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UV radiation is an important environmental factor in the pathogenesis of skin aging and cancer. Many harmful
effects of UV radiation are associated with generation of reactive oxygen species. Cellular antioxidants prevent
the occurrence and reduce the severity of UV-induced photoaging and diseases of the skin. The transcription
factor Nrf2 (NF-E2-related factor 2) and its negative regulator protein, Keap1 (Kelch-like-ECH-associated
protein 1), are central regulators of cellular antioxidant responses. We used nrf2-null mice to investigate the
roles of the Nrf2–Keap1 system in protection of skin from harmful effects of UVB irradiation. A single irradiation
with UVB induced stronger and longer lasting sunburn reaction in nrf2-null mice. Histological changes,
including epidermal necrosis, dermal edema, inflammatory cell infiltration, sunburn cell formation, TUNEL-
positive apoptotic cell formation, and accumulation of oxidative DNA products such as 8-hydroxy-
20-deoxyguanosine after UVB irradiation, were more prominent in nrf2-null mice. These findings indicate that
the Nrf2–Keap1 pathway plays an important role in protection of the skin against acute UVB reactions, including
cutaneous cell apoptosis and oxidative damage. However, there were no significant differences in skin
carcinogenesis between nrf2-null and wild-type mice exposed to chronic UVB irradiation, suggesting that there
is a complex and subtle balance between factors promoting and preventing photocarcinogenesis.
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INTRODUCTION
As the skin acts as a physiological barrier protecting the
organism against pathogens and chemical or physical
damage, it is the organ directly exposed to the hazardous
effects of UV radiation. UV irradiation of the skin leads to
acute inflammatory reactions such as erythema, sunburn
(Ley, 1985), and chronic reactions, including premature skin
aging (Fisher et al., 1996) and skin tumors (Ananthaswamy

and Pierceall, 1990). UV radiation, particularly UVB, has
strong cytotoxic and mutagenic effects (Ichihashi et al.,
2003), as the bases in DNA directly absorb incident photons.
This absorption can result in DNA damage, particularly the
formation of cyclobutane pyrimidine dimers (CPDs) and 6–4
photoproducts ((6–4) PDs), which induce DNA mutation in
skin cells, leading to the development of skin tumors. UV
radiation is also a potent generator of oxidative stress in the
skin. Exposure of mammalian skin to UV increases the
cellular levels of reactive oxygen species (ROS), which
damages lipids, proteins, and nucleic acids in both epidermal
and dermal cells and probably contribute to the sunburn
reaction as well as photocarcinogenesis and photo-aging
(Scharffetter-Kochanek et al., 1997). Photoexcited sensitizers
are likely to generate ROS, including superoxide and
singlet oxygen. In addition, photo-oxidation reactions of
DNA, including the formation of 8-oxo-7, 8-dihydroguanine
(8-oxo-dG) and 8-hydroxy-20-deoxyguanosine (8-OH-dG),
occur on UV irradiation of cellular DNA (Wamer and Wei,
1997).

Cells can be protected against the adverse effects of UV
irradiation by a number of enzymatic and nonenzymatic
antioxidants. Antioxidants, such as polyphenols (Vayalil et al.,
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2003) and vitamin E (Packer and Valacchi, 2002), applied
topically or in the diet, show protective effects against
photooxidative damage of the skin. The endogenous anti-
oxidant capacity of the skin is a major determinant in its
response to oxidative stress-mediated damage. Low intra-
cellular levels of glutathione result in elevated sensitivity to
UV irradiation (Tyrrell and Pidoux, 1988). Thus, antioxidants
constitute an important group of pharmacological agents
capable of preventing the occurrence and reducing the
severity of UV irradiation-induced skin diseases and skin
aging. As it is the outermost organ exposed directly to the
pro-oxidative environment, including solar UV radiation, the
skin is equipped with an elaborate system of antioxidant
substances and enzymes, including a network of redox-active
antioxidants.

