtained
immediately in the catheterization laboratory, with de
layed scans obtained 4 hours after the cessation of pac
ing. The three thallium scans were each subdivided into
five segments, and a thallium score was obtained on the
basis of the total number of segments that were hypo
perfused. Each patient was assigned a total thallium
score corresponding to thallium defects at maximal pac
ing, as well as a redistributed thallium score correspond
ing to the difference between thallium score at maximal
pacing and that 4 hours later.

With pacing, patients with normal coronary arteries

Atrial pacing has been used for more than 15 years as a
stress test for precipitating angina pectoris in patients with
coronary artery disease (1-8). Sowton et al. (I) were the
first to use this technique to measure the anginal threshold
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demonstrated no significant change in baseline hemo
dynamic variables, whereas patients with coronary ar
tery disease exhibited a decrease in cardiac index, an
increase in systemic vascular resistance, a widening of
arteriovenous oxygen difference, an increase in pulmo
nary capillary wedge pressure and mean pulmonary ar
tery pressure during maximal pacing and an increase in
left ventricular end-diastolic pressure immediately after
pacing. There was a significant correlation (Spearman
rank r = 0.64, P < 0.01) between redistributed thallium
score and an increase in left ventricular end-diastolic
pressure in the postpacing period. Moreover, there was
an even higher correlation (Spearman rank r =0.90, P
< 0.001) between total thallium score and the postpacing
increase in end-diastolic pressure.

It is concluded that in patients with coronary artery
disease the magnitude of pacing-induced hemodynamic
changes reflects both the amount of myocardial tissue at
ischemic jeopardy and the total mass of hypoperfused
myocardium during maximal pacing stress.

in patients with ischemic heart disease. They demonstrated
that pacing-induced angina consistently occurred in a given
patient at a particular tension-time index (product of aortic
ejection pressure, ejection time and heart rate) and was often
associated with increased pulmonary artery mean pressure
and pulmonary capillary wedge pressure.

Parker et al. (2) supplemented those initial observations
by studying pacing-induced ischemia with left ventricular
catheterization. They found that patients with normal coro
nary arteries demonstrated a decrease in left ventricular end
diastolic pressure during pacing tachycardia. In contrast,
patients with coronary artery disease paced to angina did
not exhibit this normal decrease and, furthermore, often
demonstrated an abrupt increase in left ventricular end
diastolic pressure in the immediate postpacing period.

Although a variety of hemodynamic abnormalities as
sociated with pacing-induced ischemia have been described
( I~ 14), it is uncertain whether the magnitude of these hemo-
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dynamic changes reflects quantitatively the amount of myo
cardium that is ischemic during angina. The development
ofthallium-201 scintigraphy has provided a method not only
for detecting myocardial ischemia (15-30), but also for
quantifying the amount of hypoperfused myocardium (22-28).
Except at the extremes of coronary blood flow, initial myo
cardial uptake of thallium-20 I has been shown to reflect
myocardial perfusion, while redistribution of the radio
nuclide has been shown to correlate more closely with cel
lular viability (15,29). Diminished myocardial uptake of
thallium-201 has been documented during exercise stress
(16-20), during Prinzmetal's angina (30,31), in patients
with acute or prior myocardial infarction (22,24-27) and in
patients with severe coronary artery disease at rest (32).
More recently, there has been evidence that ischemia in
duced by rapid atrial pacing may be detected and quantified
with simultaneous thallium scintigraphy (33-35). In all of
these situations, the combination of initial distribution and
redistributed thallium images has provided a measure of both
the amount of ischemic and infarcted myocardium in a given
patient. Accordingly, the present study was undertaken to
examine the relation between pacing-induced hemodynamic
changes and the extent of myocardial ischemia as quantified
by thallium-201 scintigraphy.

Methods
Study group. Twenty-five patients with a clinical di

agnosis of angina pectoris underwent atrial pacing with
hemodynamic monitoring and thallium scintigraphy at the
time of cardiac catheterization. The study group consisted
of 19 men and 6 women with a mean age of 55 years (range
34 to 69). On the basis of a prehospitalization clinical eval
uation, all 25 patients were believed to have stable angina
pectoris and were being treated with long-acting nitrates (18
patients), beta-adrenergic blocking agents (16 patients) or
calcium channel blocking agents (3 patients), alone or in
combination. All medications were continued until the time
of catheterization. Prior myocardial infarction had been doc
umented in 12 of the 25 patients. Two patients had previ
ously undergone coronary artery bypass graft surgery at least
3 years before the time of this study and were being reeval
uated because of recurrent chest pain. None of the patients
at the time of study had clinical evidence of acute myocardial
infarction, unstable angina pectoris, uncompensated conges
tive heart failure, significant ventricular ectopic rhythm,
current valvular disease or cardiomyopathy. All patients
gave written informed consent after the proposed study and
its risks were described. There were no complications as a
result of this investigation.

Cardiac catheterization and angiography. Coronary
angiography was performed in all patients using the Judkins
technique. Left ventriculography was performed with a pig-

tail catheter with simultaneous biplane cine recording in the
right and left anterior oblique projections.

