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In this paper, a consistent theory is developed for size-dependent piezoelectricity in dielectric solids. This
theory shows that electric polarization can be generated as the result of coupling to the mean curvature
tensor, unlike previous flexoelectric theories that postulate such couplings with other forms of curvature
and more general strain gradient terms ignoring the possible couple-stresses. The present formulation
represents an extension of recent work that establishes a consistent size-dependent theory for solid
mechanics. Here by including scale-dependent measures in the energy equation, the general expressions
for force- and couple-stresses, as well as electric displacement, are obtained. Next, the constitutive rela-
tions, the uniqueness theorem and the reciprocal theorem for the corresponding linear small deformation
size-dependent piezoelectricity are developed. As with existing flexoelectric formulations, one finds that
the piezoelectric effect can also exist in isotropic materials. However, in the present theory there is only
one flexoelectric constant for isotropic material and the coupling is strictly through the skew-symmetric
mean curvature tensor. In the last portion of the paper, this isotropic case is considered in detail by devel-
oping the corresponding boundary value problem for two dimensional analyses and obtaining a closed
form solution for an isotropic dielectric cylinder.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recent developments in micromechanics, nanomechanics and
nanotechnology require advanced size dependent electromechani-
cal modeling of coupled phenomena, such as piezoelectricity. Clas-
sical piezoelectricity describes the relation between electric
polarization and strain in non-centrosymmetric dielectrics at the
macro-scale (Cady, 1964). However, some experiments have re-
ported about size-effect phenomena of piezoelectric solids and lin-
ear electromechanical coupling in isotropic materials (Mishima
et al., 1997; Shvartsman et al., 2002; Buhlmann et al., 2002; Cross,
2006; Harden et al., 2006; Zhu et al., 2006; Baskaran et al., 2011;
Catalan et al., 2011). The classical theory cannot address this size
dependency, because it considers that matter is continuously dis-
tributed throughout the body by neglecting its microstructure.
Therefore, it is necessary to develop a size-dependent piezoelec-
tricity, which accounts for the microstructure of the material by
introducing higher gradient of deformation. Wang et al. (2004)
have developed a size-dependent piezoelectric theory by consider-
ing the rotation gradient effect in the framework of the couple
stress theory. In this formulation the electric polarization is related
to the macroscopic rotation gradient. However, the theory suffers
from its dependence on an underlying inconsistent couple stress
theory. In some circles this size-dependent character for linear re-
sponse is known as the flexoelectric effect (Kogan, 1964; Meyer,
1969), where the dielectric polarization is related to the macro-
scopic strain gradient or curvature strain. This theory predicts that
in principle the flexoelectric effect is nonzero for all dielectrics,
including the isotropic ones. Although there are some develop-
ments in this direction (Tagantsev, 1986; Maranganti et al., 2006;
Eliseev et al., 2009), these theories also suffer from the use of dif-
ferent inconsistent second order gradients of deformation, as well
as ignoring the possible couple-stress effect. There have been some
experimental studies, which correlate their data with these theo-
ries (e.g., Cross, 2006; Harden et al., 2006; Zhu et al., 2006; Zubko
et al., 2007; Baskaran et al., 2011; Catalan et al., 2011; Morozovska
et al., 2012). It should also be mentioned that the surface effects
(e.g., residual surface stress, surface elasticity) have often been
adopted to analyze the size effects. For example, Pan et al. (2011)
established a continuum theory of surface piezoelectricity for
dielectric materials. However, it seems there is a relation between
the continuum size-dependent piezoelectricity theory and the con-
tinuum theory of surface piezoelectricity, which needs further
development.

Thus, the first step toward developing consistent size-depen-
dent electromechanical theories is the establishment of the consis-
tent size-dependent continuum mechanics theory. Recently,
Hadjesfandiari and Dargush (2011) have resolved the troubles in
the existing size-dependent continuum mechanics. This progress
shows that the couple-stress tensor has a vectorial character and
that the body couple is not distinguishable from the body force.
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In this theory, the stresses are fully determinate and the measure
of deformation is the mean curvature tensor, which is the skew-
symmetrical part of the macroscopic rotation gradient. This devel-
opment can be considered the completion of the works of Mindlin
and Tiersten (1962) and Koiter (1964). Furthermore, this size-
dependent continuum mechanics must provide the fundamental
base for developing different mechanical and electromechanical
formulations that may govern the behavior of solid continua at
the smallest scales. Here, the consistent size-dependent piezoelec-
tric theory is developed, which shows that the size-dependent pie-
zoelectric effect is related to the mean curvature tensor.

In the following section, we provide an overview of the electro-
mechanical equations. This includes the equations for the kinemat-
ics, kinetics and quasi-electrostatics of size-dependent small
deformation continuum mechanics. In Section 3, we consider the
energy equation and its consequences based on the first law of
thermodynamics for dielectric materials. In Section 4, the constitu-
tive relations for linear elastic piezoelectric materials also are de-
rived. Next, we develop two weak formulations in Section 5,
which are used to establish conditions for uniqueness and to derive
the reciprocal identity. Section 6 provides the general theory for
isotropic linear material and the details for two dimensional cases
are derived, including the closed form solution for polarization of a
long cylinder in a uniform electric field. Finally, Section 7 contains
a summary and some general conclusions.

2. Basic size-dependent electromechanical equations

Let us take the three dimensional coordinate system x1x2x3 as
the reference frame with unit base vectors e1; e2 and e3. Consider
a piezoelectric elastic material continuum occupying a volume V
bounded by a surface S. In size-dependent continuum theory, the
interaction in the body is represented by true (polar) force-stress
rij and pseudo (axial) couple-stress lij tensors. The force-traction
vector tðnÞi and moment-traction vector mðnÞi at a point on surface
element dS with unit normal vector ni are given by

tðnÞi ¼ rjinj ð1Þ

mðnÞi ¼ ljinj ð2Þ

The force-stress tensor is generally non-symmetric and can be
decomposed as

rji ¼ r jið Þ þ r ji½ � ð3Þ

where r jið Þ and r ji½ � are the symmetric and skew-symmetric parts,
respectively. Hadjesfandiari and Dargush (2011) have shown that
the axial couple-stress tensor is skew-symmetrical

lji ¼ �lij ð4Þ

This means the moment-traction mðnÞi given by (2) is tangent to the
surface. As a result, the couple-stress tensor lij creates only bending
moment-traction on any arbitrary surface in matter.