Nrf2 (NF-E2-related factor 2) and Keap1 (Kelch-like-ECH-
associated protein 1) are key proteins in the coordinated
transcriptional induction of various antioxidant-metabolizing
enzymes. Nrf2 is a member of the NF-E2 family of nuclear
basic leucine zipper transcriptional activators, and Keap1 is a
cytoplasmic protein homologous to the Drosophila actin-
binding protein Kelch (Chui et al., 1995; Itoh et al., 1999b).
Under normal physiological conditions, Nrf2 is largely bound
to Keap1 and degraded rapidly in the cytoplasm (McMahon
et al., 2003). On disruption of the Nrf2–Keap1 complex by
inducers, Nrf2 undergoes rapid translocation to the nucleus,
where it activates its target genes in heterodimeric combina-
tions with other transcription factors, such as small maf
proteins (Itoh et al., 1999a). Keap1 negatively regulates Nrf2
by both enhancing its rate of proteasomal degradation and
altering its subcellular distribution (Itoh et al., 2003;
McMahon et al., 2003).

After translocation into the nucleus, Nrf2 recognizes and
binds to antioxidant response elements in the promoter
regions of its target genes and induces phase II detoxification
enzymes and antioxidant proteins, such as glutamate
cysteine ligase, previously referred to as g-glutamylcysteine
synthetase (Wild et al., 1999), cystine/glutamate exchange
transporter (Sasaki et al., 2002), glutathione S-transferase
(Hayes et al., 2000), nicotinamide adenine dinucleotide
phosphate quinone oxidoreductase-1 (Venugopal and
Jaiswal, 1996), heme oxygenase-1 (Alam et al., 1999), and
thioredoxin (Ishii et al., 1999). Furthermore, Nrf2 was
recently shown to confer protection against apoptosis
induced by Fas signaling (Morito et al., 2003) and mitochon-
drial toxins (Lee et al., 2003b). We have demonstrated
that Nrf2 is activated by UVA irradiation and plays a pivotal
role in protection of cells from UVA-induced apoptosis
(Hirota et al., 2005). Therefore, we focused on the
Nrf2–Keap1 pathway as a putative major component of the
protective machinery involved in protection of the skin
against UV-induced oxidative damage.

In this study, we used nrf2�/� mice to examine the
protective effects of Nrf2 against UV-induced acute sunburn
reaction, epidermal cell apoptosis, and DNA mutations.
Furthermore, we compared the skin carcinogenesis induced
by chronic UVB exposure between nrf2þ /þ and nrf2�/�

mice.

RESULTS
nrf2�/� mice developed stronger and longer lasting sunburn
reaction after UVB irradiation

A single exposure to UVB irradiation at a dose of
200 mJ cm�2 resulted in more obvious erythema reactions
in the nrf2�/� mice than in wild-type controls at 24 hours
(Figure 1a, day 1) or 48 hours (Figure 1a, day 2) after
irradiation. Dermatoscopy of the lesions showed congestion
and teleangiectasis of the ear skin, both of which were more
prominent in the nrf2�/� mice than in the controls (Figure 1a,
day 1). Yellowish crust formation was seen on the ear skin
of the nrf2�/� mice by day 4 after irradiation, whereas the
wild-type controls recovered almost normal appearance of
the ears 4 days after irradiation with UVB (Figure 1a, day 4).
The ears of nrf2�/�mice became deformed and necrotic crust
formation was observed on dermatoscopy (Figure 1a, day 7).
To quantify the severity of the inflammatory reaction in ear
sunburn, the ear swelling responses in wild-type and nrf2�/�

mice after irradiation with UVB at a dose of 200 mJ cm�2

were measured. As shown in Figure 1b, nrf2�/� mice
developed significant ear swelling, which was still increasing
on day 5, whereas wild-type mice showed only slight ear
swelling at the same UVB dose. The ear swelling in nrf2�/�

mice was significantly greater than that in wild-type controls
throughout the study. Histologically, the ear skin samples
from nrf2�/� mice showed significant dermal edema and
necrosis in the epidermis 4 days after irradiation with UVB
at a dose of 200 mJ cm�2, whereas the skin samples from
wild-type controls showed little change in the epidermis
(Figure 1c). Moreover, nrf2�/� mice showed more inflamma-
tory infiltrates of lymphoid cells and vasodilatation in the
dermis (Figure 1c).

