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In this paper, a consistent theory is developed for size-dependent piezoelectricity in dielectric solids. This
theory shows that electric polarization can be generated as the result of coupling to the mean curvature
tensor, unlike previous flexoelectric theories that postulate such couplings with other forms of curvature
and more general strain gradient terms ignoring the possible couple-stresses. The present formulation
represents an extension of recent work that establishes a consistent size-dependent theory for solid
mechanics. Here by including scale-dependent measures in the energy equation, the general expressions
for force- and couple-stresses, as well as electric displacement, are obtained. Next, the constitutive rela-
tions, the uniqueness theorem and the reciprocal theorem for the corresponding linear small deformation
size-dependent piezoelectricity are developed. As with existing flexoelectric formulations, one finds that
the piezoelectric effect can also exist in isotropic materials. However, in the present theory there is only
one flexoelectric constant for isotropic material and the coupling is strictly through the skew-symmetric
mean curvature tensor. In the last portion of the paper, this isotropic case is considered in detail by devel-
oping the corresponding boundary value problem for two dimensional analyses and obtaining a closed

form solution for an isotropic dielectric cylinder.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in micromechanics, nanomechanics and
nanotechnology require advanced size dependent electromechani-
cal modeling of coupled phenomena, such as piezoelectricity. Clas-
sical piezoelectricity describes the relation between electric
polarization and strain in non-centrosymmetric dielectrics at the
macro-scale (Cady, 1964). However, some experiments have re-
ported about size-effect phenomena of piezoelectric solids and lin-
ear electromechanical coupling in isotropic materials (Mishima
et al., 1997; Shvartsman et al., 2002; Buhlmann et al., 2002; Cross,
2006; Harden et al., 2006; Zhu et al., 2006; Baskaran et al., 2011;
Catalan et al., 2011). The classical theory cannot address this size
dependency, because it considers that matter is continuously dis-
tributed throughout the body by neglecting its microstructure.
Therefore, it is necessary to develop a size-dependent piezoelec-
tricity, which accounts for the microstructure of the material by
introducing higher gradient of deformation. Wang et al. (2004)
have developed a size-dependent piezoelectric theory by consider-
ing the rotation gradient effect in the framework of the couple
stress theory. In this formulation the electric polarization is related
to the macroscopic rotation gradient. However, the theory suffers
from its dependence on an underlying inconsistent couple stress
theory. In some circles this size-dependent character for linear re-
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sponse is known as the flexoelectric effect (Kogan, 1964; Meyer,
1969), where the dielectric polarization is related to the macro-
scopic strain gradient or curvature strain. This theory predicts that
in principle the flexoelectric effect is nonzero for all dielectrics,
including the isotropic ones. Although there are some develop-
ments in this direction (Tagantsev, 1986; Maranganti et al., 2006;
Eliseev et al., 2009), these theories also suffer from the use of dif-
ferent inconsistent second order gradients of deformation, as well
as ignoring the possible couple-stress effect. There have been some
experimental studies, which correlate their data with these theo-
ries (e.g., Cross, 2006; Harden et al., 2006; Zhu et al., 2006; Zubko
et al., 2007; Baskaran et al., 2011; Catalan et al., 2011; Morozovska
et al., 2012). It should also be mentioned that the surface effects
(e.g., residual surface stress, surface elasticity) have often been
adopted to analyze the size effects. For example, Pan et al. (2011)
established a continuum theory of surface piezoelectricity for
dielectric materials. However, it seems there is a relation between
the continuum size-dependent piezoelectricity theory and the con-
tinuum theory of surface piezoelectricity, which needs further
development.

Thus, the first step toward developing consistent size-depen-
dent electromechanical theories is the establishment of the consis-
tent size-dependent continuum mechanics theory. Recently,
Hadjesfandiari and Dargush (2011) have resolved the troubles in
the existing size-dependent continuum mechanics. This progress
shows that the couple-stress tensor has a vectorial character and
that the body couple is not distinguishable from the body force.
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In this theory, the stresses are fully determinate and the measure
of deformation is the mean curvature tensor, which is the skew-
symmetrical part of the macroscopic rotation gradient. This devel-
opment can be considered the completion of the works of Mindlin
and Tiersten (1962) and Koiter (1964). Furthermore, this size-
dependent continuum mechanics must provide the fundamental
base for developing different mechanical and electromechanical
formulations that may govern the behavior of solid continua at
the smallest scales. Here, the consistent size-dependent piezoelec-
tric theory is developed, which shows that the size-dependent pie-
zoelectric effect is related to the mean curvature tensor.

In the following section, we provide an overview of the electro-
mechanical equations. This includes the equations for the kinemat-
ics, kinetics and quasi-electrostatics of size-dependent small
deformation continuum mechanics. In Section 3, we consider the
energy equation and its consequences based on the first law of
thermodynamics for dielectric materials. In Section 4, the constitu-
tive relations for linear elastic piezoelectric materials also are de-
rived. Next, we develop two weak formulations in Section 5,
which are used to establish conditions for uniqueness and to derive
the reciprocal identity. Section 6 provides the general theory for
isotropic linear material and the details for two dimensional cases
are derived, including the closed form solution for polarization of a
long cylinder in a uniform electric field. Finally, Section 7 contains
a summary and some general conclusions.