We can define the true (polar) couple-stress vector li dual to
the tensor lij as

li ¼
1
2
eijklkj ð5Þ

where eijk is the permutation tensor or Levi–Civita symbol. This
relation can also be written in the form

eijklk ¼ lji ð6Þ

Consequently, the surface moment-traction vector mðnÞi reduces to

mðnÞi ¼ ljinj ¼ eijknjlk ð7Þ

which is obviously tangent to the surface.
To formulate the fundamental equations, we consider an arbi-
trary part of this electromechanical body occupying a volume Va

enclosed by boundary surface Sa. In infinitesimal deformation the-
ory, the displacement vector field u x; tð Þ is so small that the veloc-
ity and acceleration fields can be approximated by _u and €u,
respectively. As a result, the linear and angular equations of motion
for this part of the body are written asZ

Sa

tðnÞi dSþ
Z

Va

FidV ¼
Z

Va

q€uidV ð8Þ

Z
Sa

eijkxjt
ðnÞ
k þmðnÞi

h i
dSþ

Z
Va

eijkxjFkdV ¼
Z

Va

eijkxjq€ukdV ð9Þ

where Fi is the body force per unit volume of the body, and q is the
mass density. Hadjesfandiari and Dargush (2011) have shown that
the body couple density is not distinguishable from body force in
size-dependent couple stress continuum mechanics and its effect
is simply equivalent to a system of body force and surface traction.

By using the relations (1) and (2) for tractions in the equations
of motion (8) and (9), along with the divergence theorem, and
noticing the arbitrariness of volume, we finally obtain the differen-
tial form of the equations of motion as

rji;j þ Fi ¼ q€ui ð10Þ

lji;j þ eijkrjk ¼ 0 ð11Þ

Since the couple-stress tensor lji is skew-symmetric, the angular
equilibrium Eq. (11) gives the skew-symmetric part of the force-
stress tensor as

r ji½ � ¼ �
1
2
eipqlqp;j ¼ �l i;j½ � ð12Þ

Therefore, for the total force-stress tensor we have

rji ¼ r jið Þ þ r ji½ � ¼ r jið Þ � l i;j½ � ð13Þ

As a result the linear equation of motion reduces to

½r jið Þ � l i;j½ ��;j þ Fi ¼ q€ui ð14Þ

It is seen that the sole duty of the angular equilibrium Eq. (11) is to
produce the skew-symmetric part of the force-stress tensor.

In infinitesimal deformation theory, we may assume

@ui

@xj

����
����� 1;

@2ui

@xj@xk

�����
������ 1

lS
ð15Þ

where lS is the smallest characteristic length in the body. Therefore,
the infinitesimal strain and rotation tensors are defined as

eij ¼ u i;jð Þ ¼
1
2

ui;j þ uj;i
� �

ð16Þ

xij ¼ u i;j½ � ¼
1
2

ui;j � uj;i
� �

ð17Þ

respectively. Since the true (polar) tensor xij is skew-symmetrical,
one can introduce it corresponding dual axial (pseudo) rotation vec-
tor as

xi ¼
1
2
eijkxkj ð18Þ

The infinitesimal pseudo (axial) mean curvature tensor is also de-
fined as

jij ¼ x i;j½ � ¼
1
2

xi;j �xj;i
� �

ð19Þ

Since this tensor is also skew-symmetrical, its corresponding dual
polar (true) mean curvature vector is
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ji ¼
1
2
eijkjkj ð20Þ

By using (18) into (20), we obtain

ji ¼
1
4

uk;ki �
1
4
r2ui ð21Þ

which also shows

ji ¼
1
2
xji;j ð22Þ

For a quasistatic electric field E, in which the effect of induced mag-
netic field in the material is neglected, we have the electrostatic
relation
eijkEk;j ¼ 0 or Ei;j � Ej;i ¼ 0 ð23Þ

Therefore, as is well-known in this case, the electric field E can be
represented by the electric potential /, such that
Ei ¼ �/;i ð24Þ

The electric field and deformation can induce polarization P in the
dielectric material. The electric displacement vector D is defined by

Di ¼ �0Ei þ Pi ð25Þ

where �0 is the permittivity of free space. The normal electric dis-
placement on the surface is defined by the scalar

d ¼ Dini ð26Þ

The differential form of the electric Gauss law is

Di;i ¼ qe ð27Þ

where qe is the electric charge density in the volume.
What has been presented so far is a continuum mechanics the-

ory of electromechanical materials with quasistatic electric field,
independent of the material properties. The fundamental govern-
ing electromechanical equations in the volume V are

½r jið Þ � l i;j½ ��;j þ Fi ¼ q€ui ð28Þ

Di;i ¼ qe ð29Þ

subject to some prescribed compatible boundary conditions on the
boundary S. From a mathematical point of view, we can specify
either the displacement vector ui or the force-traction vector tðnÞi ,
the tangential component of the rotation vector xi or the tangent
moment-traction vector mðnÞi , and the electric potential / or the nor-
mal electric displacement d . However, in practice, the actual
boundary is usually free of moment traction (mðnÞi ¼ 0Þ everywhere
on S. Therefore, the tangential component of xi usually is not spec-
ified on the actual boundary S.

Eqs. (28) and (29) on their own are not enough to describe the
electromechanical response of any particular material. To complete
the specification, we need to define the electromechanical consti-
tutive equations. For this we need to consider the energy equation.

3. Energy equation for piezoelectric material and constitutive
relations

The energy equation for the electromechanical elastic medium
in volume Va, which undergoes small deformation and quasistatic
polarization, is

@

@t

Z
Va

1
2
q _ui _ui þ U

� �
dV ¼

Z
Sa

tðnÞi
_ui þmðnÞi

_xi � _d/
� �

dS

þ
Z

Va

Fi _ui þ / _qeð ÞdV ð30Þ

where U is the internal energy per unit volume. This equation
shows that the rate of change of total energy of the system in vol-
ume Va is equivalent to the power of the external forces, moments
and electric field.