A flow-directed Swan-Ganz thermodilution catheter was
inserted percutaneously into the right femoral vein and ad
vanced to the pulmonary artery. Pressure measurements were
obtained at the inferior vena cava, right atrium, right ven
tricle, pulmonary artery and pulmonary capillary wedge po
sitions. With the tip of the catheter positioned within the
right atrium, simultaneous pressures were obtained in the
right atrium and inferior vena cava. Subsequently, inferior
vena cava measurements were used as a guide to the right
atrial pressure. Systemic arterial pressure was monitored in
all patients using a percutaneously placed radial catheter.
Left ventricular pressures were obtained from a fluid-filled
catheter within the left ventricle. Pressures were measured
using P50 Micron pressure transducers attached directly to
a manifold connected to the proximal hub of the intravas
cular catheter without intervening tubing. The frequency
response characteristics of this system have been previously
reported (36). Recordings were inscribed using a Honeywell
Electronics for Medicine recorder (VR-12).

Atrial pacing protocol. After the completion of selec
tive coronary angiography and left ventriculography, a bi
polar flared pacing catheter (Atripace I, Mansfield Scientific
Inc.) was placed within the right atrium by percutaneous
puncture of the left femoral vein. When a satisfactory pacing
threshold had been achieved, the pacing rate was increased
rapidly until atrioventricular (AV) block occurred. If the
patient developed AV block at a rate that was less than 85%
of the age-predicted maximal heart rate, I mg of atropine
was administered intravenously. All patients were subse
quently able to be paced to the predicted heart rate or to a
lower pacing rate at which angina occurred.

Approximately 30 minutes after the completion of left
ventriculography, baseline pressure and cardiac output mea
surements were made. Pressures were recorded from the
inferior vena cava and pulmonary artery, pulmonary cap
illary wedge position, systemic artery and left ventricle.
Four thermodilution cardiac output determinations were made
and averaged. Arterial and pulmonary artery blood samples
were obtained for determination of a baseline arteriovenous
oxygen difference.

Atrial pacing was then initiated at a rate of 80 beats/min
and progressively increased by 15 beats/min every 2 minutes
until the patient experienced typical and significant chest
discomfort (graded by the patient as 5 or more on a scale
of I to 10) or until a pacing rate greater than 85% of the
age-predicted maximal heart rate had been achieved. At the
maximal pacing rate, repeat measurements of pressures as
well as repeat determinations of cardiac output and arterio
venous oxygen difference were made. Subsequently, the
pacing was abruptly terminated with continuous recording
of pulmonary capillary wedge pressure, left ventricular end
diastolic pressure and systemic arterial pressure.
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Thallium-20l scintigraphy. At the highest pacing rate,
1.5 to 2.0 mCi of thallium-20l was administered intrave
nously and pacing was subsequently continued for 5 minutes
while hemodynamic data were obtained. During exercise
thallium testing, exercise is usually maintained for 30 to 60
seconds after injection of the radionuclide to allow the thal
lium to reach the myocardium. However, because of the
rapid decrease in heart rate after the discontinuation of the
pacing stimulus and the subsequent diminution of myo
cardial oxygen demand, the pacing time after thallium in
jection was extended to 5 minutes. To determine the time
course of thallium distribution during the 5 minute pacing
period, arterial blood samples were collected in the first
seven patients studied. Samples were obtained at I, 2, 3,
5, 10, 15 and 20 minutes after the time of intravenous
injection. Counts of the blood from all seven patients dem
onstrated a similar peak and disappearance of thallium from
the arterial blood, with arterial activity being highest during
the first minute after pacing and subsequently decreasing to
approximately one-tenth of the peak level within 5 minutes.
Thus, the highest blood activity of thallium occurred well
within the 5 minute pacing period (37).

Myocardial imaging was begun in the cardiac catheter
ization laboratory immediately after the discontinuation of
the pacing stimulus. Images were obtained in the supine
position and consisted of the anterior view, a 40° modified
(30° cephalic) left anterior oblique view and 70° left anterior
oblique view. A 37 photo-multiplier tube, Anger type scin
tillation camera (Technicare series 410) with a slant-hole
collimator (Engineering Dynamics Corporation) (38) was
used. Images were recorded with a 20% window centered
on the mercury X-ray film produced after thallium decay
(69 to 80 keY). Images were collected for 6 minutes in each
view with a Technicare YIP Computer System and stored
on flexible discs for subsequent analysis and photography.

Redistribution images were obtained in the same manner
a minimum of 4 hours (range 4 to 6) after the cessation of
pacing.

Data analysis. The degree of coronary stenosis was
evaluated subjectively by two observers and estimated using
the greatest degree of diameter narrowing in any projection.

A 50% or greater reduction in lumen diameter in anyone
view was considered hemodynamically significant.

After cessation of pacing, left ventricular end-diastolic
pressure was measured by averaging beats numbered 5 through
15 after the last paced beat.

Systemic vascular resistance (SYR) was calculated using
the following formula:

SVR = (MAP - RA) x 80/CO.

where MAP, RA and CO are mean arterial pressure, mean
right atrial pressure and cardiac output, respectively. Right
atrial pressure was obtained from the inferior vena cava
pressure as previously described.

All thallium scans were interpreted subjectively by three
of us without knowledge of coronary anatomy and agree
ment was by consensus. Thallium scans were quantified by
dividing each of the three views (anterior and 40° modified
and 70° left anterior oblique) into five segments (Fig. I).
Each of the 15 sections were labeled as being normal or
hypoperfused and a thallium score was subsequently ob
tained by determining the total number of hypoperfused
segments. Some decrease in activity in the apical segments
due to thinning was accepted as normal. Thallium scores
were calculated from each patient's scans at the maximal
pacing rate and 4 hours after the cessation of pacing during
delayed imaging. Reversible or redistributed defects were
quantified by determining the difference between the two
thallium scores.