2. Basic size-dependent electromechanical equations

Let us take the three dimensional coordinate system x;x,x3 as
the reference frame with unit base vectors e;, e, and e3. Consider
a piezoelectric elastic material continuum occupying a volume V
bounded by a surface S. In size-dependent continuum theory, the
interaction in the body is represented by true (polar) force-stress
g; and pseudo (axial) couple-stress u; tensors. The force-traction
vector tE”) and moment-traction vector m§"> at a point on surface

element dS with unit normal vector n; are given by

t" = an (1)

mﬁn) = W;nj (2)
The force-stress tensor is generally non-symmetric and can be
decomposed as

0ji = 0 + O 3)
where 0 and oj; are the symmetric and skew-symmetric parts,

respectively. Hadjesfandiari and Dargush (2011) have shown that
the axial couple-stress tensor is skew-symmetrical

K = — Wy (4)

This means the moment-traction mE”) given by (2) is tangent to the
surface. As a result, the couple-stress tensor j; creates only bending
moment-traction on any arbitrary surface in matter.

We can define the true (polar) couple-stress vector y; dual to
the tensor (i; as

1
Hi = 5 Eijk L (3)

where & is the permutation tensor or Levi-Civita symbol. This
relation can also be written in the form

Sijk e = Hii 6)
Consequently, the surface moment-traction vector mE”)reduces to

= ;= ey (7)

which is obviously tangent to the surface.

m

To formulate the fundamental equations, we consider an arbi-
trary part of this electromechanical body occupying a volume V,
enclosed by boundary surface S,. In infinitesimal deformation the-
ory, the displacement vector field u(x, t) is so small that the veloc-
ity and acceleration fields can be approximated by u and 1,
respectively. As a result, the linear and angular equations of motion
for this part of the body are written as

[erase [ Fav— [ piav ®)
Sa Va Va

/ [sljkxjt,((")erEn)}dSJr/ 8iijijdV=/ &ijiX; pildV 9)
Sa Va a

where F; is the body force per unit volume of the body, and p is the
mass density. Hadjesfandiari and Dargush (2011) have shown that
the body couple density is not distinguishable from body force in
size-dependent couple stress continuum mechanics and its effect
is simply equivalent to a system of body force and surface traction.

By using the relations (1) and (2) for tractions in the equations
of motion (8) and (9), along with the divergence theorem, and
noticing the arbitrariness of volume, we finally obtain the differen-
tial form of the equations of motion as

inJ+Fi=lei (10)

Wij + &ix Tk = 0 (11

Since the couple-stress tensor y; is skew-symmetric, the angular
equilibrium Eq. (11) gives the skew-symmetric part of the force-
stress tensor as

Tl = —%Squ/lqm = ~Hij (12)
Therefore, for the total force-stress tensor we have

Gji = Oy + O = Ojiy — (13)
As a result the linear equation of motion reduces to

[04i) — Mgl + Fi = pil; (14)

It is seen that the sole duty of the angular equilibrium Eq. (11) is to
produce the skew-symmetric part of the force-stress tensor.
In infinitesimal deformation theory, we may assume

1

(92 u;
< 7
s

8xj OXp.

ou;

<
x| <

(15)

where [s is the smallest characteristic length in the body. Therefore,
the infinitesimal strain and rotation tensors are defined as

1

ey = Uiy = 5 (U + Uji) (16)
1

oy = U = 5 (Ui — W) (17)

respectively. Since the true (polar) tensor w; is skew-symmetrical,
one can introduce it corresponding dual axial (pseudo) rotation vec-
tor as

1
Wi = jsi}-ka}kj (18)

The infinitesimal pseudo (axial) mean curvature tensor is also de-
fined as

1
Ky = Oij =5 (@4 — @) (19)

Since this tensor is also skew-symmetrical, its corresponding dual
polar (true) mean curvature vector is
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1
Ki = 5 EiikK (20)
By using (18) into (20), we obtain

1 1
Ki = 2 Ukki — szui (21)
which also shows

1
Ki = 5 Wjij (22)

For a quasistatic electric field E, in which the effect of induced mag-
netic field in the material is neglected, we have the electrostatic
relation

gijkEk.j =0 or E,’_j — Ej‘i =0 (23)

Therefore, as is well-known in this case, the electric field E can be
represented by the electric potential ¢, such that
Ei=—¢, (24)

The electric field and deformation can induce polarization P in the
dielectric material. The electric displacement vector D is defined by

D; = €E; + P; (25)

where ¢, is the permittivity of free space. The normal electric dis-
placement on the surface is defined by the scalar

d = Din; (26)
The differential form of the electric Gauss law is
D;; = Pe (27)

where p, is the electric charge density in the volume.

What has been presented so far is a continuum mechanics the-
ory of electromechanical materials with quasistatic electric field,
independent of the material properties. The fundamental govern-
ing electromechanical equations in the volume V are

[0Gi) — Mgl + Fi = pil; (28)
Dii = p, (29)

subject to some prescribed compatible boundary conditions on the
boundary S. From a mathematical point of view, we can specify
either the displacement vector u; or the force-traction vector t;”),
the tangential component of the rotation vector w; or the tangent
moment-traction vector mf”), and the electric potential ¢ or the nor-
mal electric displacement «. However, in practice, the actual
boundary is usually free of moment traction (mf”) = 0) everywhere
on S. Therefore, the tangential component of ; usually is not spec-
ified on the actual boundary S.

Egs. (28) and (29) on their own are not enough to describe the
electromechanical response of any particular material. To complete
the specification, we need to define the electromechanical consti-
tutive equations. For this we need to consider the energy equation.