By using the relations (10), (11) and (27) along with the diver-
gence theorem, and noticing the arbitrariness of volume, one can
obtain

_U ¼ r jið Þ _eij þ lji
_jij � /;i

_Di ð31Þ

This equation is the first law of thermodynanics for the size-depen-
dent electromechanical elastic medium in differential form, which
can also be written as

_U ¼ r jið Þ _eij þ lji
_jij þ Ei

_Di ð32Þ

or

_U ¼ r jið Þ _eij � 2li
_ji þ Ei

_Di ð33Þ

The relation (32) shows that for an elastic piezoelectric solid with
couple stress effects, the internal energy U depends not only on
the strain tensor e and the electric displacement vector D, but also
on the mean curvature tensor j, that is

U ¼ U eij;jij;Di
� �

ð34Þ

U ¼ Uðeij;ji;DiÞ ð35Þ

By using the Legendre transformation, we define the specific elec-
tric enthalpy as

H ¼ U � EiDi ð36Þ

Then differentiating with respect to time, we obtain

_H ¼ _U � _EiDi � Ei
_Di ð37Þ

which with Eqs. (32) and (33) for _U yields

_H ¼ r jið Þ _eij þ lji
_jij � Di

_Ei ð38Þ

or

_H ¼ r jið Þ _eij � 2li
_ji � Di

_Ei ð39Þ

These equations implies that

H ¼ H eij;jij; Ei
� �

ð40Þ

or

H ¼ H eij;ji; Ei
� �

ð41Þ

If we differentiate these forms of H with respect to time, we obtain

_H ¼ @H
@eij

_eij þ
@H
@jij

_jij þ
@H
@Ei

_Ei ð42Þ

or

_H ¼ @H
@eij

_eij þ
@H
@ji

_ji þ
@H
@Ei

_Ei ð43Þ

By comparing (42) with (38) and considering the arbitrariness of
_eij; _jij and _Ei, we find the following constitutive relations for the
symmetric part of force-stress tensor r jið Þ, the couple-stress tensor
lji and the electric displacement vector Di:

r jið Þ ¼
1
2

@H
@eij
þ @H
@eji

� �
ð44Þ

lji ¼
1
2

@H
@jij
� @H
@jji

� �
ð45Þ

Di ¼ �
@H
@Ei

ð46Þ

If we further agree to construct the functional H, such that
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@H
@eij
¼ @H
@eji

ð47Þ

@H
@jij
¼ � @H

@jji
ð48Þ

we can write in place of (44) and (45)

r jið Þ ¼
@H
@eij

ð49Þ

lji ¼
@H
@jij

ð50Þ

It should be noticed that by comparing (39) and (43), one obtains

li ¼ �
1
2
@H
@ji

ð51Þ

for the couple-stress vector, which is more suitable in the following.
By using this in the relation (12), we obtain the skew-symmetric
part of the force-stress tensor as

r½ji� ¼ �l½i;j� ¼
1
4

@H
@ji

� �
;j

� 1
4

@H
@jj

� �
;i

ð52Þ

Therefore, for the total force-stresses, we have

rji ¼
1
2

@H
@eij
þ @H
@eji

� �
þ 1

4
@H
@ji

� �
;j

� 1
4

@H
@jj

� �
;i

ð53Þ
4. Linear piezoelectricity theory

For linear elastic size-dependent piezoelectricity theory, we
consider the homogeneous quadratic form for H

H ¼ 1
2

Aijkleijekl þ
1
2

Bijkljijjkl þ Cijkleijjkl �
1
2
�ijEiEj � aijkEiejk

� bijkEijjk ð54Þ

The first three terms represent the most general form of the elas-
tic energy density. The tensors Aijkl; Bijkl and Cijkl contain the elas-
tic constitutive coefficients and are such that the elastic energy is
positive definite. As a result, tensors Aijkl and Bijkl are positive def-
inite. The tensor Aijkl is actually equivalent to its corresponding
tensor in Cauchy elasticity. The tensor eij is the permittivity or
dielectric tensor, which is also positive definite. The tensors aijk

and bijk represent the piezoelectric character of the material.
While the true tensor aijk is the classical piezoelectric tensor,
the pseudo tensor bijk is the size-dependent coupling term be-
tween the electric field and the mean curvature tensor. The ten-
sor bijk may be called the flexoelectric tensor, which accounts for
the microstructure of the material. The symmetry and skew-sym-
metry relations are

Aijkl ¼ Aklij ¼ Ajikl ð55Þ
Bijkl ¼ Bklij ¼ �Bjikl ð56Þ
Cijkl ¼ Cjikl ¼ �Cijlk ð57Þ
�ij ¼ �ji ð58Þ
aijk ¼ aikj ð59Þ
bijk ¼ �bikj ð60Þ

For the most general case, the number of distinct components
for Aijkl, Bijkl; Cijkl; �ij; aijk and bijk are 21, 6, 18, 6, 18 and 9,
respectively. Therefore, the most general linear elastic piezoelec-
tric anisotropic material is described by 78 independent constitu-
tive coefficients. It is interesting to note that the enthalpy
density H can also be written in terms of the mean curvature
vector as
H ¼ 1
2

Aijkleijekl þ
1
2

Bijjijj þ Cijkeijjk �
1
2
�ijEiEj � aijkEiejk

� bijEijj ð61Þ

where

Bijkl ¼
1
4
eijpeklqBpq ð62Þ

Cijkl ¼
1
2

Cijmemlk ð63Þ

bijk ¼
1
2

bimemkj ð64Þ

and the symmetry relations

Bij ¼ Bji ð65Þ

Cijk ¼ Cjik ð66Þ

hold. It is seen that the true tensor Bij is positive definite, and there
is no general symmetry condition for the true tensor bij. Note that
the number of distinct components for true tensors Bij, Cijk, and bij

are 6, 18 and 9, respectively. We should also notice that there is
no restriction on the piezoelectric and flexoeletric tensors aijk and
bij for a well posed linear size-dependent piezoelectric boundary va-
lue problem.

By using the enthalpy density (61) in the general relations (49),
(51) and (46), we obtain the following constitutive relations

r jið Þ ¼ Aijklekl þ Cijkjk � akijEk ð67Þ

li ¼ �
1
2

Bijjj �
1
2

Ckjiekj þ
1
2

bjiEj ð68Þ

Di ¼ �ijEj þ aijkejk þ bijjj ð69Þ

The skew-symmetric part of the force-stress tensor is found as

r ji½ � ¼ �l i;j½ �

¼ 1
4

Bimjm;j �
1
4

Bjmjm;i þ
1
4

Ckmiekm;j �
1
4

Ckmjekm;i

� 1
4

bmiEm;j þ
1
4

bmjEm;i ð70Þ

Therefore, the constitutive relation for the total force-stress tensor
is

rji ¼ Aijklekl þ Cijkjk � akjiEk þ
1
4

Bimjm;j �
1
4

Bjmjm;i

þ 1
4

Ckmiekm;j �
1
4

Ckmjekm;i �
1
4

bmiEm;j þ
1
4

bmjEm;i ð71Þ

For the polarization vector, we have the relation

Pi ¼ Di � �0Ei ¼ �ij � �0dij
� �

Ej þ aijkejk þ bijjj ð72Þ

When the constitutive relations force-stress tensor (71) and electric
displacement vector (69) are carried into the linear equation of mo-
tion (10) and electric Gauss law (27), one obtains the governing
equations for size-dependent piezoelectricity.

