
ELSEVIER 

Available online at www.sciencedirect.corn 

8CIENCI~DIRECT e 
Applied Mathematics Letters 17 (2004) 697-701 

Applied 
Mathematics 
Letters 

www.elsevier, com/locate/aml 

Minimis ing Stop and Go Waves 
to Optimise  Traffic Flow 

R.  M.  COLOMBO AND A.  GROLI 
Depar tment  of Mathematics,  Brescia University 

25133 Brescia, Italy 

(Received June 2003; accepted July 2003) 

Communicated by D. Serre 

A b s t r a c t - - M o t i v a t e d  by the problem of minimising the "stop and go" phenomenon in traffic 
flow, we consider a nonstandard problem of calculus of variations. Given a system of hyperbolic 
conservation laws, we introduce an integral functional where the integrating measure depends on the 
space derivative of the solution to the conservation law. An existence result for initial and, when 
present, boundary data that minimise this functional is proved. @ 2004 Elsevier Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

The classical Lighthill-Whitham [1] and Richards [2] model, like other traffic flow models [3-5], 
is based on conservation laws, i.e., on a system of first-order partial differential equations of the 
type 

cOtu + 0~[f(u)] = 0 ,  (t,z) E [0,+oo[ × R, 
~(0, 5) : a(~),  x c •, (1.1) 

where the flow f : ~2 ~-~ R ~' is smooth and ~2 _C R n, n _> 1. Both in single [3,5,6] and many [4] 
population models, the components of u are related to car densities and (functions of) the car 
speeds. Under reasonable assumptions, the Cauchy problem for (1.1) generates a Lipschitzian 
solution operator, namely, the standard Riemann semigroup (SRS), see [7]. Similarly, also the 
initial boundary vaiue problem (IBVP) with fixed boundary 

cOtu+O~[f(u)] = 0 ,  (t,x) e [0,÷oo[ x [0, +oo[, 

u(0, z) : ~2(x), x E [0, +oo[, (1.2) 

~(t, 0) : 5"(0, t e [0, +oo[, 

is well posed, its solution t ~ 7)t(g, 5") being an L<Lipschitz function of the initial data g and 
the boundary data 5., see [8-10]. 
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A reasonable criterion to optimise the traffic flow is to minimise the oscillations in the compo- 
nents of u. This minimisation leads to a more fluent traffic, reducing in particular phenomena 
such as the "stop and go" and cluster formation, see [11, Chapter 8;12]. Strictly related problems 
are considered in the current physical literature, see [13] and the references therein. Note that a 
more fluent traffic flow reasonably reduces both the probability of accidents and the production 

of pollution. 
We thus consider the problem of choosing ~ in (1.1) and (t ,  ~) in (1.2) so that  the functional 

/0T  J ( t )  = p(t, x) diOde(t, St~)l dr, in case (1.1), 
(1.3) 

T 
Y(~t,~t) = / o  /~  p( t 'x )  dlO~(t '7)t(~'~t)) ldt '  in case (1.2), 

attains a minimum over a suitable set :D of admissible data. Above, p is a nonnegative lower 
semicontinuous weight and • is a Lipschitz function. Under standard assumptions on f ,  i f t  and 
are of bounded total variation, then so is the map x ~-+ ~(t,7)t(e,~t)(x)) and its x-derivative 
O ~ ( t ,  Pt(~t,~)) is a Radon measure. The measure [cg~(t,7)t(~,~))] is the total variation of 
O ~ ( t ,  7)t(t, ~)), see [14, Chapter 6] for the basic measure theoretic definitions. 

The well posedness of systems of hyperbolic conservation laws was recently established, see [7] 
and the references therein. Since then, the problems of controlling and optimising (1.1) could be 
considered but were given apparently little attention in the literature. In [15,16], characterisations 
of the attainable set are given, while a necessary condition for the minima of some integral 
functional is derived in [17]. The present optimisation problem may not take advantage of the 

above cited references, due to the particular form of Y in (1.3). 
In spite of this well posedness, as is well known, S in (1.1) and 7) in (1.2) turn out to be in 

general not differentiable, see [18,19]. This additional difficulty in the minimisation of J can be 
dealt with using an ad hoc differential structure, as in [17]. Here we follow a different approach 

exploiting compactness and lower semicontinuity. 

2. R E S U L T  

Assume that  (1.1) generates a SRS, see [7], i.e., a map S : D  × [0, +oz[ ~ l)  such that  there 

exist two constants 5 and L with 

1. l} ~_ {u e LI(]~):  TV(u) _< 5}; 
2. S is a semigroup: Sou = u and StSsu = St+su; 
3. S is Lipschitzian: IISt, u' - S~UI[L1 <_ L . ([lu' - UllL~ ÷ It' - tl); 
4. if u is piecewise constant, for t small the function Stu locally coincides with the solutions 

to the Riemann problems at the points of jumps of u. 