3. Energy equation for piezoelectric material and constitutive
relations

The energy equation for the electromechanical elastic medium

in volume V,, which undergoes small deformation and quasistatic
polarization, is

% / (%pu,-u,»JrU)dV: / (e + m{" i, — /) ds
Va Sa
+ / (Fitli + $ppe)dV (30)
Va

where U is the internal energy per unit volume. This equation
shows that the rate of change of total energy of the system in vol-

ume V, is equivalent to the power of the external forces, moments
and electric field.

By using the relations (10), (11) and (27) along with the diver-
gence theorem, and noticing the arbitrariness of volume, one can
obtain

U=0gé;+ Wik — D (31)

This equation is the first law of thermodynanics for the size-depen-
dent electromechanical elastic medium in differential form, which
can also be written as

U = 0y + pyicy + EiD; (32)
or
U = U(ﬁ)éjj - 2,“,’(:1 + EiDi (33)

The relation (32) shows that for an elastic piezoelectric solid with
couple stress effects, the internal energy U depends not only on
the strain tensor e and the electric displacement vector D, but also
on the mean curvature tensor x, that is

U= U(E,’j, K,'j,Di) (34)
U= U(E’ij,Ki,Di) (35)

By using the Legendre transformation, we define the specific elec-
tric enthalpy as

H=U-ED; (36)
Then differentiating with respect to time, we obtain

H=U-ED; - ED; (37)
which with Egs. (32) and (33) for U yields

H = € + ki — DiE; (38)
or

H = 0iéj — 2u;ki — DiE; (39)
These equations implies that

H = H(ej, Ky, E) (40)
or

H = H(ey, ki, Ei) (41)

If we differentiate these forms of H with respect to time, we obtain
OH OH . oH

H=——¢j+=—1;+==F 42
de; 1 " ar; " BE, (42)

or

. OH. OH. OH.

H—aTijeij-l-a—KiK,'-‘ra—EiEi (43)

By comparing (42) with (38) and considering the arbitrariness of
&5, iz and E;, we find the following constitutive relations for the
symmetric part of force-stress tensor o, the couple-stress tensor
I and the electric displacement vector D;:

1/6H OH
O iy = j (6_81] + 8_€]1> (44)
1/0H OH
=2 (3, k) )
OH
Di=— 9E (46)

If we further agree to construct the functional H, such that
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OH oH

9e; _ Oe; (47)
OH OH
we can write in place of (44) and (45)
OH

G = o (49)

i 88,-]-

OH

K = Ky (50)

It should be noticed that by comparing (39) and (43), one obtains

1 0H
S 51
lul 2 (9K1' ( )
for the couple-stress vector, which is more suitable in the following.
By using this in the relation (12), we obtain the skew-symmetric
part of the force-stress tensor as

1 ((’)H) 1 (8H>
Oin=—WU;s=—|—] —=[=— 52
i ="t =2\or), 4 \ow) (52)
Therefore, for the total force-stresses, we have
5 _L(OH OH\ 1(0HY 1(oH 53
"_2 ae,j Oeji 4 OK,‘ J 4 aKj i

4. Linear piezoelectricity theory

For linear elastic size-dependent piezoelectricity theory, we
consider the homogeneous quadratic form for H

1 1 1
H= injkleijekl + jBijkIKinkl + CijueijKi — 5 €;EE; — aycEiej

— ﬁijkEink (54)

The first three terms represent the most general form of the elas-
tic energy density. The tensors Ay, Bju and Cyy contain the elas-
tic constitutive coefficients and are such that the elastic energy is
positive definite. As a result, tensors Aj; and By are positive def-
inite. The tensor Ay, is actually equivalent to its corresponding
tensor in Cauchy elasticity. The tensor &; is the permittivity or
dielectric tensor, which is also positive definite. The tensors o
and fj represent the piezoelectric character of the material.
While the true tensor oy is the classical piezoelectric tensor,
the pseudo tensor fj is the size-dependent coupling term be-
tween the electric field and the mean curvature tensor. The ten-
sor f;; may be called the flexoelectric tensor, which accounts for
the microstructure of the material. The symmetry and skew-sym-
metry relations are

Aijit = Auij = Aji (55)
Bijy = Buij = —Biji (56)
Cijur = Gt = —Cijik (57)
€jj = €ji (58)
Olijk = Likj (39)
Bijie = —Bi (60)

For the most general case, the number of distinct components
for Aijklv B,’jk[, Cijkh €ij, ijk and ﬁijk are 21, 6, 18, 6, 18 and 9,
respectively. Therefore, the most general linear elastic piezoelec-
tric anisotropic material is described by 78 independent constitu-
tive coefficients. It is interesting to note that the enthalpy
density H can also be written in terms of the mean curvature
vector as

1 1 1
H = EA,-]-kleijekl + iBinin + Cijkeink — jeijEiE)' — OCijkEiejk

— ﬂi]-E,'Kj (61)
where
1
Biju = Z&'jp«?ququ (62)
1
Ciju = 5 CijmEmik (63)
1
ﬁijk = Eﬁimgmkj (64)
and the symmetry relations
B = Bj;i (65)
Ciik = Cjik (66)

hold. It is seen that the true tensor Bj is positive definite, and there
is no general symmetry condition for the true tensor ;. Note that
the number of distinct components for true tensors By, Ci, and f;
are 6, 18 and 9, respectively. We should also notice that there is
no restriction on the piezoelectric and flexoeletric tensors o and
p;; for a well posed linear size-dependent piezoelectric boundary va-
lue problem.