UVB irradiation induced more prominent sunburn cell and
TUNEL-positive epidermal cell formation in nrf2�/� mice

Biopsy specimens were taken from the ears of nrf2�/� and
wild-type mice at 36 hours after irradiation with UVB at a
dose of 100 mJ cm�2. The number of sunburn cells (SBCs)
recognized within three independent visual fields with the
same magnification (�400) was counted in sections stained
with hematoxylin and eosin. UVB irradiation significantly
enhanced SBC formation in the epidermis of nrf2�/� mice
(17.0±3.9 per field) as compared with wild-type controls
(5.0±1.7 per field) (Figure 2a and b). Similarly, the number of
TUNEL-positive cells in nrf2�/� mice was almost fivefold
greater than that in wild-type controls (Figure 3a and b).

UVB irradiation increased 8-OHdG-positive epidermal cell
formation in nrf2�/� mice

8-Hydroxy-20-deoxyguanosine (8-OHdG), a sensitive marker
of oxidative DNA damage (Yarborough et al., 1996), can be
generated via a variety of agents such as chemicals,
X-irradiation, and exposure to UV and visible light in the
presence of a photosensitizer. UVB exposure has been
reported to increase 8-OHdG formation in epidermal cells
(Hattori et al., 1996). We examined 8-OHdG formation in
epidermal cells of nrf2�/� and wild-type mice 4 hours after
irradiation with UVB at a dose of 100 mJ cm�2. The nrf2�/�
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mice showed a significant increase in formation of 8-OHdG-
positive cells in the epidermis (Figures 4a and b), whereas
there were no apparent differences in CPD or (6–4) PD
formation between wild-type and nrf2�/� mice (Figure 4c).

These results indicate that the Nrf2–Keap1 pathway sup-
presses oxidative DNA damage on UVB irradiation and has
no effect on the formation of CPD or (6–4) PD, which are
produced directly by UVB irradiation.

Skin carcinogenesis did not differ significantly between chronic
UVB-irradiated wild-type and nrf2�/� mice

To evaluate the effects of Nrf2 on UVB-induced skin
carcinogenesis, the shaved backs of wild-type and nrf2�/�

mice were irradiated with UVB at a dose of 300 mJ cm�2

three times a week for 36 weeks, and the number of tumors
developing each week was counted. There were no
significant differences between wild-type and nrf2�/� mice
in either the mean number of tumors per animal (Figure 5b) or
in the onset of tumors (Figure 5c). Histological examination
with hematoxylin and eosin staining indicated that all
malignant tumors that developed in these mice were
spindle-shaped tumors (Figure 5a, middle panels), and
immunohistochemical staining showed that the spindle cells
were positive for cytokeratin (Figure 5a, lower panels) but
negative for vimentin (data not shown). Thus, we diagnosed
these tumors as spindle-cell carcinomas.

DISCUSSION
UV radiation is the major environmental cause of skin
damage. UVB radiation is the main cause of sunburn and is
probably the most carcinogenic component of sunlight (de
Gruijl et al., 1993). As exposure of skin to UVB results in an
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Figure 1. Enhanced photosensitivity in nrf2-deficient mice. (a) The macroscopic appearance of the ears in sham-irradiated wild-type and nrf2�/� mice is

shown as control (day 0). The macroscopic and dermatoscopic appearance of the ears at 1 (day 1), 2 (day 2), 4 (day 4), or 7 days (day 7) after UVB irradiation

at a dose of 200 mJ cm�2 were compared between wild-type (left panels) and nrf2�/� mice (right panels). (b) nrf2�/� mice developed stronger and longer

lasting edema after UVB irradiation. The ears of the mice were exposed to UVB and ear thickness was measured immediately before and 1, 2, 4, 7, 9, 11, and

