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Abstract 

At present, modeling of the plastic response of porous solids is done using stress-based plastic potentials. To gain 
understanding of the combined effects of all invariants for general three-dimensional loadings, a strain-rate based 
approach appears more appropriate. In this paper, for the first time strain rate-based potentials for porous solids with 
Tresca and von Mises matrices are obtained. The dilatational response is investigated for general 3-D conditions for 
both compressive and tensile states using rigorous upscaling methods. It is demonstrated that the presence of voids 
induces dependence on all invariants, the noteworthy result being the key role played by the plastic flow of the 
matrix on the dilatational response. If the matrix obeys the von Mises criterion, the shape of the cross-sections of the 
porous solid with the octahedral plane deviates slightly from a circle, and changes very little as the absolute value of 
the mean strain rate increases. However, if the matrix behavior is described by Tresca's criterion, the shape of the 
cross-sections evolves from a regular hexagon to a smooth triangle with rounded corners. Furthermore, it is revealed 
that the couplings between invariants are very specific and depend strongly on the particularities of the plastic flow 
of the matrix. 
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1. Introduction 

Using the plastic work equivalence principle, Ziegler (1977) has shown that a strain-rate potential can be 
associated to any convex stress-potential. Thus, to describe plastic flow a strain-rate potential (SRP) can be used 
instead of a stress-based potential. Up to now, SRPs have been developed only for fully-dense materials. However, 
all engineering materials contain defects (cracks, voids). To capture the characteristics of the plastic flow of porous 
metallic materials stress-based potentials have been developed. Most of these models are based on the hypothesis 
that the matrix obeys von Mises yield criterion (e.g. Gurson, 1977). Recently, using micromechanical considerations 
Cazacu et al. (2013, 2014) developed axisymmetric analytical yield criteria for porous materials with von Mises and 
Tresca matrix, respectively. These stress-based models account for the combined effects of the sign of the mean 
stress and the third-invariant of the stress deviator. Most importantly, it was explained the role of the J3 on void 
evolution. However, to gain understanding of the combined effects of all invariants for general three-dimensional 
loadings, a strain-rate based approach appears more appropriate. In this paper, for the first time three-dimensional 
(3-D) strain-rate potentials for porous solids with von Mises and Tresca matrix are obtained and their properties 
investigated for both compressive and tensile loadings. After a brief presentation of the modeling framework, we 
present the strain-rate potentials for porous von Mises and Tresca solids (Section 3). To fully assess the properties of 
the respective SRPs, the shape of their cross-sections with the octahedral plane are analyzed. For a porous solid with 
von Mises matrix, the noteworthy result is that the shape of the cross-section changes little with the mean strain rate 
and the most pronounced influence of J3 occurs for axisymmetric states. On the other hand, if the matrix obeys 
Tresca's criterion, the shapes of the cross-section of the SRP change dramatically, evolving from a hexagon to a 
triangle with rounded   

 

2. Modeling framework 

The kinematic homogenization approach of Hill-Mandel offers a rigorous framework for the development of 
plastic potentials for porous solids. If the matrix is rigid-plastic, there exists a strain-rate potential Π , fD  such 
that the stress at any point in the porous solid is given by: 

 
 = Π D D, f /  with 

Ω
Π = inf

K ( )
, f

d D
D d , (1) 

where  is a representative volume element (RVE) composed of the matrix and a traction-free void, while < > 
denotes the average value over ; f is the porosity, (d) is the matrix’s plastic dissipation with d being the local 
plastic strain rate tensor. Minimization is done over K(D), which is the set of incompressible velocity fields 
compatible with homogeneous strain-rate boundary conditions. In this paper, the limit analysis is conducted for 
general 3-D conditions for both tensile and compressive states, i.e., 

1 1 1 2 2 2 3 3 3D D + D ,D e e e e e e   (2) 

with D1, D2, D3 being the eigenvalues (unordered) of D and (e1, e2, e3) its eigenvectors. We further assume that 
the voids are spherical and randomly distributed in the matrix. For this void geometry an appropriate RVE is a 
hollow sphere. Let a denote its inner radius and b its outer radius. We use the trial velocity field v, deduced by Rice 
and Tracey (1969) ,  

3

m r 1 1 1 2 2 2 3 3 32

b
D D + D' + D' ,

r
v e e e e e e e x  (3) 

where x is the Cartesian position vector, er is the radial unit vector, and r is the radial coordinate. 
For the given void geometry and distribution, the strain-rate potential of the porous solid with either Tresca or von 
Mises matrix ought to be isotropic. It follows that (D, f ) should depend on the stress tensor D only through its 
invariants, i.e. Dm = (D1+D2+D3)/3 and the second and third-invariant of D', the deviator of D, respectively, i.e., 
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m 2D 3DΠ f Π D J J, , , ,D  with 2 2 2