By using the enthalpy density (61) in the general relations (49),
(51) and (46), we obtain the following constitutive relations

iy = Ajjrieu + CiicKr — OigEi ©7)
1 1 1

Hi= =3Bt =5 Cuew + 5 iy o

D; = €E; + aeji + BiK; 69)

The skew-symmetric part of the force-stress tensor is found as
O = —Hij

1 1 1 1
= ZBim Kmj — ZBjm Kmi+ 4 Cikmi€kmj — 2 Crkmj€rm,i

1 1
2 ﬁmiEm-j + 4 ﬂijm.i (70)

Therefore, the constitutive relation for the total force-stress tensor
is

1 1
Gji = Ajjuers + CijrIcr — oiiEx + ZBim Kmj — ZBjm Kmj
1 1 1 1
+3 Cimi€kmj — i Cikmj€kmi — a BmiEmj + i BumiEm.i (71)

For the polarization vector, we have the relation
P; = D; — €E; = (Eij - 605,’j)Ej + Olijk€jk + ﬁ,-jKj (72)

When the constitutive relations force-stress tensor (71) and electric
displacement vector (69) are carried into the linear equation of mo-
tion (10) and electric Gauss law (27), one obtains the governing
equations for size-dependent piezoelectricity.

Interestingly, for the internal energy density function U, we
obtain

%Ai]k,eijek, + %Bin,‘Kj + Cijke,'ij + %ﬁijEiEj (73)
which is a positive definite quadratic form without explicit piezo-
electric and flexoelectric coupling.

It should be noticed that the flexoelectric effect always appears
along with couple-stresses. This means that if we neglect the cou-
ple stresses (B = 0, Cx = 0), all other size-dependent effects such
as flexoelectricity must be neglected as well (8; = 0).

U=H+ED; =
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5. Weak formulations and their consequences

Weak formulations or virtual work theorems have many appli-
cations in all aspects of continuum mechanics, such as variational
and integral equation methods. These methods are necessary for
developing computational mechanics methods, such as finite ele-
ment and boundary element methods. Weak formulations can also
be used in exploring conditions of uniqueness. Therefore, we de-
rive two forms of these principles for the static state of size-depen-
dent piezoelectricity as follows.

5.1. Weak forms of equilibrium equations

Consider the part of the body occupying a fixed volume V
bounded by boundary surface S. The standard form of the equilib-
rium equations for this electromechanical medium in the static
case are given by

ojij+Fi=0 (74)
Hjij + &0k = 0 (75)
Dii = p, (76)

Suppose arbitrary differentiable displacement variation éu; and
electric potential variation 6¢ in the domain, where their corre-
sponding angular rotation and electric fields are

. 1 .
ow; = §8ijk0uk_j (77)

OE; = —0¢p; (78)

Let us multiply (74) and (75) by the virtual displacement éu; and
virtual angular rotation éw;, respectively, and integrate their sum
over the volume. Then, after following some steps similar to those
in Hadjesfandiari and Dargush (2011), we obtain the principle of
virtual work, which can be written as

/O'O;)éeijdV+/,uﬁélc,-jdV:/tf.”)éu,-dS—i-/m§">5widS
Vv Vv S S

+/F,-(Su,-dV (79)

v

or

/v(Gjiéelj—ZuiéKi)dV:/st§")5uid5+/sm;")éwids-&-/‘/FiéuidV
(80)

Now, let us multiply Eq. (76) by the virtual potential é¢ and inte-
grate over the volume

/ (Dis — p,)dgdV = 0 81)
14

By noticing the relation

Diié¢p — p0¢ = (Diog); — Didg; — p,5¢p =0 (82)
we obtain

D;ioE; = —(Didgp) ; + p.o¢ (83)

Therefore, the relation (81) becomes
/DiéE,-dV =-— / dogdS + / PopdV (84)
v s v

which is the electrical analog of the virtual work theorem (79).
Although these two virtual forms are independent, it turns out their
combination is more useful in further investigation. By subtracting
(79) and (84), we obtain the weak form

/ (ae + o155 — DidE;)dv
14
- / £ ou;dS + / m{"™ sadS + / FoudV + / d opdS
S S 14 S

- /V p.SgdV (85)

We are also interested in a weak form corresponding to the energy
Eq. (30). We can obtain this form analogously as follows. We con-
sider the variation of electric displacement while holding the elec-
tric potential constant. Let D; be the actual electric displacement
vector, which satisfies the Gauss law and boundary conditions.
Now consider a virtual electric displacement vector éD; that satis-
fies the Gauss law

oD;; = dop, (86)

with virtual electric charge density Jp, and boundary condition
éd = éD;in; on S. We multiply Eq. (86) by the potential ¢ and inte-
grate over the volume

[ (D1~ 3p)odv o (87)
14

Also by noticing the relation

0Diip — 0ped = (0Dig) ; — 3Digp; — Opd =0 (88)
we obtain

EioDi = —(0Didh) ; + 0. b (89)

Therefore, we transform the relation (87) by using the divergence
theorem to

/V EoDidV = — /5 pod dS + /V $3p,dV (90)

By adding the virtual theorems (79) and (90), we obtain
// (6ﬁ5€1j + ,ujiéKij + E,‘éD,‘)dV
_ / £ ouidS + / m" s + / FrowdV — / pod ds
S S 14 S

+ /V $3p,dV (91)

It should be noticed that alternative weak formulations, such as
complementary virtual work, can also be developed. However, in
this paper, we only consider the weak forms (85) and (91), which
are used in the following sections.