Statistical analysis. Mean and standard deviation were
calculated for all variables. Multiple groups of data were
analyzed using analysis of variance. Paired dimensional data
were analyzed using either the paired t test or Wilcoxon
signed-rank test, where appropriate, for parametric and non
parametric distributions. Unpaired dimensional data were
analyzed using either the unpaired t test or the Mann-Whit
ney U test where appropriate. All correlations between
hemodynamic, thallium and coronary angiographic data were
made using the Spearman's rank correlation. A probability
(p) value of less than 0.05 was considered significant.

Figure 1. Interpretation of thallium
scans: each segment is rated as being
normal (clear) or hypoperfused (stip
pled). In the example, the total thal
lium score is 5 during maximal pacing
(max pace), the delayed score is 2 and
the redistributed score is 3 (5 minus
2). ANT = anterior; LAO = left an
terior oblique.
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Results
Coronary angiography (Table 1). Five of the 25 pa

tients had nonsignificant coronary artery disease with 4 of
them having completely normal coronary artery anatomy
and the remaining I having only a 25% stenosis in the distal
left anterior descending artery. These five patients constitute
Group I and serve as a normal control group.

The remaining 20 patients had significant coronary ob
structions and constitute Group II. Eleven patients of this
group had three vessel disease, four had two vessel disease
and five had one vessel disease. The two patients who had
undergone previous coronary artery bypass grafting (both
patients had grafts to the left circumflex and left anterior
descending arteries) demonstrated completely patent grafts,
but both had progression of coronary artery disease in grafted

vessels distal to the sites of the graft anastamoses and in
the right coronary artery.

Left ventriculography (Table 1). Analysis of the left
ventriculograms revealed that the patients without signifi
cant coronary artery disease (Group I) had a higher left
ventricular ejection fraction than the patients with such dis
ease (Group II) (67 ± 4 versus 58 ± 12%, p < 0.05).
Patients in Group I also had a lower end-diastolic volume
index (64 ± 13 versus 76 ± 20 ml/m2

, p < 0.05) and end
systolic volume index (21 ± 5 versus 33 ± 19 mllm2

, p
< 0.02).

Hemodynamics at rest and in response to pacing
tachycardia in Group I (Table 2) and Group II (Table
3). The patients without significant coronary disease (Group
I) did not differ significantly from the patients with signif
icant disease (Group II) in any hemodynamic variable in

Table I. Clinical Characteristics and Angiographic Data in 5 Patients Without (Group I) and 20 Patients With (Group II) Significant
Coronary Artery Disease

Medications

Age (yr) Beta-Blocking Calcium Blocking
Patient & Sex Prior MI Prior Surgery Nitrates Agents Agents

Group I
I 40M
2 61M
3 69F + +
4 42M + +
5 42M + +

Mean ± SO 51 ± 13
Total 0 0 3 3 0

Group II
I 61F + +
2 62F + +
3 47M + + +
4 65M + + +
5 57M + + +
6 71M +
7 60M + + +
8 62M + + +
9 58F +

10 34M + +
II 63M + +
12 58F + + + +
13 41M + +
14 59M +
15 46M + +
16 54M +
17 49M + + + +
18 59M
19 61F + sip CABG + +
20 SSM Sip CABG + +

Mean ± SO 56 ± 9
Total 12 2 15 13 3

*p < 0.05 versus Group I; tp < 0.02 versus Group I. CABG = coronary artery bypass graft; EOVI = end-diastolic volume index; ESVI = end-
systolic volume index; F = female; LAD = left anterior descending artery; LCx = left circumflex artery; M = male; MI = myocardial infarction;
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the control period before pacing. In response to pacing, the
two groups did not differ significantly with respect to max
imal paced heart rate (153 ± 12 versus 146 ± 19 beats/min).
systolic blood pressure at maximal pacing (126 ± 10 versus
134 ± 28 mm Hg) or heart rate-blood pressure product
(19,228 ± 1,949 versus 19,249 ± 3,191 mm Hg x
beats/min) .

At maximal pacing, Group I demonstrated no significant
change in cardiac index, systemic vascular resistance and
arteriovenous oxygen difference (Fig. 2). Group II, how
ever, exhibited a decrease in cardiac index (prepacing 3.1
± 0.6 liters/min per m2

, maximal pacing 2.7 ± 0.6 li
ters/min per m2

, p < 0.0 I) as well as an increase in systemic
vascular resistance (prepacing 1,288 ± 425 dynes's'cm - 5.

maximal pacing 1,517 ± 411 dynes's'cm- 5 , p < 0.01)
and a widening of arteriovenous oxygen difference (pre-

pacing 42 ± 10 ml/liter, maximal pacing 52 ± 9 mill iter,
p < 0.01).

Left ventricular end-diastolic pressure in Group I de
creased slightly from the prepacing value during maximal
pacing and subsequently returned to its baseline value in
the postpacing period (prepacing 14 ± 2 mm Hg, maximal
pacing 9 ± 5 mm Hg, postpacing 13 ± 3 mm Hg) (Fig.
3). In Group II, left ventricular end-diastolic pressure did
not change significantly during maximal pacing, but did
show a significant increase during the postpacing period
(prepacing 15 ± 5 mm Hg, postpacing 25 ± 9 mm Hg, p
< 0.0 I). End-diastolic pressure at maximal pacing and in
the postpacing period was not measured in the first seven
patients studied.

