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Abstract

Alkanolamine based post-combustion capture processes (PCC) are currently the most attractive tech-
nologies for CO2 capture. Solvents are degraded in this service by flue gas components, for example 
oxygen. Solvent degradation can be classified into two reaction types: 1) amine oxidative degradation
through a) autoxidation pathways, b) oxidation in the presence of metal ions and 2) thermal degradation
including reactions in the presence of CO2. This study represents a literature survey of oxidative
degradation (reaction type 1a) of 2-Amino-1-ethanol (MEA), 2-Amino-2-methyl-1-propanol (AMP),
N,N-Bis(2-hydroxyethyl)methyl-amine (MDEA), and Piperazine (Pz). Thermal degradation products
(reaction type 2) are included where appropriate in order to contribute to a more complete degradation
overview of these compounds.

© 2013 The Authors. Published by Elsevier Ltd.  
Selection and/or peer-review under responsibility of GHGT

Keywords: CO2 capture; oxidative degradation; 2-Amino-1-ethanol; 2-Amino-2-methyl-1-propanol; 
N,N-Bis(2-hydroxyethyl)methylamine; Piperazine

1. Introduction
Among several technologies proposed for CO2 capture from flue gas streams, alkanolamine based post-
combustion capture processes (PCC) are currently the most attractive technologies [1]. These processes
are in particular focus for power plant application due to the low CO2 partial pressure present in the flue
gas. Alkanolamine absorbent solvents are degraded in this service by several flue gas components, for 
example oxygen [2]. It has been estimated that solvent degradation contributes to around 10% of the total
cost of CO2 capture [3]. Degradation prevention requires insight into this process.
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Solvent degradation can be systematized into two main reaction types: 1) amine oxidative degradation 
through a) autoxidation pathways, b) oxidation in the presence of metal ions and 2) thermal degradation 
including reactions in the presence of CO2. The products observed in reaction type 1a) vs. 1b) appear to 
belong to the same product classes. 
 
This study represents a literature survey of oxidative degradation (reaction type 1a) of 2-Amino-1-ethanol 
(MEA), 2-Amino-2-methyl-1-propanol (AMP), N,N-Bis(2-hydroxyethyl)methyl-amine (MDEA), and 
Piperazine (Pz). Thermal degradation products (reaction type 2) are included where appropriate in order 
to contribute to a more complete degradation overview of these compounds. 
 
The literature up to August 2012 has been evaluated. Amine degradation has been reviewed for sour gas 
treatment [4], CO2 capture [5] and as part of a study [6] highlighting the need for MEA PCC solvent 
management guidelines. Part of the current review has been published inside a specific work package 
developing a set of methods and procedures for evaluating health and environmental impact of amine 
solvents for use in CO2 capture [7]. 
 
Degradation studies have been conducted under varying experimental conditions (i.e., amino alcohol 
concentration: 13-50 wt%; reaction temperature: 20-170oC; oxygen pressure: 0,1 kPa-0,4 MPa; in the 
presence/without CO2) also using a variety of analytical techniques (i.e. HPLC, LC-MS, cation-, anion 
IC, FT-IR, GC-MS). Some products have been indirectly identified. This review is restricted to reporting 
compounds that have been analyzed and identified. Inside the scope of a contribution to the GHGT-11 
conference, the purpose of this review is to provide an overview to the field of oxidative degradation of 
MEA, AMP, Pz and MDEA solvents.  
 
2. General degradation chemistry 
 
The oxidative degradation of PCC amino alcohol solvents may be classified to be of the autoxidation type 
proceeding through peroxy intermediates [8-10]. Concentration of thermal vibration energy onto one 
bond or reaction with oxygen could be the reaction initiating event followed by reaction with oxygen at a 
rate close to the rate of a diffusion controlled process [11]. 
 
The initial step of amine oxidation by a one electron oxidant may be either through electron- or hydrogen 
abstraction, the former yielding an aminium radical and the latter yielding a -C or N centered radical. 
Very fast proton transfer will transform the aminium radical cation into the same -C or N centered 
radical [12].   
 
The electron abstraction mechanism is based on a series of studies that focused mainly on tertiary 
amines using chlorine dioxide as a single electron oxidant [13]. These studies indicated that the rate 
limiting step is electron abstraction from the nitrogen atom to produce an aminium radical which looses a 
proton to produce an imine radical. Further loss of an electron by reaction with another radical results in 
an imine. Hydrolysis of the imine produces an aldehyde (or a ketone for -C alkylsubstituted amines) 
together with NH3.  
 