5.2. Extremum conditions for the energy potentials

For an elastic piezoelectric material, the weak form (85) reduces
to

/ SHAV = / £ ou;dS + / m"™ swidS + / Fioudv
v S S v
+ / dogds — / poogdV (92)
S v

By considering the compatible variations on the boundaries, we can
write this as

5{/ (H = Fiui + p,¢)dV — [ t™MudS — / m" w;dS — d¢ds} =0
v St Sm

Sd

(93)

where S;, S;; and S; are portion of surface at which tﬁ'”, mg”) and d
are prescribed, respectively. Therefore, by defining
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M, — / (H—Fui+ p,p)dV — [ tMuds — [ mPaods
Vv St Sm
d ¢dS (94)
Sd
we realize that the relation (93) shows that
Sl =0 (95)

The quantity ITy can be considered as the total electric enthalpy
based electromechanical potential of the system. The relation (95)
shows that the displacement and the electric potential fields satis-
fying equilibrium equations and boundary conditions must extre-
mize ITy.

We can obtain a second extremum for this elastic piezoelectric
material by noticing that the weak form (91) reduces to

/ sUdV — / £ 51 + / m™ seoids + / Fioudv
\"4 S S Vv
_ / $od dS + / $3p,dV (96)
S Vv

Again by considering the compatible variations on the boundaries,
we can write this as

5{/ (U - Fiu; — ¢p,)dV — ™ 5,dS — m M 0;dS + ¢0[d5}
v 5[ S S,

97)
where S;, S, and S, are portion of surface at which t”, m™ and ¢

are prescribed, respectively. Let us define the total electromechan-
ical energy potential of the system as

I, = / (U - Fu; — ¢p,)dV — ,dS — m " ;dS
Vv Sr Sm
+ / ¢d dS (98)
S
As a result, the relation (97) reduces to
olly =0 (99)

which shows that the displacement and the electric charge density
fields satisfying equilibrium equations and boundary conditions
must extremize ITy. For linear size-dependent piezoelectricity, we
also have the following interesting result. By replacing the virtual
variations with the actual variations in the weak form (91), we
obtain

/(a(ﬂeu 2k + ED;)dV = / udS+/m ;dS

/ FaudV — / b dS + / ¢p.dV

After using the constitutive relations (67)-(69) in the left hand side
of this equation, we obtain

2 / Udv — / £ dS + / m"ods + / FadV
v S S "4
- / o $dS + / pebdV
S \4

which gives twice the total internal energy in terms of the work of
external body forces, surface tractions and electric displacement,
and electric charges.

(100)

(101)

5.3. Uniqueness theorem for linear boundary value problems

Now we investigate the uniqueness of the corresponding linear
size-dependent piezoelectric boundary value problem. The proof

follows from the concept of electromechanical energy, similar to
the approach for Cauchy elasticity.

Consider the general boundary value problem. The prescribed

boundary conditions on the surface of the body can be any well-

™ m", @ and d as discussed in Sec-

tion 2. Assume that there exist two different solutions

M D D 1clh ph @ 4@ o2 1@ @
{u o0 e i EN o VD" and {u®, ¢, el kP B,
o, u?,D{”’} to the same problem with identical body forces

and boundary conditions. Thus, we have the equilibrium equations
and electric Gauss law

posed combination of u;, w;, tm

M Y LF =0 (102)
o i (03
DY = p. (104)
where
@ = Ae® 4 Copic® — g EY (105)
(i) ijki €k ijk g kijEge
” 1 1
/l§ )= 7ZB’]KJ 2Ck1’e’<1 ) 'Bﬂ (106)
D,@ _ EUEJ('Q() + e ]k )4 ﬁu (107)

and the superscript references the solutions 1 and 2.
Let us now define the difference solution {u;,gb’,e;j,
K, E;, o, i, D}

ir =i Yijio

= u® ) (108a)
& = o _ g (108b)
ey =ef —el (108c)
K = 1 (108d)
E,=E® _ED (108e)
oy =0 —a} (108f)
= - (108g)
D= p® — D (108h)
Since the solutions {uﬁ”, ¢“) el iV EV i) i DY } and

2 2 2
{u(' >,¢(2).€€->,K‘€ ) El ’ j, ,,Ul 7

; NI~ } correspond to the same body

forces, electric charge densities and boundary conditions, the differ-

ence solution must satisfy the equilibrium equations

;=0 (109)
Tl = — M (110)
D;;=0 (111)

with zero corresponding boundary conditions. Consequently,
twice the total electromechanical energy (101) for the difference
solution is

2 [[Uav— [ (Auejey + By + 2Cueyr + GEE)dV =0
1% JV
(112)
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Since the energy density of the difference solution U’ is non-negative,
this relation requires
in V

2U' = Ajuejiel, + BiKix; + 2Ciejicy + €;EE =0 (113)