Pulmonary capillary wedge pressure in Group I showed
no significant change in prepacing, maximal pacing and

Table 1. Clinical Characteristics and Angiographic Data in 5 Patients Without (Group I) and 20 Patients With (Group II) Significant
Coronary Artery Disease (continued)

Vessels With CAD

o
()

()

()

()

Ventriculographic Analysis

Patient EDVI (mUm') ESVI (mUm') EF (%)

Group I
I 70 25 M
2 66 24 67
3 74 n 70
4 67 25 63
5 41 II 73

Mean ± SO M ± 13 21 ± 5 67 ± 4
Total

Group II
I 81 30 63
2 76 20 73
3 90 32 64
4 82 31 62
5 83 40 52
6 127 103 19
7 83 46 45
8 86 37 57
9 70 32 54

10 81 40 51
II 74 25 65
12 71 22 69
13 59 29 51
14 62 19 70
IS 34 13 62
16 32 10 69
17 83 25 71
18 84 45 46
19 89 49 45
20 66 25 61

Mean ± SO 76 ± 20* 33 ± 19t 58 ± 12*

3 LAD. LCx. RCA
3 LAD. LCx. RCA
2 LAD. RCA
3 LAD. LCx. RCA
2 LAD. RCA
I RCA
3 LAD. LCx. RCA
3 LAD. LCx. RCA
1 RCA
3 LAD. LCx. RCA
3 LAD. LCx. RCA
3 LAD. LCx. RCA
I RCA
2 LAD. LCx

LAD
2 LCx. RCA
I RCA
3 LAD. LCx. RCA
3 LAD. LCx. RCA
3 LAD. LCx. RCA

3VD:II
2VD:4
IVD:S

RCA = right coronary artery; SO = standard deviation; sip = status post: 1VD = one vessel disease: 2VD = two vessel disease: 3VD = three vessel
disease.
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Table 2. Effects of Pacing Tachycardia on Hemodynamics and Myocardial Thallium Uptake in Group I (patients without significant
coronary artery disease)

Case Case Case Case Case
1 2 3 4 5 Mean ± SD

Heart rate (beats/min)
Pre 60 80 75 80 76 74 ± 8
Max 150 143 146 150 174 153 ± 12
Post 60 75 78 70 102 77 ± 16

SBP (mm Hg)
Pre 130 120 150 125 145 134 ± 13
Max 120 140 125 115 130 126 ± 10
Post 128 130 160 120 150 138 ± 17

RPP (mm Hg x beats/min)
Pre 17,800 9,600 11,250 10,000 11,020 9,934 ± 1,377
Max 18,000 20,020 18,250 17 ,250 22,620 19,228 ± 1,949

CI (liters/min per m2)
Pre 3.0 3.1 2.8 2.8 4.5 3.2 ± 0.8
Max 3.3 3.6 2.0 2.8 4.3 3.2 ± 0.9

av02 (ml/liter)
Pre 42 37 33 38 40 38 ± 3
Max 39 44 44 42 36 41 ± 3

SVR (dynes's'cm- 5
)

Pre 1,607 939 1,636 1,328 1,147 1,331 ± 299
Max 1,325 853 1,976 1,376 1,062 1,318 ± 424

LVEDP (mm Hg)
Pre 13 12 13 14 16 14 ± 2
Max 6 8 5 10 17 9 ± 5
Post 9 14 II 15 16 13 ± 3

PCW (mm Hgl
Pre 7 12 12 6 16 11 ± 4
Max 6 12 8 6 18 10 ± 5
Post 4 10 5 4 13 7 ± 4

PA (mm Hg)
Pre 18 21 22 14 22 19 ± 3
Max 16 20 14 16 26 18 ± 5
Post 16 18 12 14 22 16 ± 4

Thallium score
Maximal 0 1 0 I 0 0.4 ± 0.5
Delayed 0 1 0 0 0 0.2 ± 0.4
Redistributed 0 0 0 I 0 0.2 ± 0.4

av02 = arteriovenous oxygen difference; CI = cardiac index; LVEDP = left ventricular end-diastolic pressure; Max = maximal pacing; PA =
mean pulmonary artery pressure; PCW = pulmonary capillary wedge pressure; Post = postpacing; Pre = prepacing; RPP = rate-pressure product; SBP
= systolic blood pressure; SD = standard deviation; SVR = systemic vascular resistance.

postpacing periods (Fig. 3). In contrast, patients in Group
II demonstrated an increase in pulmonary capillary wedge
pressure during maximal pacing (prepacing II ± 4 mm
Hg, maximal pacing 17 ± 5 mm Hg, P < 0.0 I) that returned
toward baseline in the postpacing period (postpacing 14 ±
8 mm Hg, p = NS).

Similarly. there was no significant change in mean pul
monary artery pressure in Group I during prepacing, max
imal pacing and postpacing periods (Fig. 3). However, Group
II demonstrated an increase in mean pulmonary artery pres
sure during maximal pacing (prepacing 18 ± 4 mm Hg,
maximal pacing 22 ± 5 mm Hg, p < 0.0 I) that returned
to normal in the postpacing period (postpacing 20 ± 6 mm
Hg, p = NS).

Thallium scintigraphy with pacing tachycardia (Ta
bles 2 and 3). Patients with normal scans at maximal pac
ing. Three patients in Group I and three patients in Group
II had normal thallium scans at maximal pacing. None of
these patients experienced chest pain.