Interestingly, for the internal energy density function U, we
obtain

U ¼ H þ EiDi ¼
1
2

Aijkleijekl þ
1
2

Bijjijj þ Cijkeijjk þ
1
2
�ijEiEj ð73Þ

which is a positive definite quadratic form without explicit piezo-
electric and flexoelectric coupling.

It should be noticed that the flexoelectric effect always appears
along with couple-stresses. This means that if we neglect the cou-
ple stresses (Bij ¼ 0;Cijk ¼ 0Þ, all other size-dependent effects such
as flexoelectricity must be neglected as well (bij ¼ 0Þ.
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5. Weak formulations and their consequences

Weak formulations or virtual work theorems have many appli-
cations in all aspects of continuum mechanics, such as variational
and integral equation methods. These methods are necessary for
developing computational mechanics methods, such as finite ele-
ment and boundary element methods. Weak formulations can also
be used in exploring conditions of uniqueness. Therefore, we de-
rive two forms of these principles for the static state of size-depen-
dent piezoelectricity as follows.

5.1. Weak forms of equilibrium equations

Consider the part of the body occupying a fixed volume V
bounded by boundary surface S. The standard form of the equilib-
rium equations for this electromechanical medium in the static
case are given by

rji;j þ Fi ¼ 0 ð74Þ

lji;j þ eijkrjk ¼ 0 ð75Þ

Di;i ¼ qe ð76Þ

Suppose arbitrary differentiable displacement variation dui and
electric potential variation d/ in the domain, where their corre-
sponding angular rotation and electric fields are

dxi ¼
1
2
eijkduk;j ð77Þ

dEi ¼ �d/;i ð78Þ

Let us multiply (74) and (75) by the virtual displacement dui and
virtual angular rotation dxi, respectively, and integrate their sum
over the volume. Then, after following some steps similar to those
in Hadjesfandiari and Dargush (2011), we obtain the principle of
virtual work, which can be written asZ

V
r jið ÞdeijdV þ

Z
V
ljidjijdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV ð79Þ

orZ
V

rjideij � 2lidji
� �

dV ¼
Z

S
tðnÞi duidSþ

Z
S

mðnÞi dxidSþ
Z

V
FiduidV

ð80Þ

Now, let us multiply Eq. (76) by the virtual potential d/ and inte-
grate over the volumeZ

V
Di;i � qe

� �
d/dV ¼ 0 ð81Þ

By noticing the relation

Di;id/� qed/ ¼ Did/ð Þ;i � Did/;i � qed/ ¼ 0 ð82Þ

we obtain

DidEi ¼ � Did/ð Þ;i þ qed/ ð83Þ

Therefore, the relation (81) becomesZ
V

DidEidV ¼ �
Z

S
dd/dSþ

Z
V
qed/dV ð84Þ

which is the electrical analog of the virtual work theorem (79).
Although these two virtual forms are independent, it turns out their
combination is more useful in further investigation. By subtracting
(79) and (84), we obtain the weak form
Z
V

rjideij þ ljidjij � DidEi

� �
dV

¼
Z

S
tðnÞi duidSþ

Z
S

mðnÞi dxidSþ
Z

V
FiduidV þ

Z
S

d d/dS

�
Z

V
qed/dV ð85Þ

We are also interested in a weak form corresponding to the energy
Eq. (30). We can obtain this form analogously as follows. We con-
sider the variation of electric displacement while holding the elec-
tric potential constant. Let Di be the actual electric displacement
vector, which satisfies the Gauss law and boundary conditions.
Now consider a virtual electric displacement vector dDi that satis-
fies the Gauss law

dDi;i ¼ dqe ð86Þ

with virtual electric charge density dqe and boundary condition
dd ¼ dDini on S. We multiply Eq. (86) by the potential / and inte-
grate over the volumeZ

V
dDi;i � dqe

� �
/dV ¼ 0 ð87Þ

Also by noticing the relation

dDi;i/� dqe/ ¼ dDi/ð Þ;i � dDi/;i � dqe/ ¼ 0 ð88Þ

we obtain

EidDi ¼ � dDi/ð Þ;i þ dqe/ ð89Þ

Therefore, we transform the relation (87) by using the divergence
theorem toZ

V
EidDidV ¼ �

Z
S

/dd dSþ
Z

V
/dqedV ð90Þ

By adding the virtual theorems (79) and (90), we obtain

Z
V

rjideij þ ljidjij þ EidDi

� �
dV

¼
Z

S
tðnÞi duidSþ

Z
S

mðnÞi dxidSþ
Z

V
FiduidV �

Z
S

/dd dS

þ
Z

V
/dqedV ð91Þ

It should be noticed that alternative weak formulations, such as
complementary virtual work, can also be developed. However, in
this paper, we only consider the weak forms (85) and (91), which
are used in the following sections.

5.2. Extremum conditions for the energy potentials

For an elastic piezoelectric material, the weak form (85) reduces
to

Z
V

dHdV ¼
Z

S
tðnÞi duidSþ

Z
S

mðnÞi dxidSþ
Z

V
FiduidV

þ
Z

S
dd/dS�

Z
V
qed/dV ð92Þ

By considering the compatible variations on the boundaries, we can
write this as

d
Z

V
H � Fiui þ qe/ð ÞdV �

Z
St

tðnÞi uidS�
Z

Sm

mðnÞi xidS�
Z

Sd

d /dS

( )
¼ 0

ð93Þ

where St ; Sm and Sd are portion of surface at which tðnÞi ; mðnÞi and d
are prescribed, respectively. Therefore, by defining
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PH ¼
Z

V
H � Fiui þ qe/ð ÞdV �

Z
St

tðnÞi uidS�
Z

Sm

mðnÞi xidS

�
Z

Sd

d /dS ð94Þ

we realize that the relation (93) shows that

dPH ¼ 0 ð95Þ

The quantity PH can be considered as the total electric enthalpy
based electromechanical potential of the system. The relation (95)
shows that the displacement and the electric potential fields satis-
fying equilibrium equations and boundary conditions must extre-
mize PH .