However, the tensors Ay, and €; are positive definite and the tensor
is such that the energy U’ is non-negative. Therefore the strain, cur-
vature, electric field, and associated stresses and electric displace-
ments for the difference solution must vanish

e;=0, K =0, Ei=0, 0;=0, Ww=0, D;=0 (114a—f)
These require that the difference displacementand the difference elec-
tric potential ¢' can be at most a rigid body motion and a constant
potential, respectively. However, if displacement and potential are
specified on parts of the boundary, then the difference displacement

and electric potential vanish everywhere and we have

u® = y® (115a)
o = @ (115b)
e = ¢y (115¢)
K\ =k (115d)
EV = E? (115e)
ol =a (115f)
uh = @ (115g)
D =D? (115h)

Therefore, the solution to the boundary value problem is unique. On
the other hand, if only force- and moment-tractions are specified
over the entire boundary, then the displacement is not unique
and is determined only up to an arbitrary rigid body motion.
Similarly, if only normal electric displacement is specified over
the entire boundary, then the electric potential is not unique and
is determined only up to an arbitrary constant.

5.4. Reciprocal theorem
We derive now the general reciprocal theorem for the equilib-
rium states of a linear elastic size-dependent piezoelectric material

under different applied loads. Consider two sets of equilibrium
states of compatible size-dependent piezoelectric solutions

{uﬁ”,wﬁ”,qb(”,t§”><”,m§”)<”,d(” F(l)} and {u§2>,w§2>,¢<2),t§">(2>

m"® d?® F@1. Let us apply the weak form (85) in the forms

(1) ,(2) (1),.(2) (1) p(2)
/V[aﬁ e — 2p"1¢? ~ DVEP |dv

/ d5+/m }2)d5+/;o[m
/F dv—/vpg”(p@ (116)
an
/V[ e - 2u " ~ DPEY|av
/ dS+/m 2 d5+/of
/ FAuMgy — /V P2 (117)

Using the constitutive relations (67)—(69), we obtain

(1) ,(2) (1),-(2) (1) _ () (2)
g;'e; - 24 'K = D; E A,,k,e,d +Cuk;ck i ock,]E eU
@) @
+ BUKj S Ckﬁekj K; ﬁﬂ Ki
(1) ¢(2)
- 6EET — e ]k ﬁu E?
(118)
(2) 5(1) (2),-(1) (2) p(1) (2) (1) (2) 5(1)
gji - 217K, — DVE; Ayk,e,d )4 C,JkKk i~ ak,-jE eij
+ BUK] + Ckﬂekj i ﬁ]l i
(2) ( )
- EUEj Ez — Qijk€, jk 1 ﬁl] i
(119)

Symmetry relations (55)-(60) show that the left hand of (118) and
(119) are the same

(1) (1,2 _ pMER) _ 52)p1) @)
o e =2 'k —DVEY = 057ey — 21

k" —~DPEY  (120)

Therefore, by comparing (116) and (117), we obtain the general re-
ciprocal theorem for the linear size-dependent piezoelectric mate-
rial as

/ d5+/m §2>ds+/a[<”¢<2>ds
S
/F dv—/p§>¢<2>dv
/ d5+/m ?”d5+/z[(2> @
JS

/F dv—/pg2>¢“>
v

When there is no body force and charge density, this theorem re-
duces to

/St§”>(”u§2>ds+/smﬁ”)<‘>w§2>ds+/so[“)
:/St§n><2>u§1>d5+/sml§n><2>

6. Isotropic linear piezoelectric material

(121)

Vds + / a? (122)
S

6.1. General governing equations

The piezoelectric effect can exist in isotropic couple stress
materials as we shall see. For an isotropic material, the symmetry
relations require

Ajjia = 20ij0 + 1S3t + Ududj (123)
Bj = 1613 (124)
Cix=0 (125)
€jj = €0j (126)
%je =0 (127)
By = 4f oy (128)

The moduli 4 and p have the same meaning as the Lamé constants
for an isotropic material in Cauchy elasticity. These two constants
are related by

v
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where v is the Poisson ratio. The material constants # and f account
for couple stress and piezoelectricity effects in an isotropic material.
The constant f may be called the flexoelectric coefficient of the
material.

As a result, the electromechanical enthalpy and energy densi-
ties become

1 1
H= —),ejjekk + Heje; + SnKiKi — —EEiE,' — 4fEiKZ,'

3 3 (130)
1. 1
U = 5 Aejew + peje; + 8nKik; + = €EE; (131)

2 2

respectively. The following restrictions are necessary for positive
definite energy density U

344+2u>0, u>0, n>0 €>0 (132)

We should notice that there is generally no restriction on the flexo-
electric coefficient f. The ratio

n_p (133)

specifies the characteristic material length [, which accounts for
size-dependency in the small deformation couple stress elasticity
theory under consideration here.

Then, the constitutive relations for the symmetric part of the
force-stress tensor, the couple-stress vector, and the electric dis-
placement vector can be written as

0 iy = A8y 0 + 2,ue1-,- (134)
W = —8ulr; + 2fF; (135)
D; = €E; + 4fKi (136)

For the skew-symmetric part of the force-stress tensor, we have
Ojji = 7M[i‘j] = 2,“12V2(Dji *f(Ei‘,' — Ej_,') (137)

The irrotational character of the electric field given by relation (23)
shows that the last term disappears and

iy = 2P Vo (138)
or

iy = 2ul e V2 (139)
Therefore, for the total force-stress tensor, we have

Gji = Jewdi + 2pte; + 2PV wji (140)