Patients with abnormal scans at maximal pacing. Two
patients in Group I and 17 in Group II had abnormal thallium
scans at maximal pacing. Mean total thallium score at max
imal pacing, reflecting the number of segments hypoper
fused at maximal pacing stress, was significantly lower for
Group I than Group II (0.4 ± 0.5 versus 4.9 ± 3.1 seg
ments, p < 0.01). Quantification of redistributing defects
in both groups was obtained by subtracting the thallium
score during delayed scanning from the total thallium score
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Figure 2. Changes in cardiac index, sys
temic vascular resistance (SVR) and arterio
venous oxygen (av02) difference with pacing
tachycardia, CAD = coronary artery dis
ease; max pace = maximal pacing; p =
probability.

Normal CAD Normal CAD Normal CAD

at maximal pacing to obtain a redistributed thallium score
for each patient. The mean redistributed thallium score was
lower for Group I than Group II (0,2 ± 0.4 versus 2.4 ±
2.7 segments, p < 0.01).

Patients with defects on delayed scans. One patient in
Group I and 13 patients in Group II had persistent defects
that were present on delayed scans obtained 4 hours after
the cessation of pacing. Twelve of the 13 patients in Group
II had clinical evidence of prior myocardial infarction and
in all patients, there was a thallium defect that corresponded
to the location of prior myocardial injury.

Of the two patients in Group I who had an abnormal
scan at maximal pacing, one manifested a transient defect
that disappeared during the delayed scans; neither patient
had chest pain or a significant hemodynamic abnonnality
during pacing. Of the 17 patients that had an abnormal
thallium scan at maximal pacing, 14 had redistributing de
fects with improved thallium perfusion during delayed im
aging. Nine of these patients experienced chest pain during
pacing that resolved promptly after the cessation of pacing;
the three patients with fixed nonredistributing defects did
not experience chest pain.

Correlation between hemodynamic variables and
thallium score (Fig. 4 and 5). There was no significant
correlation between thallium scores and pacing-induced

changes in cardiac index, arteriovenous oxygen difference.
systemic vascular resistance, mean arterial pressure and mean
pulmonary artery pressure, There was, however, a signifi
cant correlation (Speannan rank r = 0.64, P < 0.01) be
tween redistributed thallium score and the increase in left
ventricular end-diastolic pressure in the postpacing period
(Fig. 4). There was an even higher correlation (Spearman
rank r = 0.90, P < 0.001) between total thallium score at
maximal pacing and an increase in left ventricular end
diastolic pressure in the postpacing period (Fig. 5). Analysis
of the relation between thallium score and an increase in
mean pulmonary capillary wedge pressure during maximal
pacing revealed a poor correlation (Spearman rank r = 0.46,
P < 0.05) for redistributed thallium score and a slightly
better correlation (Speannan rank r = 0.49, P < 0.02) for
maximal paced thallium score.

Correlation between hemodynamic changes, thallium
scores and coronary angiography. To further examine the
relation between hemodynamic changes and the amount of
ischemic or infarcted myocardium, or both, the relation
between hemodynamic abnormalities and the number of
diseased coronary vessels was investigated. There was a
significant correlation (Spearman rank r = 0.82, p < 0.001)
between the number of diseased vessels and the postpacing
increase in left ventricular end-diastolic pressure. In addi-
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Figure 3. Changes in left ventricular end
diastolic pressure (LVEDP), mea~
monary capillary wedge pressure (PCW)
and mean pulmonary artery pressure
(PA) with pacing tachycardia. post pace
= after pacing. other abbreviations as in
Figure 2.
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Table 3. Effects of Pacing Tachycardia on Hemodynamics and Myocardial Thallium Uptake in Group II (patients with significant
coronary artery disease)

Case Case Case Case Case Case Case Case Case Case
I 2 3 4 5 6 7 8 9 10

Heart rate (beats/min)
Pre 60 70 53 60 73 77 84 60 99 112
Max 140 125 150 110 174 144 155 140 155 182
Post 65 70 56 60 75 92 110 57 82 113

SBP (mm Hg)
Pre 124 160 180 135 110 140 160 130 15 100
Max 140 175 180 150 80 110 145 150 35 100
Post 140 175 170 120 160 120 140 130 135 100

RPP (mm Hg x beats/min)
Pre 7,440 11,200 9,540 8,100 8,030 10,780 13,440 7,800 13,365 11,200
Max 19,600 21,875 27,000 16,500 13,920 15,840 22,475 21,000 20,925 18,200

CI (liters/min per m2)
Pre 2.3 n 3.5 3.1 2.8 3.2 2.6 2.8 2.5 3.5 4.6
Max 1.9 2.3 2.5 2.7 1.6 1.9 2.4 2.8 2.5 3.1

av02 (mlliiter)
Pre 42 44 52 69 21 41 37 48 37 38
Max 55 47 59 66 76 59 53 50 56 42

SVR (dynes's'cm - 5)
Pre 2,379 2,085 1,627 1,172 876 1,400 1,568 1,400 1,018 771
Max 2,475 2,189 1,838 1,651 1,600 1,733 1,709 1,712 1,423 1,202

LVEDP (mm Hg)
Pre 10 4 18 14 7 19 16 10 18 20
Max t t t t t 12 12 6 14 5
Post t t t t t 24 t 18 22 20

pew (mm Hg)
Pre II 5 14 II 6 18 10 8 8 9
Max 17 15 13 31 24 18 16 17 18 13
Post 14 10 12 20 12 19 t 13 13 13

PA (mm Hg)
Pre 23 10 21 14 16 20 18 14 18 15
Max 21 18 14 18 33 28 22 18 27 19
Post 24 15 22 34 30 19 20 14 22 17

Thallium score
Maximal pacing 4 0 2 10 6 5 5 6 0 6
Delayed 0 0 I 5 5 5 1 3 0 6
Redistribution 4 0 I 5 I 0 4 3 0 0

tion, the number of diseased vessels correlated with the
maximal paced thallium score (Spearman rank r = 0,59, P
< 0.005) and with the redistributed thallium score (Spear
man rank r = 0.61, p < 0,002).