Similarly, the IBVP (1.2) generates a solution operator 7 ) : 1) × [0, +oc[ ~-+ L 1 N BV,  see [8,10], 

such that  there exist constants 5 and L with 

1. D D {( t ,~)  e LI(]R)2 : WV(t) + lit(0+) -~ (0+) [ I  + TV(g) < 5}; 
2. 7) is Lipschitzian: Ilu'(t', ") - u " ( t " ,  ")[]L~ <- n .  ( H i ' - t " [ [ L 1  + Ilu'--~"IIL~ + I t ' -  t"l); 
3. if t and ~ are piecewise constant, then 7)t(t, ~) locally coincides with the solution to the 

Riemann problems at the points of jumps of t and at the boundary. 

(Here, the semigroup property is lost since (1.2) is not autonomous.) In both cases, the uniform 
continuity of S or 7) in L 1 allows us to assume that  l} is closed in L 1. Examples of usual 

assumptions that  ensure the well posedness of (1.1) or (1.2) are 

(A) D f  is strictly hyperbolic with each characteristic field either genuinely nonlinear or linearly 

degenerate, see [7,8] (and, in this case, 5 is sufficiently small), or 
(B) D f  is strictly hyperbolic with coinciding shock and rarefaction curves, see [10,20] (and, 

in this case, 5 need not be small). 
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In the case of the Cauchy problem, the recent result [21] allows us to remove from (A) the 
requirements on the characteristic fields. In case (1.2), the recent result [9] provides solutions 
in L ~ but  requiring tha t  all characteristic fields be genuinely nonlinear, which is usually not 
verified in traffic flow models. In both cases, (A) and (B) ensure also the existence of a constant H 
(dependent on 5) such tha t  

19 C_ {~z ELI: TV(u) _~ H } ,  in case (i.i), 
(2.1) 

ft(~,7~) E (L1)2 : TV(~) J-II~(0@)-~(0-~-)l I -[-TV(~) < H } ,  in case (1.2). 19 c_ 

In what  follows, T is fixed and strictly positive. Concerning the functional J in (1.3), we 
assume below tha t  the weight p : [0, T] x R --+ R is lower semicontinuous and nonnegative. The 
function 9 : [0, T] x R ~ ~ ]R is locally Lipschitzian in u, i.e., for every compact K C R ~, there 
exists a constant £K  such that  for all u ,u '  E K ,  ]~( t ,u ' )  - ~( t ,u) [  _< £ K "  [I u ' -  u[[~ .  If for all 
times t the map z ~ u(t,  cc) is in BV,  then also z ~ qs( t ,u( t , z ) )  belongs to BV.  By O~9(t ,u) 
we mean the measure obtained as weak z-derivative of z ~ 9 ( t , u ( t ,  z)) and ]O~( t ,  u)[ is its 
total  variation. The following technical lemma is of later use. 

LEMMA 2.1. Let # be a signed Radon measure and ~2 C R ~ be an open set. I f  p is nonnegative 
and lower semicontinuous, then 

fapd[#[  = sup { f a ~ d #  : ~ E C° (a ) ,  ,~] <_ p }  . (2.2) 

PaOOF. Note first that 

sup{£ d : 1~1 < p }  = s u p {  f a c p d #  : ~  ~ c ° ( a ) ,  [~[ _<p}.  

Hence, by [14, Theorem 6.19], (2.2) holds for all p E C° (9 ) ,  p _> 0. Suppose now that  p is merely 
lower semicontinuous and that  f a  P dt#] # 0, the case fa  P dl#] = 0 being trivial. The  inequality 

sup c co(a), _<p}_< fapdbl 
is immediate.  On the other side, there exists a sequence (Ph)hEN such that  Ph E C° (9 ) ,  Ph < Ph+l 
and l imh- .+~ph  = p. By the monotone convergence theorem, limh-~+oo faPh  dbl = fapdbl, 
Choose a positive M such tha t  M < fapd l# l .  For all sufficiently large h E N, it holds that  
faphd[#[ > M and using (2.2), we have 

M</aPhdbl=sup{fa~d~ : ~ ~ C°(a), '~1 -<Ph} 

sup{ fa~d~ :~c c°(a), ,~l-<p}, 

which is possible only if 

/ a p d l # I < s u p { f a ~ p d #  : ~ c C ° ( f t ) ,  ] 9 ]_<p} .  | 

THEOREM 2.2. Assume that under (A) or (t3), (1.1) generates a SRS  S : [0, +o~[ x 19 ~-~ 19 
satisfying (2.1). Let  T > 0, p : [0, T] x ~I ~-, IRI a nonnegative and lower semicontinuous function, 
while ¢ : [0, T] x R"  ~-, I[{ is locally Lipschitz in u. Define the functional g : 19 ~ • as in (1.3). 
Then, g admits  a min imum on 19. 