It should be noticed that the coefficient f appears only in the couple-
stress vector y; and electric displacement vector D;, but not in the
force-stress tensor gj;. Therefore, we realize that there is no direct
coupling between the electric field E; and the total force-stress ten-
sor gj;, a character common with the classical isotropic piezoelec-
tricity. However, the piezoelectric effect exists because the
electric field E; is coupled with the couple-stress vector y; and elec-
tric displacement vector D;. As we mentioned before, if the effect of
couple-stress is negligible (I = 0), the effect of flexoelectricity must
be excluded (f = 0).
For the governing equations, we have

[z + u(l + lzvz)]uk‘ki + u(l - lzvz)vzuf +Fi = pi; (141)

eVip+p,=0 (142)

which are explicitly independent of f. However, the piezoelectric ef-
fect can exist due to the moment-traction

m" = g, = et (—S,HIZKk + Zﬂ:"k> (143)
which couples k; and E; on the boundary. Notice that although Eqgs.
(141) and (142) for displacements and electric potential are uncou-
pled, the piezoelectric boundary value problem is coupled through
the moment traction as indicated in (143).

6.2. Governing equations for two dimensional isotropic material

We suppose that the media occupies a cylindrical region, such
that the axis of the cylinder is parallel to the x;-axis. Furthermore,
we assume the body is in a state of planar deformation and polar-
ization parallel to this plane, such that

U3 =0, $3=0, u3=0 inV (144a—c)

where all Greek indices here, and throughout the remainder of the
paper, will vary only over (1,2). Also, let V® and $® represent,
respectively, the cross section of the body in the x;x,-plane and
its bounding edge in that plane. Interestingly, if the location on
the boundary contour in the x—y plane is specified by the coordi-
nate s in a positive sense, we have n; = %2 and n, = %2. These can
be written in the index form

dx 5

n, = saﬁa (145)

where &, is the two-dimensional alternating or permutation sym-
bol with

en=-&1=1, &n=28=0 (146)

As a result of these assumptions, all quantities are independent of
x3. Then, throughout the domain

Wy = O, €3 = €3 = 07 K3 = O, Es=0 (l47a—d)
and
03, =0,3=0, U3=U,;=0 D3=0 (148a—c)
Introducing the abridged notation, one can define

1 1
W= w3 = j(uz.l —Up) = jgtxﬁu/i.a (149)

and the non-zero components of the curvature vector are

1
Ky =58y

Therefore, the non-zero components of stresses and polarizations
are written

(150)

i, = —8ul’c, + 2fE, (151)
D, = €E, + 4fx, (152)
O = 2857005 + 2180 + 2UP e, VP (153)

The components of the force-stress tensor in explicit form are

2

on = 1——sz (1= v)en + ves] (154a)
2u

0y = m[\)e” + (1 — V)E'zz] (154'3)

012 = 2Uey; — 2uP V0 (154c)

O = 2uen + 2uP Vo (154d)

All the other components are zero, apart from o033 and f,,, which
are given as
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033 ZVO'y;x:V(011+O'22) (155)

fs, = —4pP © 5 = 2f e,y (156)

Notice that the stresses in (155) and (156) act on planes parallel to
the x;x,-plane.

For the planar problem, the stresses and polarizations must sat-
isfy the following equations

sy + Fu = il (157)
Ofpr] = —Hiop (158)
Da(.oc = ,09 (159)

with the obvious requirement F3 = 0. It should be noticed that the
moment Eq. (158) has given the non-zero components

Op1y = —0nz = —Hpg = 2uPV (160)

n (154c) and (154d). Therefore, for the governing equations, we
have

[i + u(l + lzvz)]uﬁ,,m + u(l - IZVZ)VZud +F, = pily (161)
eVep+p,=0 (162)
The force-traction reduces to

£y = Opay (163)

and the moment-traction has only one component ms. This can be
conveniently denoted by the abridged symbol m, where

m=m{" = g p,n; = 4u128—w - 2f%—‘£’ (164)
For normal electric displacement, we have
d:—6—+ f— (165)

6.3. Polarization of an isotropic dielectric cylinder

Consider a long isotropic homogeneous linear flexoelectric
dielectric cylinder of radius a placed perpendicular to an initially
uniform electric field with magnitude E, in the x; direction, as indi-
cated in Fig. 1. The polarization of the cylinder disturbs the electric
field, such that the electric potentials for inside and outside cylin-
der in polar coordinates are

¢in = A1 COS 0 r<a 166
¢= Gour = (—Eor +B21)cos0 r>a (166)
where at distances far from the cylinder
¢ — —EoXq = —Egrcosf asr — oo (167)

Notice that these solutions satisfy the Poisson’s equation (162)
without free electric charges. As a result of the flexoelectricity ef-
fect, the cylinder also experiences some deformation and internal
stresses. The elastostatic components of the displacements satisfy
Eq. (161) by neglecting the body force and the inertial effects. These
components in polar coordinates are

r

ur={(1f4V)C1r2+Cz%h(l) 50 }cos@ (168a)

Uy = {(5 _anaP -G Hlo () -1n (N n %Cz} sin0 (168b)

where I, is the modified Bessel function of first kind of order n. The
four constants Ay, B, C; and C; are to be determined from boundary
conditions. It should be noticed that the last terms in the expres-
sions (168a,b) represent a rigid body translation in the x; direction,
which has been added to keep the center of the cylinder to remain
at the origin.