We can obtain a second extremum for this elastic piezoelectric
material by noticing that the weak form (91) reduces toZ

V
dUdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidSþ

Z
V

FiduidV

�
Z

S
/dd dSþ

Z
V

/dqedV ð96Þ

Again by considering the compatible variations on the boundaries,
we can write this as

d
Z

V
U � Fiui � /qeð ÞdV �

Z
St

tðnÞi uidS�
Z

Sm

mðnÞi xidSþ
Z

S/

/d dS

( )

ð97Þ

where St ; Sm and S/ are portion of surface at which tðnÞi ; mðnÞi and /
are prescribed, respectively. Let us define the total electromechan-
ical energy potential of the system as

PU ¼
Z

V
U � Fiui � /qeð ÞdV �

Z
St

tðnÞi uidS�
Z

Sm

mðnÞi xidS

þ
Z

S/

/d dS ð98Þ

As a result, the relation (97) reduces to

dPU ¼ 0 ð99Þ

which shows that the displacement and the electric charge density
fields satisfying equilibrium equations and boundary conditions
must extremize PU . For linear size-dependent piezoelectricity, we
also have the following interesting result. By replacing the virtual
variations with the actual variations in the weak form (91), we
obtainZ

V
r jið Þeij � 2liji þ EiDi
� �

dV ¼
Z

S
tðnÞi uidSþ

Z
S

mðnÞi xidS

þ
Z

V
FiuidV �

Z
S

/d dSþ
Z

V
/qedV ð100Þ

After using the constitutive relations (67)–(69) in the left hand side
of this equation, we obtain

2
Z

V
UdV ¼

Z
S

tðnÞi uidSþ
Z

S
mðnÞi xidSþ

Z
V

FiuidV

�
Z

S
d /dSþ

Z
V
qe/dV ð101Þ

which gives twice the total internal energy in terms of the work of
external body forces, surface tractions and electric displacement,
and electric charges.

5.3. Uniqueness theorem for linear boundary value problems

Now we investigate the uniqueness of the corresponding linear
size-dependent piezoelectric boundary value problem. The proof
follows from the concept of electromechanical energy, similar to
the approach for Cauchy elasticity.

Consider the general boundary value problem. The prescribed
boundary conditions on the surface of the body can be any well-

posed combination of ui;xi; t
ðnÞ
i ;mðnÞi , u and d as discussed in Sec-

tion 2. Assume that there exist two different solutions

uð1Þi ;/ð1Þ; eð1Þij ;j
ð1Þ
i ; Eð1Þi ;rð1Þji ;l

ð1Þ
i ;Dð1Þi

n o
and u 2ð Þ

i ;/ 2ð Þ; e 2ð Þ
ij ;j

2ð Þ
i ; E 2ð Þ

i ;
n

r 2ð Þ
ji ;l

2ð Þ
i ;D 2ð Þ

i g to the same problem with identical body forces
and boundary conditions. Thus, we have the equilibrium equations
and electric Gauss law

rðaÞji;j þ Fi ¼ 0 ð102Þ

rðaÞ½ji� ¼ lðaÞ½i;j� ð103Þ

D að Þ
i;i ¼ qe ð104Þ

where

r að Þ
ðjiÞ ¼ Aijkle

að Þ
kl þ Cijkj að Þ

k � akijE
að Þ

k ð105Þ

l að Þ
i ¼ �

1
2

Bijj að Þ
j �

1
2

Ckjie
að Þ

kj þ
1
2

bjiE
að Þ

j ð106Þ

D að Þ
i ¼ �ijE

að Þ
j þ aijke að Þ

jk þ bijj
að Þ

j ð107Þ

and the superscript references the solutions 1 and 2.
Let us now define the difference solution u0i;/

0; e0ij;
n

j0i; E
0
i;r0ji;l0i;D

0
ig

u0i ¼ uð2Þi � uð1Þi ð108aÞ

/0 ¼ / 2ð Þ � /ð1Þ ð108bÞ

e0ij ¼ eð2Þij � eð1Þij ð108cÞ

j0i ¼ jð2Þi � jð1Þi ð108dÞ

E0i ¼ E 2ð Þ
i � Eð1Þi ð108eÞ

r0ji ¼ rð2Þji � rð1Þji ð108fÞ

l0i ¼ l 2ð Þ
i � lð1Þi ð108gÞ

D0i ¼ D 2ð Þ
i � Dð1Þi ð108hÞ

Since the solutions uð1Þi ;/ð1Þ; eð1Þij ;j
ð1Þ
i ; Eð1Þi ;rð1Þji ;l

ð1Þ
i ;Dð1Þi

n o
and

u 2ð Þ
i ;/ 2ð Þ; e 2ð Þ

ij ;j
2ð Þ

i ; E 2ð Þ
i ;r 2ð Þ

ji ;l
2ð Þ

i ;D 2ð Þ
i

n o
correspond to the same body

forces, electric charge densities and boundary conditions, the differ-

ence solution must satisfy the equilibrium equations

r0ji;j ¼ 0 ð109Þ

r0½ji� ¼ �l0½i;j� ð110Þ

D0i;i ¼ 0 ð111Þ

with zero corresponding boundary conditions. Consequently,
twice the total electromechanical energy (101) for the difference
solution is

2
Z

V
U0dV ¼

Z
V

Aijkle0ije
0
kl þ Bijj0ij

0
j þ 2Cijke0ijj

0
k þ �ijE

0
iE
0
j

� �
dV ¼ 0

ð112Þ
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Since the energy density of the difference solution U0 is non-negative,
this relation requires

2U0 ¼ Aijkle0ije
0
kl þ Bijj0ij

0
j þ 2Cijke0ijj

0
k þ �ijE

0
iE
0 ¼ 0 in V ð113Þ

However, the tensors Aijkl, and �ij are positive definite and the tensor
is such that the energy U0 is non-negative. Therefore the strain, cur-
vature, electric field, and associated stresses and electric displace-
ments for the difference solution must vanish

e0ij ¼ 0; j0i ¼ 0; E0i ¼ 0; r0ij ¼ 0; l0i ¼ 0; D0i ¼ 0 ð114a—fÞ

These require that the difference displacementand the difference elec-
tric potential /0 can be at most a rigid body motion and a constant
potential, respectively. However, if displacement and potential are
specified on parts of the boundary, then the difference displacement
and electric potential vanish everywhere and we have

uð1Þi ¼ u 2ð Þ
i ð115aÞ

/ð1Þ ¼ / 2ð Þ ð115bÞ

eð1Þij ¼ e 2ð Þ
ij ð115cÞ

jð1Þi ¼ j 2ð Þ
i ð115dÞ

Eð1Þi ¼ E 2ð Þ
i ð115eÞ

rð1Þji ¼ r 2ð Þ
ji ð115fÞ

lð1Þi ¼ l 2ð Þ
i ð115gÞ

Dð1Þi ¼ D 2ð Þ
i ð115hÞ

Therefore, the solution to the boundary value problem is unique. On
the other hand, if only force- and moment-tractions are specified
over the entire boundary, then the displacement is not unique
and is determined only up to an arbitrary rigid body motion.
Similarly, if only normal electric displacement is specified over
the entire boundary, then the electric potential is not unique and
is determined only up to an arbitrary constant.