14 days after irradiation. Data are expressed as mean intensity (mm) of ear thickness (±SD) in eight mice per group. (c) UVB irradiation induced more

prominent histological changes in nrf2�/� mice than in wild-type controls. Skin samples were taken 4 days after UVB irradiation. The nrf2�/� mice showed

epidermal necrosis, dermal edema, and inflammatory changes, whereas wild-type controls showed few changes (hematoxylin and eosin staining, � 400).
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Figure 2. Enhanced SBC formation after UVB irradiation in nrf2-deficient

mice. (a) Biopsy specimens were taken from the ears of nrf2�/� and wild-type

mice 36 hours after UVB irradiation at a dose of 100 mJ cm�2, and stained

with hematoxylin and eosin. The SBCs in the epidermis are indicated by

arrows. Bar¼ 50 mm. (b) The numbers of SBCs recognized within three

independent visual fields with the same magnification (�400) were counted.

Data are expressed as mean number of SBCs±SD per field.
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increase in ROS generation, which contributes to several
pathological conditions including acute sunburn reaction and
chronic photocarcinogenesis, scavenging of ROS generated
by exposure to UVB may protect the skin from these acute
and chronic adverse effects. The Nrf2–Keap1 pathway is a
system that plays a key role in the coordinated transcriptional
induction of various antioxidant-metabolizing enzymes,
which neutralize the ROS. Therefore, we postulated that
Nrf2 would have attenuating effects on acute and chronic
cutaneous reactions to UV irradiation, and we reported
recently that the Nrf2–Keap1 pathway protected dermal
fibroblasts from UVA irradiation-induced apoptosis In Vitro
(Hirota et al., 2005). In this study, we investigated the role of
the Nrf2–Keap1 pathway in the acute and chronic cutaneous
responses to UVB In Vivo using nrf2�/� mice.

First, we found that a single dose of UVB irradiation
induced stronger and longer lasting sunburn reaction in nrf2�/�

mice than in wild-type controls. This result indicated that
Nrf2 is involved in attenuation of acute inflammatory
reactions in the skin. Although it is still unclear how oxidative
stress provoked by UV irradiation exacerbates inflammatory
reactions, antioxidants have been shown to suppress
UV-induced activation of mitogen-activated protein kinase,
leading to AP-1 and NF-kB activation (Ichihashi et al.,
2003; Li and Nel, 2006). The Nrf2–Keap1 pathway may
contribute to attenuation of acute inflammatory reactions
by increasing cellular antioxidant levels and resulting in
inhibition of AP-1 and NF-kB pathways, transcription factors
involved in the activation of inflammatory processes.

Histological changes, including epidermal SBC formation
and TUNEL-positive apoptotic cell formation after UVB
radiation, were more prominent in nrf2�/� mice than in
wild-type controls. Recent studies indicated that nrf2-null
mutant cells are prone to apoptosis induced by H2O2

stimulation (Lee et al., 2003a). Similarly, neurons of nrf2�/�

mice are sensitive to mitochondrial toxin-induced apoptosis
(Calkins et al., 2005). Overexpression of Nrf2 was shown to
protect the cells from Fas-induced apoptosis (Kotlo et al.,
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at a dose of 100 mJ cm�2, and examined for apoptotic nuclei by TUNEL
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Figure 4. Enhanced 8-OHdG-positive epidermal cell formation in nrf2�/�

mice, whereas no apparent differences in CPD or (6–4) PD formation

between wild-type and nrf2-deficient mice. (a) 8-OHdG immunostaining of

biopsy specimens from the ears of nrf2�/� and wild-type mice at 4 hours after

UVB irradiation at a dose of 100 mJ cm�2. The nuclei of 8-OHdG-positive

cells in the epidermis were stained violet. (b) nrf2�/� mice showed a

statistically significant increase in the number of 8-OHdG-positive cells as

compared with wild-type controls. Bar¼ 50 mm. (c) CPD (upper panels) and

(6–4) PD (lower panels) immunofluorescence staining of biopsy specimen

from the ears of nrf2�/� and wild-type mice at 0 hour (control), 4, and
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represents the basement membrane zone. Bar¼ 50mm.
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2003). It has been reported that Fas-induced apoptosis of
Jurkat T cells is accompanied by rapid and specific export of
glutathione from apoptotic cells (van den Dobbelsteen et al.,
1996), and conversely Nrf2 regulates the sensitivity of cells to
Fas-inducible apoptosis by affecting intracellular glutathione
levels (Morito et al., 2003). The results of oligonucleotide
microarray analyses have shown that nrf2�/� mice have
lower basal levels of expression of Nrf2 target genes than
wild-type controls (Thimmulappa et al., 2002). Catalase,
superoxide dismutase, and glutathione peroxidase, all of
which eliminate ROS, are also dependent on Nrf2 (Lee et al.,
2003b). Decreases in the levels of expression of antioxidant
enzymes and proteins may result in the increased suscept-
ibility to UVB irradiation seen in nrf2�/� mice.

Our immunohistochemical analysis revealed a significant
increase in the formation of 8-OHdG-positive cells in the
epidermis of nrf2�/� mice as compared with wild-type
controls at 4 hours after irradiation with UVB. As 8-OHdG
is widely recognized as a useful marker for estimation of
DNA damage produced by ROS (Nakae et al., 1995), and
8-OHdG has been reported to play an important role in
UV-related skin carcinogenesis (Nishigori et al., 2004;
Kunisada et al., 2005), we anticipated that nrf2�/� mice
would show increased susceptibility to UV-induced skin
carcinogenesis. However, there were no significant differ-
ences in skin carcinogenesis between wild-type and nrf2�/�

mice associated with chronic UVB irradiation of the skin.
Activation of the Nrf2–Keap1 pathway has been shown to
protect cells from apoptosis, and Nrf2 deficiency increases
the susceptibility of cells to apoptosis caused by ROS (Leung
et al., 2003; Hirota et al., 2005). Furthermore, recent studies
demonstrated that elevated Nrf2 activity may also help
cancer cells survive ROS-induced apoptosis and result in
the evolution of cancer (Hayes and McMahon, 2006;
Padmanabhan et al., 2006). That is, more prominent
accumulation of 8-OHdG in the DNA of nrf2�/� mice
accelerates carcinogenesis, whereas the increased suscepti-
bility to apoptosis may prevent carcinogenesis. Thus, the
lack of differences in UV-induced skin carcinogenesis
between wild-type and nrf2�/� mice may be due to the
above two antagonistic effects. A recent study indicated that
p53, which is a key molecule in UV-induced apoptosis,
suppresses the Nrf2-dependent transcription of antioxidant
response genes (Faraonio et al., 2006). Nrf2 has also been
reported to be an important protective factor for chemical
carcinogenesis, but our results indicated no alteration of
UVB-induced skin carcinogenesis in nrf2 gene deficiency.
This discrepancy may have been due to differences in
the carcinogens, that is, UV and chemical carcinogens. UV
seems to induce apoptosis of exposed cells more strongly
than chemical carcinogens. As Nrf2 deficiency has been
shown to accelerate apoptosis of cells, the cancer-promoting
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effect of Nrf2 deficiency may be antagonized by its apoptosis-
promoting effect much more effectively in photocarcino-
genesis than in chemocarcinogenesis. The findings of this
study indicate that there is a complicated and subtle
balance between factors that promote and prevent photo-
carcinogenesis.

MATERIALS AND METHODS
Mice

Wild-type BALB/c mice were purchased from Charles River Breeding

Laboratories Japan (Yokohama, Japan). Nrf2-null mutant mice in the

BALB/c background were established by specific deletion of the nrf2

gene segment (Itoh et al., 1997). All mice used in this study were

maintained in our animal facilities under specific pathogen-free

conditions. All experiments were approved by the Institutional Review

Board and performed in accordance with the Guide for the Care and

Use of Laboratory Animals of the University of Tsukuba, Japan.

UVB irradiation regime

Ten-week-old female wild-type or nrf2-null mutant mice were

exposed to a single dose of 100 or 200 mJ cm�2 of UVB irradiation

using FL20SE lamps (Toshiba, Tokyo, Japan), with emission at

280–320 nm and a peak at 312.5 nm. The dose of UVB irradiation

was measured by a radiometer (UVR-305/365; Toshiba). In UV

carcinogenesis experiments, the shaved backs of wild-type and nrf2-

null mutant mice were irradiated with UVB at a dose of 300 mJ cm�2

three times a week. Each group consisted of eight mice.