2D 1 2 3J = (D +D +D ) / 2 , 3D 1 2 3J = D  D  D ,   (4) 

and i i mD D D , i = 1...3. Of particular interest is the analysis of the shape of the cross-sections of either SRP 
with the deviatoric planes Dm= constant. For this purpose, it is convenient to introduce the system (ex, ey, ez), which 
are related to the principal frame (e1, e2, e3) by the following relations: 

1 2 3 1 2 3 1 2    23 2 6e e e e e e e e e e ex y z, ,/ / / . (5) 

Thus, any point P( D1, D2, D3) belonging to the intersection of the SRP locus with any deviatoric plane is 
characterized by two polar-type coordinates, (R, ):  

2 2 2
1 2 3 2D z y 3 2 1R OP = D +D +D 2J , tan γ 3D / D D / D - D .  (6) 

For an isotropic porous solid, it is sufficient to determine the shape of the cross-section, i.e. R=R( ), only in the 
sector -π/6 γ π/6 , the shape in all the other sectors being obtained by symmetry arguments. In particular, the 

sub-sector -π/6 γ 0 corresponds to states on the SRP for which ( 2 3 1D 0 D 0  D 0, , ) so the third-invariant

3DJ > 0 while the sub-sector 0 γ π/6  corresponds to states for which 2 3 1D 0 D 0 D 0, ,  so 3DJ < 0. 
Axisymmetric states correspond to either = - /6 or = /6.  

3. Strain-rate potentials for porous solids with von Mises and Tresca matrices containing spherical voids 

3.1. 3-D strain-rate potential for a porous solid with von Mises matrix 

An upper-bound estimate of the exact plastic potential of porous solid with von Mises matrix is: 
6 32 2 2 2T T

Mises m m i

Ω

2
Π 2 / 3 : dV = R /6 + D b/r  4 R D b/r F γ, x /(r / 6) dV   

V V
D d d (7) 

where 2 2 2 2 2 2 2 2

1 2 3 2 1 3 1 2
F γ, x , x , x 3 cos γ 2 sin γ,x x x x x 3V 4πb /3 , and / 2d v vT  with v given 

by Eq. (3). Very recently Cazacu et al. (2013) have shown that for axisymmetric states the above integral can be 
calculated explicitly, without making the approximations considered by Gurson (1977). However, for general 3-D 
states, the integration can be done only numerically. To verify the accuracy of the numerical procedure, for 
axisymmetric loadings, the integral estimated numerically was compared to the exact results and the differences are 
negligible (less than 10-7). As an example, in Fig. 1(a) is shown a 3-D isosurface of the von Mises porous solid for a 
porosity f = 1% for both tensile (Dm = tr (D) > 0) and compressive (Dm < 0) states. Specifically, this convex surface 
contains all the points (Dm, R,  that produce the same plastic dissipation 3

MisesΠ , f 9.21 10D  for the porous 
solid. First, let us note that the presence of voids induces a strong influence of the mean strain rate Dm on the plastic 
dissipation, the SRP for f =1% is closed on the hydrostatic axis. The cross-sections of the 3-D isosurface with 
several deviatoric planes Dm = constant are shown in Fig.1(b). While the intersection with the plane Dm = 0, is a 
circle (von Mises behavior), the cross-sections with all the other deviatoric planes Dm = constant deviate slightly 
from a circle. It is worth noting the centro-symmetry of the SRP (Fig. 1(c)) and that the most influence of the 
parameter or J3D) occurs for axisymmetric states.  

3.2. Three-dimensional strain-rate potential for a porous solid with von Tresca matrix  

An upper-bound estimate of the overall plastic potential of porous solid with Tresca matrix is: 