The electron abstraction mechanism was adopted by Chi [14] who suggested that metal ions like Fe3+ 
could initiate this oxidation reaction. At the same time the reaction scheme was extended by introduction 
of oxygen leading to formation of a peroxide radical. Reaction of the peroxide radical with another 
molecule of MEA was thought to produce an amino-peroxide radical and another aminium radical. 
Decomposition of the amino peroxide would result in an imine and hydrogen peroxide (Figure 1). 
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Another study puts focus on the hydrogen abstraction mechanism [15]. In these studies aqueous 
solutions of amines were degraded using ionization radiation to create initiating radicals like OH., H., e- 
(aq). The proposed reaction scheme is based on formation of cyclic 5-membered ring structures 
containing O…H or N...H bonds. Three reaction alternatives are proposed for , -aminoalkohols: i) 
hydrogen abstraction from the -carbon leading to N-C cleavage and formation of aldehyde and NH3; ii) 
hydrogen abstraction from the -carbon leading to an imine which is hydrolysed to aldehyde and NH3; 
iii) electron abstraction from the N atom resulting in N-C and C-C bond scission accompanied by 
formation of two moles of formaldehyde and ammonia in the case of MEA. 
 
The hydrogen abstraction mechanism is favored by Goff [16] and is supported by molecular simulation 
studies [17]. The hydrogen- and electron mechanisms provide insight into the first radical forming step. 
Figure 1 and 2 show proposals for the subsequent reaction with O2. In contrast to MEA, a C-C bond 
scission step is proposed for AMP. 
 

 
 
Figure 1: Proposed primary oxidation pathways for MEA. Adopted from Chi [14] and Bedell [10 ]. 
 

 
Figure 2: Proposed oxidation pathway for AMP. Reaction products are shown in red [28]. 
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3. 2-Amino-1-ethanol (MEA)  
 
The observed compound classes for oxidative degradation of MEA are shown in Table 1. Observed 
products are ammonia, organic acids and aldehydes. All of these products may be assumed to be formed 
by an autoxidation type degradation chain starting with MEA and are thus classified as primary products 
[2]. In a second step these acids will form ‘Heat-Stable Salts’ removing CO2 absorption capacity from the 
solvent by reaction with MEA. The amides are proposed formed in a secondary step by reaction of acids  
and the amine function of MEA or other secondary formed amines together with water elimination [18] or  
 
Table 1: identified oxidative degradation compounds of MEA.  
 

compound  reference 
org. acids HCOO-, CH3COO-, HOCH2COO-, (C2O4) 

2- [2,19,16,20,21,22,26]  
inorg. compds. NH3, NO2

-, NO3
-,  [23,19,16,14,8,20,21,22] 

aldehydes CH2O, CH3CHO, HOCH2CHO [16,23,20,22] 
amides HEF, formamides, oxamides,  [16,20,21,22] 
amines methylamines, MAE, BHEEDA, HEEDA, MEA-urea [2,24,21,22,25,26,19] 
cyclic compds. HEPO-3, HEPO-2, HEI, HEIA, HEP, DMPz [2,24,25,21,22,26,19] 
pilot plant 
samples  

  

org. acids HCOO-, CH3COO-, (C2O4) 
2- [27,18] 

amides HEF, HEA, HHEA, BHEOX, HEHEAA [18] 
cyclic compds. HEI, OZD, HEPO, HEIA [27,18] 
   

alternatively by reaction of the amine function with formaldehyde in the presence of oxygen [20].  The 
cyclic- and the linear mono/polyamine compounds are formed in a thermal degradation reaction sequence 
[25] of MEA with CO2 leading to OZD followed by ring opening with MEA and subsequent reaction with 
another molecule of MEA or OZD (Figure 3). Interestingly, reported reaction conditions allow oxidative 
fragmentation of MEA to give methylamines and MAE [19]. 
 

 
 

Figure 3: Proposed MEA thermal degradation pathways. Adopted from Davies [25] and Closmann [34]. 



1774   S. B. Fredriksen and Klaus-J. Jens  /  Energy Procedia   37  ( 2013 )  1770 – 1777 

MEA laboratory degradation results have been compared with a sample of degraded MEA solvent from 
the Esbjerg pilot plant [18]. This sample was dominated by oxidative degradation rather than thermal 
degradation products. Furthermore, a significant amount of amides was also observed. This trend has 
been confirmed by the Niederaussem pilot plant although at lower total degradation level [27]. 
 
4. 2-Amino-2-methyl-1-propanol (AMP) 
 
The structure of AMP is related to MEA, however the -C atom (relative to N) does not contain C-H 
bonds. The observed oxidation products are shown in Table 2. Ammonia, acetone and formic acid have  
been proposed as primary oxidation products [28], nitrite, nitrate being secondary oxidation products 
originating from NH3 while acidic-, glycolic- and oxalic acid are thought to be the secondary oxidation 
products of acetone. 2,4-lutidine is proposed to be formed by reaction of acetone, formaldehyde and 
dimethyl imine, the latter two molecules suggested to be transient intermediate products. 4,4-dimethyl-
oxazolidone is expected formed by reaction of the total oxidation product CO2 with AMP. In a related 
 
Table 2: identified oxidative degradation compounds of AMP. 
 

compound  reference 
org. acids HCOO-, CH3COO-, HOCH2COO-, (C2O4) 

2- [19, 28] 
inorg. compds. NH3, NO2

-, NO3
-, CO2 [28] 

ketone CH3(CO)CH3 [28] 
amines N-methyl-AMP [19] 
cyclic compds. DMOZD, N-methyl-DMOZD, 2,4-Lutidine [19,28] 

 
study [19] products probably formed by oxidative fragmentation (N-methyl-AMP, N-methyl-4,4-
dimethyloxazolidone) have also been observed. 
 