Dermatoscopy of the sunburn lesions

Dermatoscopic images from each lesion were obtained using a lens

(Dermatoscope Delta 20; Heine Optotechnik, Herrsching, Germany)

mounted on a digital camera (Nikon, Tokyo, Japan).

Ear swelling response to UVB irradiation

The dorsal side of the ear of wild-type or nrf2-null mutant mice was

irradiated with UVB at a dose of 150 mJ cm�2. Ear thickness was

measured immediately before and 1, 2, 4, 7, 9, 11, and 14 days after

treatment using a dial gauge (Shinwa Rules, Tokyo, Japan). Data are

expressed as the mean thickness±SD of 10 mice.

Histological examination and SBC counting

The dorsal sides of the ears or the shaved back of mice were exposed

to 100 or 200 mJ cm�2 of UVB. Biopsy specimens were taken

36 hours after irradiation and stained with hematoxylin and eosin.

The number of SBCs in the interfollicular epidermis was counted in

three different specimens, and the average number of SBCs per

� 200 microscopic field was analyzed statistically.

TUNEL assay

The dorsal sides of the ears or shaved back area of mice were

exposed to UVB at a dose of 100 mJ cm�2, and biopsy specimens

were taken 36 hours after irradiation. TUNEL assays were performed

with a commercial kit in accordance with the manufacturer’s

protocol (Promega, Madison, WI).

Immunohistochemistry

For detection of 8-OHdG in mouse skin, specimens were collected

4 hours after UVB irradiation at a dose of 100 mJ cm�2, fixed in 10%

neutralized formalin, and embedded in paraffin. Sections were cut,

deparaffinized, dehydrated, and washed in phosphate-buffered

saline. Sections were microwaved in 10 mmol l�1 citrate buffer

(pH 6) for 5 minutes. After blocking endogenous peroxidase activity,

nonspecific binding sites were blocked by incubation of the sections

with protein blocking serum (Dako, Kyoto, Japan). Sections were

incubated for 1 hour at 40 1C with a primary mouse monoclonal

antibody against 8-OHdG, N45.1 (Hattori et al., 1996). After

washing with phosphate-buffered saline, phosphate-buffered saline,

with biotin-conjugated anti-mouse IgG (Dako) at room temperature,

followed by incubation for 15 minutes with streptavidin-conjugated

alkaline phosphatase (Vector Laboratories, Burlingame, CA), and

finally mounted in mounting medium (Dako). Substrate for alkaline

phosphatase was obtained from Vector Laboratories.

Immunofluorescence staining for CPD and 6–4 PD

For detection of CPD and (6–4) PD in mouse skin, skin specimens

were collected 24 hours after UVB irradiation at a dose of

100 mJ cm�2, embedded in Tissue-Tek II OCT compound (Sakura

Finetek, Torrance, CA), and frozen in liquid nitrogen. Sections 5-mm

thick were cut on a cryostat and placed on uncoated slides. These

sections were air-dried and DNA was denatured by treatment with

0.07 N NaOH in 70% ethanol for 4 minutes. For staining, slides were

incubated with a mouse monoclonal antibody against CPD or (6–4)

PD for 30 minutes, followed by washing with phosphate-buffered

saline. Both antibodies were provided by Dr Tsukasa Matsunaga

(Kanazawa University, Kanazawa, Japan). Slides were incubated

with FITC-conjugated secondary antibody (sc-2012; Santa Cruz

Biotechnology, Santa Cruz, CA), mounted, and then analyzed by

fluorescence microscopy (Nikon).

Observation and measurement of cumulative tumor incidence

After chronic UVB exposure, we observed tumor formation until all

mice developed skin tumors. The number of tumors with diameters

larger than 2 mm was counted, but the tumors in mice that died

during the experiment were not included. All mice were killed at the

final observation, and all skin tumors were excised and examined

histologically with hematoxylin and eosin staining.
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