T
Tresca T 1 2 3Π , f σ d + d + d  dV  ,

V
D   (8) 

where d1, d2, d3 are the principal values (unordered) of d. Note that a major difficulty in obtaining the SRP is that 
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Tresca(D, f) depends on the sign of each of the principal values of d. This is a direct consequence of the Tresca's 
criterion being dependent on the third-invariant of the stress deviator. Only for axisymmetric loadings, the signs of 
d1, d2, d3 can be determined analytically. For these loadings, very recently Cazacu et al. (2014) showed that the 
integral of Eq. (8) could be calculated explicitly, without any approximation. For general 3-D states, Tresca(D,f) can 
be estimated only numerically. As an example, in Fig.2(a) is shown a normalized ( T = 1) 3-D isosurface Tresca(D,f) 
= 9.21 10-3  of the porous Tresca solid corresponding to a porosity f = 1% for states characterized by (Dm > 0) and 
(Dm< 0), respectively. Specifically, this convex surface contains all states (Dm, R,  that produce the same plastic 
dissipation Tresca(D,f)= 9.21 10-3 for the porous solid. It is very interesting to note the very strong influence of Dm 
on the plastic behavior of the porous Tresca material, the shape of the cross-sections changing drastically with the 
level of Dm. Due to the presence of voids, all cross-sections are smoothed out, their shape evolving from a hexagon 
(Dm = 0) to a triangle with rounded corners (the innermost cross-section corresponding to Dm = 9.10-4s-1). Note also 
that the SRP is centro-symmetric. i.e. Tresca (Dm, R, f Tresca ( -Dm, R, - f To illustrate this remarkable 
property, in Fig. 2(c) are shown the cross-sections of the 3-D isosurface with the planes Dm = 7 10-4 s-1  and Dm = 9 
10-4 s-1, respectively (interrupted lines) as well as these with the planes Dm = -7 10-4 s-1  and Dm = -9 10-4 s-1, 
respectively (solid lines).  

 

 

 
 

(a) (b) (c) 

Fig. 1. (a) Representation of the 3-D isosurface of the porous Mises SRP for both tensile and compressive states; (b). Cross-sections with 
deviatoric planes Dm =constant >0, outer one corresponds to Dm=0 and inner one to Dm=0.9 10-3 s-1; (c) Cross-sections with Dm = 6 10-4 s-1 

(interrupted line) and Dm = -6 10-4 s-1 (solid line). 

 

   
(a) (b) (c) 

Fig. 2. (a) Representation of the 3D isosurface of the porous Tresca SRP . (b). Cross-sections with deviatoric planes Dm =constant >0 (c) Cross- 
with Dm = 7 10-4 s-1, Dm = 9 10-4 s-1 (interrupted line) and Dm =- 7 10-4 s-1 , Dm =- 9 10-4 s-1 (solid line) showing the centro-symmetry of the SRP. 
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The symmetry of all cross-sections with respect to the origin is clearly seen. For example, for states 
corresponding to J3D > 0 ( - /6< 0 ) to produce the same plastic dissipation, R (or J2D) must be higher for 
compressive states (Dm<0 -interrupted line) than for tensile states (Dm>0-solid line). The reverse holds true for 
loadings corresponding to J3D< 0 (0 < /6). 

3.3. Discussion on the importance of the plastic flow of the matrix on the dilatational response  

The most widely used plastic potential for isotropic porous solids containing randomly distributed spherical voids 
was proposed by Gurson (1977). In his analysis, Gurson (1977) assumed that the coupled effects between the mean 
strain rate Dm and D' (i.e. the term mD R(γ)  in Eq. (7)) can be neglected, and the corresponding SRP is : 
 

2 2 2 2 2 2 2 2
m m m m

Gurson m 2 2
m m m

1+ 6 D / R f + 6 D / R D /R 6 + f + 6 D / R1
, f 2 D  + ln

fD /R 6 D /R 6 + 1+ 6 D / R
 D       (9) 

Note that Gurson , fD  is the exact dual of the classic stress-based potential of Gurson (1977). For axisymmetric 
states, Cazacu et al. (2014) have shown that if the same simplifying hypothesis considered by Gurson (1977) is 
made when evaluating the local plastic dissipation associated to Tresca's criterion, the truncated expression of the 
SRP at which one arrives coincides with that given by Eq. (9). This means that neglecting couplings between the 
mean strain rate and D', the specificities of the plastic flow of the matrix are erased. In Fig.3 we compare the SRP 
for a porous Mises material obtained by Gurson (i.e. Eq. (9)) with the SRP for a porous Mises material given by Eq. 
(7), and the SRP for a porous Tresca material given by Eq. (8 ). Since Gurson's SRP was obtained by truncating the 
overall plastic dissipation, it is necessarily interior to the Mises(D,f) (Eq. (7)). Irrespective of the level of Dm, 
Tresca's SRP is exterior to the surfaces corresponding to von Mises matrix. This means that Gurson's SRP is the 
most dissipative of the three SRP's, since in order to reach the same value of the plastic dissipation, the norm of the 
loading, R( ), is lower than for a porous Mises (Eq. (7)) or porous Tresca (Eq. (8)). On the other hand, Tresca's SRP 
is the least dissipative potential. The noteworthy result revealed is the very strong influence of the plastic flow of the 
matrix on the response of a porous solid. If the matrix obeys the von Mises criterion the shape of the cross-sections 
of the porous solid changes very little as Dm increases, but if the matrix behavior is described by Tresca's criterion 
the shape of the cross-section evolves from a hexagon to a triangle with rounded corners. The difference between 
the response of a porous solid with von Mises matrix and that with a Tresca matrix becomes more important with 
increasing Dm, leading to a strong difference in void evolution (see the estimate of the differences in the rates of 
void growth for very high hydrostatic loadings reported by Rice and Tracey, 1969). 