5.4. Reciprocal theorem

We derive now the general reciprocal theorem for the equilib-
rium states of a linear elastic size-dependent piezoelectric material
under different applied loads. Consider two sets of equilibrium
states of compatible size-dependent piezoelectric solutions

uð1Þi ;xð1Þi ;/ð1Þ; tðnÞð1Þi ;mðnÞð1Þi ; dð1Þ; Fð1Þi

n o
and u 2ð Þ

i ;x 2ð Þ
i ;/ 2ð Þ; tðnÞ 2ð Þ

i ;
n

mðnÞ 2ð Þ
i ; d 2ð Þ

; F 2ð Þ
i g. Let us apply the weak form (85) in the formsZ

V
rð1Þji e 2ð Þ

ij � 2lð1Þi j 2ð Þ
i � Dð1Þi E 2ð Þ

i

h i
dV

¼
Z

S
tðnÞð1Þi u 2ð Þ

i dSþ
Z

S
mðnÞð1Þi x 2ð Þ

i dSþ
Z

S
d ð1Þ

/ 2ð ÞdS

þ
Z

V
Fð1Þi u 2ð Þ

i dV �
Z

V
qð1Þe / 2ð ÞdV ð116Þ

andZ
V

r 2ð Þ
ji eð1Þij � 2l 2ð Þ

i jð1Þi � D 2ð Þ
i Eð1Þi

h i
dV

¼
Z

S
tðnÞ 2ð Þ

i uð1Þi dSþ
Z

S
mðnÞ 2ð Þ

i xð1Þi dSþ
Z

S
d 2ð Þ

/ð1ÞdS

þ
Z

V
F 2ð Þ

i uð1Þi dV �
Z

V
q 2ð Þ

e /ð1ÞdV ð117Þ
Using the constitutive relations (67)–(69), we obtain

rð1Þji e 2ð Þ
ij � 2lð1Þi j 2ð Þ

i � Dð1Þi E 2ð Þ
i ¼Aijkle

ð1Þ
kl e 2ð Þ

ij þ Cijkjð1Þk e 2ð Þ
ij � akijE

ð1Þ
k e 2ð Þ

ij

þ Bijjð1Þj j 2ð Þ
i þ Ckjie

ð1Þ
kj j 2ð Þ

i � bjiE
ð1Þ
j j 2ð Þ

i

� �ijE
ð1Þ
j E 2ð Þ

i � aijkeð1Þjk E 2ð Þ
i � bijj

ð1Þ
j E 2ð Þ

i

ð118Þ

r 2ð Þ
ji eð1Þij � 2l 2ð Þ

i jð1Þi � D 2ð Þ
i Eð1Þi ¼Aijkle

2ð Þ
kl eð1Þij þ Cijkj 2ð Þ

k eð1Þij � akijE
2ð Þ

k eð1Þij

þ Bijj 2ð Þ
j jð1Þi þ Ckjie

2ð Þ
kj jð1Þi � bjiE

2ð Þ
j jð1Þi

� �ijE
2ð Þ

j Eð1Þi � aijke 2ð Þ
jk Eð1Þi � bijj

2ð Þ
j Eð1Þi

ð119Þ

Symmetry relations (55)–(60) show that the left hand of (118) and
(119) are the same

rð1Þji e 2ð Þ
ij � 2lð1Þi j 2ð Þ

i � Dð1Þi E 2ð Þ
i ¼ r 2ð Þ

ji eð1Þij � 2l 2ð Þ
i jð1Þi � D 2ð Þ

i Eð1Þi ð120Þ

Therefore, by comparing (116) and (117), we obtain the general re-
ciprocal theorem for the linear size-dependent piezoelectric mate-
rial asZ

S
tðnÞð1Þi u 2ð Þ

i dSþ
Z

S
mðnÞð1Þi x 2ð Þ

i dSþ
Z

S
d ð1Þ

/ 2ð ÞdS

þ
Z

V
Fð1Þi u 2ð Þ

i dV �
Z

V
qð1Þe / 2ð ÞdV

¼
Z

S
tðnÞ 2ð Þ

i uð1Þi dSþ
Z

S
mðnÞ 2ð Þ

i xð1Þi dSþ
Z

S
d 2ð Þ

/ð1ÞdS

þ
Z

V
F 2ð Þ

i uð1Þi dV �
Z

V
q 2ð Þ

e /ð1ÞdV ð121Þ

When there is no body force and charge density, this theorem re-
duces toZ

S
tðnÞð1Þi u 2ð Þ

i dSþ
Z

S
mðnÞð1Þi x 2ð Þ

i dSþ
Z

S
d ð1Þ

/ 2ð ÞdS

¼
Z

S
tðnÞ 2ð Þ

i uð1Þi dSþ
Z

S
mðnÞ 2ð Þ

i xð1Þi dSþ
Z

S
d 2ð Þ

/ð1ÞdS ð122Þ
6. Isotropic linear piezoelectric material

6.1. General governing equations

The piezoelectric effect can exist in isotropic couple stress
materials as we shall see. For an isotropic material, the symmetry
relations require

Aijkl ¼ kdijdkl þ ldikdjl þ ldildjk ð123Þ

Bij ¼ 16gdij ð124Þ

Cijk ¼ 0 ð125Þ

�ij ¼ �dij ð126Þ

aijk ¼ 0 ð127Þ

bij ¼ 4f dij ð128Þ

The moduli k and l have the same meaning as the Lamé constants
for an isotropic material in Cauchy elasticity. These two constants
are related by

k ¼ 2l m
1� 2m

ð129Þ
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where m is the Poisson ratio. The material constants g and f account
for couple stress and piezoelectricity effects in an isotropic material.
The constant f may be called the flexoelectric coefficient of the
material.

As a result, the electromechanical enthalpy and energy densi-
ties become

H ¼ 1
2

kejjekk þ leijeij þ 8gjiji �
1
2
�EiEi � 4fEiji ð130Þ

U ¼ 1
2

kejjekk þ leijeij þ 8gjiji þ
1
2
�EiEi ð131Þ

respectively. The following restrictions are necessary for positive
definite energy density U

3kþ 2l > 0; l > 0; g > 0; � > 0 ð132Þ

We should notice that there is generally no restriction on the flexo-
electric coefficient f. The ratio

g
l
¼ l2 ð133Þ

specifies the characteristic material length l, which accounts for
size-dependency in the small deformation couple stress elasticity
theory under consideration here.