For components of the electric field, strain, rotation and mean
curvature in polar coordinates, we obtain

E_ o —A; cos0 r<a 169
"" or | (E+Byb)cos0 r>=a (1692)
B a¢ A;sin0 r<a
Ey Tro0 {(—Eo+Bzrl2)sin9 r=a (169b)
our 1. r 2 r
er =55 = {2(1 —4V)Cir + Gy {EIO(Y) -5h (7)” cos0  (169¢)
10uy u
W=
1. /m 2 r
_ _ 2 _ - i -
_{2(3 40)CyT cz{lrlo(l) rll(l>”cos(9 (169d)
e _L(1ou ouy uy
"T2\r o0 "o r
1 1 r 2 r 2 T .
= [2C1r—jC2 L?Il (7) —Elo(i) +50 (7)” sin0 (169e)
1 3”0+ﬂ,1%
—2\or r o0
1. /m] .
=5 [16(1 -G =Gl (T)} sino (169f)
10w
Krz:K():_zW
s —wie -6 (M) = 1 (M Vsine (169
== 18- VPC =G| gh(7) -1 (3) (169g)
Ky — . = 1100
= "2r@0
2 1 r
=7 [16( WEC, — C2F11<7>} cos (169h)

For the components of force- and couple-stresses, and electric dis-
placements, we have

O = i %,uz [(1—=v)er + vey)

zzu{zclmcz [l]—rl(,(%) —%11 G)”cosf) (170a)
Oy = 1%—#2‘) [verr + (1 — v)egy]

- 2,u{6C1r7 G 11r'°(1) r%ll G)Hcos@ (170b)
G = 24 — 2uP V20

:2,u{2C1r+C2 :ll—rlo G) —r%l] G)”sine (170¢)
Gor = 24er + 2PV 0

- 2,u{2C1r —G :11211 G) - llrIO G) + r%l] (N } sing  (170d)
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T
1,
= —2u {16(1 ~VEC -G (i)} cos0 — 2fA, cos0 (170e) Dy = €Eo+4fKy
. 2 .
_ Jemrsino—£{16(1—n)PCi -G [0 () 11 ()] fsiné r<a
Pz = Hy €o(—Eo+By %) sin0 r=a
1. /m 1, .
:2,u{16(1 “WEC -G {710(7) -~ (7) sin0 (170h)
+ 2fA, sin0 (170f) The electrical boundary conditions at r=a are ¢;, = ¢,, and

D, = €E; + 4f K,

€o(Eo + B2 %) cos 0

—€A1cos 0 +4 [16(1 - PG -Gl (g)] cosf r<a

D;|;, = Dr| oy Which enforce the

continuity of the electric potential

and the electric displacement. These give

Aia=—Eya +le
a

r=a
(170g)

f 2 1
~€Ay 3 |16(1 - V)FCy - czall(

(171a)

a

1)} = eo(Eo -‘rBz%) (171b)
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The three mechanical boundary conditions at r=a are
o, =0, 0y =0and y, =0, which represent the traction-free sur-
face. Interestingly, these give only two independent required
equations

2, +c2% HIOG) —%h (%)} -0 (172a)
16(1 = WEC, — G [1710(%) —%11 (%)} +£A1 -0 (172b)

Using the relations (171) and (172), we can obtain the four un-
known coefficients A;, B,, C; and C, to complete the solution.

For the numerical study, we take the electric field E; = 1 and se-
lect the following non-dimensional values for the material param-
eters: u=1,v=1/4, a=1,1=0.1, ¢ =1, €e=2, f=0.1.Then,

Ay = —0.6348 (173a)
B, = 0.8892 (173b)
Ci =0.0471 (173¢)
C,=-41275x10°° (173d)

The analytical solutions along the radial line at 0 = /2 for radial
stress o, and along the radial line at 0 = 0 for shear stress o,y
and couple-stress p,, are displayed in Figs. 2-4, respectively. Notice
that the uniform electric field has generated polarization, force- and
couple- stresses in the isotropic cylinder.

7. Conclusions

The consistent size-dependent continuum mechanics is a
practical theory, which enables us to develop many different
formulations that may govern the behavior of solid continua at
the smallest scales. The size-dependent electromechanical
formulations have the priority because of their importance in
nanomechanics and nanotechnology. Here, we have developed
the size-dependent piezoelectricity, which shows the possible
coupling of polarization to the mean curvature tensor. The most
general anisotropic linear elastic material is described by 78 inde-
pendent constitutive coefficients. This includes nine flexoelectric
coefficients relating mean curvatures to electric displacements,
and electric field components to the couple-stresses.

In addition, we have developed the corresponding weak forms,
energy potentials, uniqueness theorem, and reciprocal theorem for
linear piezoelectricity. The new size dependent piezoelectricity
clearly shows that the piezoelectric effect can exist in isotropic
couple stress materials, where the two Lamé parameters, one
length scale, and one flexoelectric parameter completely character-
ize the behavior. The details for the general two-dimensional iso-
tropic case are also elucidated. Finally, we have examined the

polarization of an isotropic long cylinder in a uniform electric field
and obtained the closed form solution.

The present theory shows that couple-stresses are necessary for
the development of any electromechanical size dependent effect.
Additional aspects of linear piezoelectricity, including fundamental
solutions and computational mechanics formulations, will be ad-
dressed in forthcoming work. Beyond this, the present theory
should be useful for the development of other size-dependent elec-
tromechanical formulations, such as piezomagnetism and magne-
tostriction, which are also important for analysis at small scales.
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