 

   
(a) (b) (c) 

Fig. 3. (a) Comparison between the shapes of the cross-sections of Gurson's SRP (interrupted line), the exact SRP for a porous von Mises 
material (blue solid line), and the SRP for a porous Tresca material (red solid line) for: (a) Dm= 2 10-4 s-1; (b) Dm= 6 10-4 s-1; (c) Dm= 8 10-4 s-1. 
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4. Conclusions 

The aim of this paper was to investigate the properties of the 3-D plastic potentials for porous solids with Tresca 
and von Mises matrices, respectively. It has been shown that if the matrix is described by the von Mises criterion: 
 The plastic response depends on all three invariants of the strain-rate tensor D.  
 The corresponding 3-D surface is smooth and symmetric with respect to the origin. 
 Its cross-sections with the deviatoric planes Dm = constant ( 0) have three-fold symmetry with respect to the 

origin, and deviate slightly from a circle.The strongest effect of the third-invariant is for axisymmetric states i.e. 
between R( = /6) and R( = - /6). 

Therefore, the most influence of the parameter or J3D) on void evolution occurs for axisymmetric states. It is very 
worth noting that the same conclusions concerning the influence of the third-invariant on void evolution were drawn 
by Rice and Tracey (1969) for the case of large hydrostatic stresses. 

 
It has been shown that if the plastic behavior of the matrix is described by Tresca's criterion: 

 The 3-D surface is centro-symmetric and displays a strong coupling between all invariants. 
 The shapes of the cross-sections with deviatoric planes are strongly dependent on the level of Dm. As the 

absolute value of Dm increases, the shape changes from a regular hexagon (Dm = 0) to a triangle with rounded 
corners.  

 For Dm=0 (i.e. Tresca behavior) the maximum of R( ) is at = 0 (J3D =0), the minima being for axisymmetric 
states. For Dm >0, the maximum of R( ) is not at = 0 anymore , but shifts toward the axisymmetric case 
corresponding to  =- /6 (D1 = D3< D2 and J3D >0 ); on the other hand, the minimum of R( ) is always obtained 
for  = /6 (axisymmetric state with J3D< 0). The reverse holds true for Dm < 0. 

 While in the case of the porous Mises solid, the most pronounced difference in the response is between the 
axisymmetric states, for a porous Tresca solid no general conclusions can be drawn because the specific 
expression of R(  depends both on the level of porosity and the level of Dm . 

 
The strain-rate potentials for porous solids with Tresca and von Mises matrices obtained in this work were 

compared to the exact conjugate in the strain-rate space of the classic Gurson (1977) stress-based potential. It was 
shown that only for three states, all three strain-rate potentials coincide. These states are: purely hydrostatic loading 
(D' = 0); and axisymmetric purely deviatoric states (two principal values of D equal and Dm= 0). In contrast to the 
exact porous von Mises SRP (Eq. (7)), the Gurson's SRP does not involve any dependence on J3D. Therefore, its 
cross-sections with any deviatoric plane (irrespective of Dm or the porosity level) is always a circle. The exact SRP 
for a porous von Mises solid and for a porous Tresca solid (Eq. (8)) are centro-symmetric i.e. they are invariant to 
the transformation (Dm, R, ) → (-Dm, R,- ). In contrast, Gurson's SRP involves only dependence of Dm and J2D (or 
R), it is insensitive to the sign of the mean strain rate (compressive or tensile states). Most importantly, irrespective 
of the level of Dm , Gurson's SRP is the most dissipative of the three SRP's, since in order to reach the same value of 
the plastic dissipation, the norm of the loading, R( ), is lower than that of the exact porous Mises or the porous 
Tresca SRP. On the other hand, Tresca's SRP is the least dissipative potential. 
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