Discussion
This study demonstrated that in a group of 25 patients

stressed with pacing-induced tachycardia, the largest changes
in left ventricular end-diastolic pressure and pulmonary cap
illary wedge pressure occurred in the patients with both the
largest maximal paced total thallium scores and the largest
redistributed thallium scores. This suggests that these hemo
dynamic abnormalities reflect the amount of myocardial tis-

sue at ischemic jeopardy, and may be useful in estimating
the total amount of nonfunctioning myocardium during max
imal pacing stress.

Pacing-induced hemodynamic changes: comparisons
with previous studies. Previous investigators (1-14) de
scribed the hemodynamic alterations associated with the
pacing-induced ischemic state and contrasted the hemody
namic changes seen in patients with normal coronary arteries
and those observed in patients with significant coronary
obstructive disease. Patients without ischemic heart disease
who are stressed by atrial-paced tachycardia generally dem
onstrate no significant change in cardiac output, mean ar
terial pressure, systemic vascular resistance and arteriove
nous oxygen difference. In addition, they exhibit a decrease
in left ventricular end-diastolic pressure during maximal
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Table 3. Effects of Pacing Tachycardia on Hemodynamics and Myocardial Thallium Uptake in Group II (patients with significant
coronary artery disease) (continued)

Case Case Case Case Case Case Case Case Case Case
11 12 13 14 15 16 17 18 19 20 Mean:':: SD

Heart rate (beats/min)
Pre 56 75 88 56 95 57 77 60 52 72 72:':: 17
Max 128 140 171 133 143 150 156 110 154 156 146 :':: 19
Post 60 75 78 73 109 57 75 63 52 53 74 :':: 19

SSP (mm Hg)
Pre 140 120 105 130 110 130 130 180 110 120 132 :':: 23
Max 130 110 105 170 120 130 130 180 115 115 134 :':: 28
Post 130 120 120 150 110 135 130 190 110 120 135 :':: 23

RPP (mm Hg x beats/min)
Pre 7,840 9,000 9,240 7,280 10,450 7,410 10,010 10,800 5,720 8,640 9,266 :':: 1,974
Max 16,640 15,400 17,955 22,610 17,160 19,500 20,280 19,800 17,710 17,940 19,249 :':: 3,191

CI (liters/min per m2)

Pre 2.3 3.5 3.2 3.8 4.0 3.5 3.2 2.8 2.6 2.9 3.1 :':: 0.6
Max 2.1 3.5 3.4 3.7 3.5 2.9 3.1 2.8 2.8 2.7 2.7 :':: 0.6*

av02 (mllliter)
Pre 45 38 47 35 28 36 44 40 41 53 42 :':: 10
Max 57 46 44 41 37 43 49 52 43 56 52 :':: 9*

SVR (dynes's'cm- s)
Pre 1,450 1,018 1,007 833 773 1,300 1,152 1,660 1,076 1,191 1,288 :':: 425
Max 1,725 909 952 1,177 1,061 1,607 1,202 1,758 1,133 1,296 1,517 :':: 411 *

LVEDP (mm Hg)
Pre 21 18 16 19 10 16 16 12 23 14 15 :':: 5
Max 26 15 12 29 6 4 23 ~ 16 7 13 :':: 8I

Post 40 30 26 39 20 19 23 ~ 34 22 25 :':: 9*I

PCW (mm Hg)
Pre 20 12 10 16 7 12 5 8 14 II II :':: 4
Max 27 16 14 18 8 12 15 14 20 18 17 :':: 5*
Post 34 10 13 36 6 4 5 7 14 10 14 :':: 8

PA (mm Hg)
Pre 26 19 15 21 17 20 16 16 20 15 18 :':: 4
Max 29 24 20 32 18 20 19 20 22 19 22 :':: 5*
Post 29 20 14 29 14 20 16 15 17 18 20 :':: 6

Thallium score
Maximal pacing 9 8 7 7 I 0 5 3 9 4 4.9 :':: 3.lt
Delayed 1 4 7 2 0 0 I 0 8 0 2.5 :':: 2.7t
Redistribution 8 4 0 5 I 0 4 3 I 4 2.4 :':: 2.7t

*p < 0.01 compared with prepacing value; tp < 0.01 compared with Group I; :j: not measured. Abbreviations as in Table 2.

pacing tachycardia with no significant increase in end-dia
stolic pressure after pacing. Patients with coronary artery
disease paced to angina may also show no significant change
in cardiac output, mean arterial pressure, systemic vascular
resistance and arteriovenous oxygen difference, but gen
erally differ from nonischemic subjects in that they dem
onstrate either no change or a slight increase in left ven
tricular end-diastolic pressure during maximal pacing with
a marked increase in end-diastolic pressure in the postpacing
period. This study confirms previously reported pacing-in
duced hemodynamic changes in patients with normal coro
nary arteries with respect to cardiac output, systemic vas
cular resistance, arteriovenous oxygen difference and left
ventricular end-diastolic pressure. In addition, however, our
results suggest that cardiac output in patients with obstruc-

tive coronary disease may actually decrease from baseline
values with a concordant increase in systemic vascular re
sistance and a widening of arteriovenous oxygen difference
during maximal pacing tachycardia. Moreover, we have
described additional pacing-induced changes in pulmonary
capillary wedge and mean pulmonary artery pressures dif
ferentiating patients with normal coronary arteries from those
with significant coronary obstructions.