Then, the constitutive relations for the symmetric part of the
force-stress tensor, the couple-stress vector, and the electric dis-
placement vector can be written as

r jið Þ ¼ kekkdij þ 2leij ð134Þ

li ¼ �8ll2ji þ 2fEi ð135Þ

Di ¼ �Ei þ 4fji ð136Þ

For the skew-symmetric part of the force-stress tensor, we have

r ji½ � ¼ �l i;j½ � ¼ 2ll2r2xji � f Ei;j � Ej;i
� �

ð137Þ

The irrotational character of the electric field given by relation (23)
shows that the last term disappears and

r ji½ � ¼ 2ll2r2xji ð138Þ

or

r ji½ � ¼ 2ll2eijkr2xk ð139Þ

Therefore, for the total force-stress tensor, we have

rji ¼ kekkdij þ 2leij þ 2ll2r2xji ð140Þ

It should be noticed that the coefficient f appears only in the couple-
stress vector li and electric displacement vector Di, but not in the
force-stress tensor rji. Therefore, we realize that there is no direct
coupling between the electric field Ei and the total force-stress ten-
sor rji, a character common with the classical isotropic piezoelec-
tricity. However, the piezoelectric effect exists because the
electric field Ei is coupled with the couple-stress vector li and elec-
tric displacement vector Di. As we mentioned before, if the effect of
couple-stress is negligible (l ¼ 0Þ, the effect of flexoelectricity must
be excluded (f ¼ 0Þ.

For the governing equations, we have

kþ l 1þ l2r2
� �h i

uk;ki þ l 1� l2r2
� �

r2ui þ Fi ¼ q€ui ð141Þ

�r2/þ qe ¼ 0 ð142Þ

which are explicitly independent of f. However, the piezoelectric ef-
fect can exist due to the moment-traction
mðnÞi ¼ eijknjlk ¼ eijknj �8ll2jk þ 2fEk

� �
ð143Þ

which couples ji and Ei on the boundary. Notice that although Eqs.
(141) and (142) for displacements and electric potential are uncou-
pled, the piezoelectric boundary value problem is coupled through
the moment traction as indicated in (143).

6.2. Governing equations for two dimensional isotropic material

We suppose that the media occupies a cylindrical region, such
that the axis of the cylinder is parallel to the x3-axis. Furthermore,
we assume the body is in a state of planar deformation and polar-
ization parallel to this plane, such that

ua;3 ¼ 0; /;3 ¼ 0; u3 ¼ 0 in V ð144a—cÞ

where all Greek indices here, and throughout the remainder of the
paper, will vary only over (1,2). Also, let V 2ð Þ and S 2ð Þ represent,
respectively, the cross section of the body in the x1x2-plane and
its bounding edge in that plane. Interestingly, if the location on
the boundary contour in the x—y plane is specified by the coordi-
nate s in a positive sense, we have n1 ¼ dx2

ds and n2 ¼ dx2
ds . These can

be written in the index form

na ¼ eab
dxb

ds
ð145Þ

where eab is the two-dimensional alternating or permutation sym-
bol with

e12 ¼ �e21 ¼ 1; e11 ¼ e22 ¼ 0 ð146Þ

As a result of these assumptions, all quantities are independent of
x3. Then, throughout the domain

xa ¼ 0; e3i ¼ ei3 ¼ 0; j3 ¼ 0; E3 ¼ 0 ð147a—dÞ

and

r3a ¼ ra3 ¼ 0; l3 ¼ l21 ¼ 0; D3 ¼ 0 ð148a—cÞ

Introducing the abridged notation, one can define

x ¼ x3 ¼
1
2

u2;1 � u1;2ð Þ ¼ 1
2
eabub;a ð149Þ

and the non-zero components of the curvature vector are

ja ¼
1
2
eabx;b ð150Þ

Therefore, the non-zero components of stresses and polarizations
are written

la ¼ �8ll2ja þ 2fEa ð151Þ

Da ¼ �Ea þ 4fja ð152Þ

rba ¼ keccdab þ 2leab þ 2ll2eabr2x ð153Þ

The components of the force-stress tensor in explicit form are

r11 ¼
2l

1� 2m
1� mð Þe11 þ me22½ � ð154aÞ

r22 ¼
2l

1� 2m
me11 þ 1� mð Þe22½ � ð154bÞ

r12 ¼ 2le12 � 2ll2r2x ð154cÞ

r21 ¼ 2le12 þ 2ll2r2x ð154dÞ

All the other components are zero, apart from r33 and l3a, which
are given as
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r33 ¼ mrcc ¼ m r11 þ r22ð Þ ð155Þ

l3a ¼ �4ll2x;a � 2feabEb ð156Þ

Notice that the stresses in (155) and (156) act on planes parallel to
the x1x2-plane.

For the planar problem, the stresses and polarizations must sat-
isfy the following equations

rba;b þ Fa ¼ q€ua ð157Þ

r ba½ � ¼ �l a;b½ � ð158Þ

Da;a ¼ qe ð159Þ

with the obvious requirement F3 ¼ 0. It should be noticed that the
moment Eq. (158) has given the non-zero components

r 21½ � ¼ �r 12½ � ¼ �l 1;2½ � ¼ 2ll2r2x ð160Þ

in (154c) and (154d). Therefore, for the governing equations, we
have

kþ l 1þ l2r2
� �h i

ub;ba þ l 1� l2r2
� �

r2ua þ Fa ¼ q€ua ð161Þ

�r2/þ qe ¼ 0 ð162Þ

The force-traction reduces to

tðnÞa ¼ rbanb ð163Þ

and the moment-traction has only one component m3. This can be
conveniently denoted by the abridged symbol m, where

m ¼ mðnÞ3 ¼ ebalanb ¼ 4ll2 @x
@n
� 2f

@u
@s

ð164Þ

For normal electric displacement, we have

d ¼ �� @u
@n
þ 2f

@x
@s

ð165Þ
6.3. Polarization of an isotropic dielectric cylinder

Consider a long isotropic homogeneous linear flexoelectric
dielectric cylinder of radius a placed perpendicular to an initially
uniform electric field with magnitude E0 in the x1 direction, as indi-
cated in Fig. 1. The polarization of the cylinder disturbs the electric
field, such that the electric potentials for inside and outside cylin-
der in polar coordinates are