5. N,N-Bis(2-hydroxyethyl)methylamine (MDEA) 
 
The observed compound classes for oxidative degradation of MDEA are shown in Table 3. Similar to the 
other amines, organic acids and glycine may be assumed formed by a chain of oxidation reactions starting 
with the parent alkanol amine. As secondary product unspecified formylamides are observed. Formation 
of DEA may occur concurrently with a methyl group transfer from MDEA (see below) or by direct 
oxidation of MDEA. MEA is thought to be a direct oxidation product derived from DEA [29]. Bicine is 
speculated formed by reaction of DEA with hydroxyacetaldehyde (a compound concurrently formed in 
degradation of DEA to MEA) followed by oxidation of the aldehyde function [29]. Oxidation of 
hydroxyacetaldehyde could also lead to formation of glycolic acid.  
 
Table 3: identified oxidative degradation compounds of MDEA. 
 

compound  reference 
org. acids HCOO-, CH3COO-, HOCH2COO-, (C2O4) 

2-, HES, Bicine, 
Glycine 

[34,2,19,29,35] 

amides formylamides [19,29,35] 
amines MEA, DEA, MAE, DMAE, HEOD, Pz derivatives [34,2,19] 

 
The observed methylated primary and secondary amines may be formed by disproportionation of amine 
and quaternary ammonium ions [30,31]. This reaction can be considered a thermal degradation pathway. 
This transalkylation reaction is favorable for ammonium ions carrying a methyl, benzyl- or allyl substi-
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tuent [32]; hence formation of HES may be assumed not to proceed by this degradation pathway; direct 
oxidation of MDEA has instead been suggested [29]. HEOD and Pz derivatives have been identified as 
thermal degradation products of DEA [33]. 
 
6. Piperazine (Pz) 
 
In contrast to MEA, AMP and MDEA, Pz is a cyclic amine which may absorb two moles of CO2 per 
mole of piperazine. The reported oxidation products are shown in Table 4.   
 
 
Table 4: identified oxidative degradation compounds of piperazine. 
 

compound  reference 
org. acids HCOO-, CH3COO-, HOCH2COO-, (C2O4) 

2- [29,20,37,38] 
inorg. compds. NO2

-, NO3
- [20] 

amides formamides*, oxalylamide [36,20,37,38] 
amines EDA [36,20,38] 

* Different amides are presumed formed but only indirectly estimated. 
 
Conclusion 
 
Reported results may be rationalized by assuming peroxyl radical formation as the initial step. Thereafter 
deamination leads to ammonia, aldehydes/ketones and carboxylic acids as primary products. This first 
“mix” of products will be oxidized further and/or participate in secondary reactions. The effect of CO2 on 
oxidative degradation and in-process formation of small alkyl amines are still open issues needing more 
investigation. The latter potential degradation route has some bearing on possible in-process formation of 
volatile nitrosamines which may effect the environmental footprint of this technology.  
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Appendix. List of organic substance acronyms 
 
Acronym Chemical name 
AMP 2-Amino-2-methyl-1-propanol 
BHEEDA N,N'-Bis-(2-hydroxyethyl)ethylenediamine 
BHEOX N,N'-Bis-(2-hydroxyethyl)oxamide 
Bicine N,N-Bis(2-hydroxyethyl)glycine 
DEA Diethanolamine 
DMAE Dimethylaminoethanol 
DMOZD 4,4-Dimethyloxazolidinone 
DMPz N,N'-Dimethylpiperazine 
EDA Ethylenediamine 
Glycine Aminoethanoic acid 
HEA N-(2-Hydroxyethyl)acetamide 
HEEDA N-(2-Hydroxyethyl)ethylenediamine 
HEOD 3-Hydroxyethyl-2-oxazolidinone 
HEF N-(2-Hydroxyethyl)formamide 
HEHEAA N-(2-Hydroyethyl)-2-(2-hydroxyethylamino)acetamide 
HEI N-(2-Hydroxyethyl)imidazol 
HEIA N-(2-Hydroxyethyl)imidazolidinone 
HEIA N,N'-(2-Hydroxyethyl)imidazolidinone 
HEP N-(2-Hydroxyethyl)piperazine 
HEPO-2  
HEPO-3 

(2-Hydroxyethyl)piperazin-2-one 
(2-Hydroxyethyl)piperazin-3-one 

HES Hydroxyethylsarcosine 
HHEA 2-Hydroxy-N-(2-hydroxyethyl)acetamide 
MAE N-Methylaminoethanol 
MDEA N,N-Bis(2-hydroxyethyl)methylamine 
MEA Monoethanolamine 
MEA-urea N,N'-Bis-(2-hydroxyethyl)urea 
N-methyl-AMP N-Methyl-2-amino-2-methyl-1-propanol 
N-methyl-DMOZD N-Methyl-4,4-dimethyloxazolidinone 
OZD Oxazolidinone 
Pz Piperazine 

 