Mechanisms underlying hemodynamic abnormalities.
Although our findings differ somewhat from those of Parker
et al. (2), they are similar to those of Helfant et al. (4) and
Sowton et al. (1), and the differences probably reflect the
wide spectrum of pacing-induced hemodynamic abnormal
ities in patients with coronary artery disease. With respect
to cardiac output, for example, Helfant and coworkers (4)
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Figure 4. Correlation of redistributed thallium score with an in
crease in left ventricular end-diastolic pressure (LVEDP) in the
post-pacing period (Spearman rank r = 0.64, P < O.O\).

observed a decrease in cardiac output in the presence of
pacing-induced angina. Sowton et al. (1) found no change
in cardiac output, but noted an increase in pulmonary cap
illary wedge pressure and mean pulmonary artery pressure
in a subset of patients with pacing-induced angina. These
partly conflicting results may be related to the intensity of
pacing-induced ischemia, its duration before the measure
ment of hemodynamic variables and the amount of myo
cardium that has become ischemic. At the onset of angina,
only a small proportion of the myocardium may be ischemic,
and there may be little or no change in the hemodynamic
status. However, as ischemia progresses with the contin
uation of pacing tachycardia, a larger proportion of jeop
ardized myocardium presumably develops ischemic dys
function with characteristic hemodynamic deterioration. The
hemodynamic changes in this study were measured after
approximately 5 minutes of pacing-induced angina that the
patient described as moderately intense (>5 on a scale of
I to 10, where I = barely perceptible angina and 10 =

severe angina). As a result, the decrease in cardiac output
that was noted in our patients with coronary artery disease,
measured both by a decrease in thermodilution flow mea
surements and a widening of arteriovenous oxygen differ
ence, probably reflects more extensive myocardial ischemia.
Accompanying this decrease in cardiac output, one would
expect a reflex increase in systemic vascular resistance me
diated by arterial baroreceptors in an attempt to maintain
systemic blood pressure, and this did occur in our patients.

The mechanism of the increased left ventricular end
diastolic pressure in the se~ting of pacing-induced ischemia
has been a subject of much interest (2,6,7,9-14). The in
crease in end-diastolic pressure is probably related not only
to an increase in left ventricular end-diastolic volume
(2,6,9-11), but also to an upward shift in the left ventricular
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Figure S. Correlation of maximal paced total thallium score with
an increase in left ventricular end-diastolic pressure (LVEDP) in
the postpacing period (Spearman rank r = 0.90, P < 0.001).

diastolic pressure-volume relation so that pressure is higher
at any given volume or myocardial segment length through
out diastole (6,7,9,11-14). Although some patients with
ischemia manifest an increase in end-diastolic pressure dur
ing the period of maximal pacing, most investigators have
documented the largest increase in pressure during the im
mediate postpacing period. An increase in left ventricular
end-diastolic pressure may not occur during maximal pacing
because of the substantial decrease in end-diastolic dimen
sion and volume that occurs with pacing-induced tachy
cardia (7,10).

Pulmonary capillary wedge and mean pulmonary artery
pressures, unlike left ventricular end-diastolic pressure, in
creased most significantly during the period of maximal
pacing tachycardia in patients with coronary artery disease.
The increase in these pressures suggests that left ventricular
filling during maximal pacing is impeded not only by a
shortened diastole secondary to tachycardia, but also by a
decrease in left ventricular distensibility in the setting of
pacing-induced ischemia. In addition, a role for pacing
induced mitral regurgitation cannot be ruled out as a cause
for increased pulmonary capillary wedge and mean pul
monary artery pressures during maximal pacing; notably,
two patients in Group 11 developed significant V waves
during pacing-induced angina that resolved soon after the
cessation of pacing. Pulmonary capillary wedge and mean
pulmonary artery pressures generally decreased with the
cessation of pacing and resultant immediate decrease in heart
rate in Group 11 patients, and neither variable remained
significantly increased above its prepacing baseline value.

Hemodynamic correlates of myocardium at risk. Al
though investigators have previously noted the variable
magnitude of pacing-induced hemodynamic changes, it has
not been possible to determine whether the magnitude of
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these hemodynamic abnormalities is a direct function of the
mass of reversibly ischemic myocardium. The development
of thallium-20l imaging in conjunction with treadmill ex
ercise testing has not only resulted in an improved sensitivity
and specificity of routine exercise electrocardiography, but
has provided a means of quantifying both ischemic and
infarcted myocardium (16-23). Thallium defects at maxi
mal exercise presumably represent both ischemic and in
farcted tissue, whereas persistent defects during delayed
imaging after reversible ischemia has been abolished are
thought to represent infarcted myocardium. By analogy with
exercise thallium-201 imaging, the thallium score at max
imal pacing tachycardia in this study would represent a
measure of both infarcted and ischemic tissue, whereas the
difference between maximal paced thallium score and thal
lium score at the time of delayed scanning, represented as
a redistributed thallium score, should represent the amount
of reversibly ischemic myocardium.