/ ¼
/in ¼ A1r cos h r 6 a

/out ¼ �E0r þ B2
1
r

� �
cos h r P a

(
ð166Þ

where at distances far from the cylinder

/! �E0x1 ¼ �E0r cos h as r !1 ð167Þ

Notice that these solutions satisfy the Poisson’s equation (162)
without free electric charges. As a result of the flexoelectricity ef-
fect, the cylinder also experiences some deformation and internal
stresses. The elastostatic components of the displacements satisfy
Eq. (161) by neglecting the body force and the inertial effects. These
components in polar coordinates are

ur ¼ ð1� 4mÞC1r2 þ C2
1
r

I1
r
l

� �
� 1

2l
C2

	 

cos h ð168aÞ

uh ¼ ð5� 4mÞC1r2 � C2
1
l

I0
r
l

� �
� 1

r
I1

r
l

� �	 

þ 1

2l
C2

� �
sin h ð168bÞ
where In is the modified Bessel function of first kind of order n. The
four constants A1;B2; C1 and C2 are to be determined from boundary
conditions. It should be noticed that the last terms in the expres-
sions (168a,b) represent a rigid body translation in the x1 direction,
which has been added to keep the center of the cylinder to remain
at the origin.

For components of the electric field, strain, rotation and mean
curvature in polar coordinates, we obtain

Er ¼ �
@/
@r
¼

�A1 cos h r 6 a

E0 þ B2
1
r2

� �
cos h r P a

(
ð169aÞ

Eh ¼ �
@/
r@h
¼

A1 sin h r 6 a
�E0 þ B2

1
r2

� �
sin h r P a

(
ð169bÞ

err ¼
@ur

@r
¼ 2 1� 4mð ÞC1r þ C2

1
lr

I0
r
l

� �
� 2

r2 I1
r
l

� �	 
	 

cos h ð169cÞ

ehh ¼
1
r
@uh

@h
þ ur

r

¼ 2 3� 4mð ÞC1r2 � C2
1
lr

I0
r
l

� �
� 2

r
I1

r
l

� �	 
� �
cos h ð169dÞ

erh ¼
1
2

1
r
@ur

@h
þ @uh

@r
� uh

r

� �

¼ 2C1r � 1
2

C2
1

l2
I1

r
l

� �
� 2

lr
I0

r
l

� �
þ 2

r2 I1
r
l

� �	 
	 

sin h ð169eÞ

x ¼ 1
2

@uh

@r
þ uh

r
� 1

r
@ur

@h

� �

¼ 1
2

16 1� mð ÞC1r � C2
1

l2
I1

r
l

� �	 

sin h ð169fÞ

jrz ¼ jh ¼ �
1
2
@x
@r

¼ � 1

4l2
16 1� mð Þl2C1 � C2

1
l

I0
r
l

� �
� 1

r
I1

r
l

� �	 
� �
sin h ð169gÞ

�jhz ¼ jr ¼
1
2

1
r
@x
@h

¼ 1

4l2 16 1� mð Þl2C1 � C2
1
r

I1
r
l

� �	 

cos h ð169hÞ

For the components of force- and couple-stresses, and electric dis-
placements, we have
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Fig. 1. Flexoelectric dielectric cylinder in uniform electric field.
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Fig. 2. Flexoelectric dielectric cylinder in uniform electric field. Radial stress rrr on
h ¼ p=2.

Fig. 3. Flexoelectric dielectric cylinder in uniform electric field. Shear stress rrh on
h ¼ 0.

Fig. 4. Flexoelectric dielectric cylinder in uniform electric field. Couple-
stresslzr ¼ �lrz on h ¼ 0.
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The electrical boundary conditions at r ¼ a are /in ¼ /out and
Drjin ¼ Drjout , which enforce the continuity of the electric potential
and the electric displacement. These give

A1a ¼ �E0aþ B2
1
a

ð171aÞ
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The three mechanical boundary conditions at r ¼ a are
rrr ¼ 0; rrh ¼ 0 and lrz ¼ 0, which represent the traction-free sur-
face. Interestingly, these give only two independent required
equations

2C1 þ C2
1
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1
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l

� �
� 2

a
I1

a
l

� �	 

¼ 0 ð172aÞ
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1
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I0
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l

� �
� 1

a
I1

a
l

� �	 

þ f

l
A1 ¼ 0 ð172bÞ

Using the relations (171) and (172), we can obtain the four un-
known coefficients A1; B2; C1 and C2 to complete the solution.

For the numerical study, we take the electric field E0 ¼ 1 and se-
lect the following non-dimensional values for the material param-
eters: l ¼ 1; m ¼ 1=4; a ¼ 1; l ¼ 0:1; �0 ¼ 1; � ¼ 2; f ¼ 0:1. Then,

A1 ¼ �0:6348 ð173aÞ

B2 ¼ 0:8892 ð173bÞ

C1 ¼ 0:0471 ð173cÞ

C2 ¼ �4:1275� 10�6 ð173dÞ

The analytical solutions along the radial line at h ¼ p=2 for radial
stress rrr , and along the radial line at h ¼ 0 for shear stress rrh

and couple-stress lzr are displayed in Figs. 2–4, respectively. Notice
that the uniform electric field has generated polarization, force- and
couple- stresses in the isotropic cylinder.

7. Conclusions

The consistent size-dependent continuum mechanics is a
practical theory, which enables us to develop many different
formulations that may govern the behavior of solid continua at
the smallest scales. The size-dependent electromechanical
formulations have the priority because of their importance in
nanomechanics and nanotechnology. Here, we have developed
the size-dependent piezoelectricity, which shows the possible
coupling of polarization to the mean curvature tensor. The most
general anisotropic linear elastic material is described by 78 inde-
pendent constitutive coefficients. This includes nine flexoelectric
coefficients relating mean curvatures to electric displacements,
and electric field components to the couple-stresses.

In addition, we have developed the corresponding weak forms,
energy potentials, uniqueness theorem, and reciprocal theorem for
linear piezoelectricity. The new size dependent piezoelectricity
clearly shows that the piezoelectric effect can exist in isotropic
couple stress materials, where the two Lamé parameters, one
length scale, and one flexoelectric parameter completely character-
ize the behavior. The details for the general two-dimensional iso-
tropic case are also elucidated. Finally, we have examined the
polarization of an isotropic long cylinder in a uniform electric field
and obtained the closed form solution.

The present theory shows that couple-stresses are necessary for
the development of any electromechanical size dependent effect.
Additional aspects of linear piezoelectricity, including fundamental
solutions and computational mechanics formulations, will be ad-
dressed in forthcoming work. Beyond this, the present theory
should be useful for the development of other size-dependent elec-
tromechanical formulations, such as piezomagnetism and magne-
tostriction, which are also important for analysis at small scales.
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