An entirely analogous result holds in the case of the IBVP. Here the minimisation can be 
achieved also in the case more suitable to traffic flow of the boundary  data  alone, for any given 
initial data. 
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THEOREM 2.3. Assume that under (A) or (B), (1.2) generates asolution operator P : [0, +oo[ x 1) 
LIN BV satisfying (2.1). Let T > 0, p : [0, T] xR ~-~ ]~ a nonnegative and 1owersemicontinuous 

function, while tI, : [0, T] x ~n ~_~ ]R is locally Lipschitz in u. Define the functional g : l )  --+ ~ as 

in (1.3). Then, J admits a min imum on 1). 

We prove below only Theorem 2.2, the other case being entirely analogous. 

PROOF OF THEOREM 2.2. By Lemma 2.1, we have 

// {i } J(~)  = sup ~( t ,x )d(O~(~( t ,&~t) ) )  : ~ E C ~° , I~ l  <- P dt 

T { I s u p  (fl ](p[ p}  
= f_ - 0~(~( t ,x ) )~( t ,  St~) dx:  E C ~ , _< dr. 

Yo 

(2.3) 

Consider a sequence us in B V ( ~ )  such that  Uh ~ ~ in LI(R) .  Since St (us)  --+ S t ( ~ ) i n  LI(I~), 
then qY(t,&Uh) ~ ~(t ,  St~) in LI(]R). Therefore, for all ~ E C ~  and t E [0, T], the map 

~ - i a~ (~(t, x)) ~(t ,  &~) dx (2.4) 

is continuous in L 1, 
fixed ~, by (2.1) the 
obtain 

hence, the integrand in (2.3) is lower semicontinuous. Moreover, for all 
map (2.4) is bounded from below. Now, use Fatou's lemma and (2.3) to 

lirn inf Y(uh) k 
h~-kc~ 

> 

J0 l iminfsup  - Ox(~( t , x ) )~( t ,  S t u h ) d x : v E C ~ ,  I~1 < P  dt 
h.--,+oo 

} i sup - Ox(~( t , x ) )¢ ( t ,  S t ~ t ) d x : ~ e C ~ ,  [~[_<p dt 

J(e, 

proving the sequential lower semicontinuity of Y. 
By (2.1), 1) is a closed subset of the Ll -compact  set {u E LI (R)  : TV(u)  < M},  hence, it is 

compact in L 1. | 

3. A P P L I C A T I O N  

In the case of the classical Lighthill-Whitham [1] and Richards [2] model, n = 1, u = p is the 
car density and f (p )  = p .  v(p) is the ear flow. Recently, more refined models were introduced. 
For example, [3] provides a model where n = 2 and u = (p, pv + pp(p)), v being the traffic speed 
and p a suitable "pressure". In the case of the model introduced in [5], n = 2 and u = (p, q), q 
being a "weighted momen tum"  

Otp + Ox(p . v) = o, 

Otq + o=((q - q , ) .  ~) = 0, 
= .q, (3.1) 

where PM and q, are parameters characteristic of the road under consideration. The first is the 
maximal car density supported by the street, so tha t  p E [0, pM]I The latter is strictly related 
to wide jams,  see [5,6] for further details. The  fundamental  diagram (i.e., the usual flow density 
relation) is here replaced by the compact invariant set 

a = { (p, q) e [0, p.] × [0, +~[:  v(p, q) ~ [0, ~ ]  and _qq. + !p. > 1},  

V M being the maximal possible speed and with p. > PM. The shock and rarefaction curves 
in (3.1) coincide, so tha t  this system satisfies (B). The search for an optimal management of 
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traffic flows leads to consider (1.2) with, say, a given fixed initial data, so that J in (1.3) depends 
on the boundary data (i.e., the car inflow) alone, which is considered as a control. By the 
resul ts  in [10], t he re  exis ts  a d o m a i n / 9  D ( (p ,q)  e (L1) 2 : (p ,q)(x)  e ~ ,  T V ( p )  q - T V ( q )  < 5} 

t h a t  also satisfies (2.1) for a su i tab le  H ,  such t h a t  for all (/5, c]) in 7:), the re  exists  a solut ion 

to  t he  I B V P  for (3.1) t h a t  depends  Lipschi tz  con t inuous ly  on t h e  b o u n d a r y  data .  Conce rn ing  

the  func t iona l  d in (1.3), t he  choice ~ ( t ,  p, q) = v(p, q) is pa r t i cu l a r ly  re levant :  i t  amoun t s  to 

min imise  t h e  (weighted)  t o t a l  va r i a t ion  of  t he  car speed.  N o t e  t h a t  all s ta tes  in f~ sat isfy 

1 (PM + ap .  -- V/(pM + ap , )  2 -- 4 p , p m )  > O, where  c~ = pMV___~M q_ 1. (3.2) 
q. 

Hence, ~(t ,  p, q) = v(p, q) is Lipschitzian on f~ and Theorem 2.3 applies to 

T 

f0 (3.3) 

Finally, due to [22], we note that  the present construction applies also to model [6] that 
extends (3.1) introducing phase transitions. In this more general framework, it is possible to 
select invariant sets that  contain the vacuum state, hence, the minimisation of functionMs of 
type (3.3) can be accomplished without a lower bound of the type (3.2) on the car density. 
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