The positive correlation between redistributed thallium
score and the increase in postpacing left ventricular end
diastolic pressure indicates that those patients with the great
est increase in end-diastolic pressure tended to have the
largest areas of reversible ischemia, as judged from the
thallium scintigrams. This further suggests that the mag
nitude of the increase in end-diastolic pressure after pacing
tachycardia stress testing may be useful in predicting the
amount of myocardium at jeopardy from ischemic events.
Although the increase in pulmonary capillary wedge pres
sure during maximal pacing correlated positively with the
amount of myocardial ischemia, this correlation was much
less impressive than the correlation for end-diastolic pres
sure in our study. In some patients, it is possible that the
presence of mitral regurgitation secondary to pacing-induced
papillary muscle ischemia may have led to an increase of
pulmonary capillary wedge pressure out of proportion to the
mass of ischemic myocardium.

Hemodynamic correlates of the total mass of 000

perfused myocardium. Although it seems clear from our
study that pacing-induced hemodynamic changes correlate
significantly with the amount of ischemic myocardium, the
factor that showed the best correlation with postpacing end
diastolic pressure and maximal pacing pulmonary capillary
wedge pressure was the total thallium score at maximal
pacing tachycardia. Because the maximal pacing total thal
lium score is a measure of both ischemic and infarcted
myocardium, this suggests that hemodynamic changes are
proportional not only to the amount of reversibly ischemic
tissue, but also to the total amount of nonfunctioning myo
cardium. Notably, three patients in Group II with a history
of prior myocardial infarc,tion showed no evidence of re
versible ischemia by thallium redistribution, but demon
strated fixed thallium defects corresponding to their prior
infarction. All three of these patients had a significant in-

crease in left ventricular end-diastolic pressure in the post
pacing period.

To explain the hemodynamic changes in these patients,
several possible alternatives must be considered. One pos
sibility is that the fixed thallium defects in these patients
obscured the presence of a truly reversible defect. Thus,
although there is generally a good correlation between post
mortem myocardial infarct size and the estimated size of
thallium defects at rest in scans obtained in patients with
myocardial infarction (25,27), defects at rest may also in
clude a significant proportion of ischemic myocardium in
the border zone surrounding infarcts. For example, Bulkley
et al. (26) found a very close correlation between defect
size and the size of infarcts measured at autopsy in 24
patients undergoing scanning at the time of their infarction.
In five patients, however, there was a significant discrepancy
between the size of the thallium defect and the infarct size
in which the thallium defect overestimated a relatively small
amount of myocardial necrosis at the time of autopsy. All
five patients manifested widespread electrocardiographic ab
normalities and severe left ventricular dysfunction suggest
ing the presence of a much larger area of reversibly ischemic
myocardium surrounding the infarct zone. Peri-infarct myo
cardium is certainly different from myocardium that has
been made ischemic by pacing; however, clinically late (for
example 24 hours) redistribution is occasionally seen during
exercise testing when 4 hour delayed imaging appears to
show only fixed defects (39). It is possible, therefore, that
systolic and diastolic function changes in a borderline isch
emic zone may explain pacing-induced hemodynamic changes
in patients with an apparently "fixed" thallium defect.

An alternative explanation for the increase in postpacing
end-diastolic pressure in patients with primarily fixed thal
lium defects is that these patients experienced a change in
myocardial loading conditions secondary to pacing tachy
cardia. Patients in Group II had an overall decrease in car
diac output during maximal pacing with an associated in
crease in systemic vascular resistance. As a result, left
ventricular end-diastolic pressure in these patients and in
crease transiently secondary to an increased afterload in the
immediate postpacing period.

Correlations between hemodynamic changes and
coronary anatomy. In addition to the positive correlations
between hemodynamic changes and thallium scores, there
was a significant correlation between the number of diseased
vessels and the postpacing increase in left ventricular end
diastolic pressure. Because the number of diseased vessels
represents, at best, only a crude measure of myocardium at
risk (for example, location of stenoses, proximal or distal,
is not taken into account), one would not expect this cor
relation to be extremely high. Nevertheless, the positive
correlation between coronary anatomy and postpacing left
ventricular end-diastolic pressure as well as the positive
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correlations between coronary anatomy and thallium scores
add further evidence that pacing-induced hemodynamic
changes may reflect the mass of ischemic and infarcted
myocardium.

Additional studies. To assess the overall role of the
pacing stress test, and particularly the meaning of pacing
induced hemodynamic changes, it will be necessary to ex
amine pacing-induced hemodynamic abnormalities in a larger
group of patients than has been included in this study. In
particular, if the pacing-induced increase in left ventricular
end-diastolic and pulmonary capillary wedge pressures is
indeed specific for pacing-induced myocardial ischemia due
to large vessel coronary artery disease, it will be necessary
to rule out pacing-induced hemodynamic abnormalities in
patients with other forms of heart disease, including those
with valvular, hypertensive and cardiomyopathic processes.
In addition, it is notable that all patients in this study had
moderately well preserved ventricular function, with all but
one patient having an ejection fraction greater than 45%. It
is possible that patients with more severe left ventricular
dysfunction manifest different or more severe patterns of
hemodynamic dysfunction.

We express our thanks to Bernard Ransil, PhD for his help with the
statistical analysis of the data. Excellent technical support was provided
by Debbie Conn, Dace Jansons, Sheila Flynn, Dana Cronan, Lisa Gwon,
Pat Wright, Paula Lenane, Andrea Rousseau, Peter Sahagian, Jill Howland,
Maria Hladych, Lori Ouellette, Lois Goepfert, James Mulcahy and Marion
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Corporation (Grants CG81010 and CG81022).
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