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a b s t r a c t

We study travelingwave solutions of an equation for surfacewaves ofmoderate amplitude
arising as a shallowwater approximation of the Euler equations for inviscid, incompressible
and homogeneous fluids. We obtain solitary waves of elevation and depression, including
a family of solitary waves with compact support, where the amplitude may increase
or decrease with respect to the wave speed. Our approach is based on techniques
from dynamical systems and relies on a reformulation of the evolution equation as an
autonomous Hamiltonian system which facilitates an explicit expression for bounded
orbits in the phase plane to establish existence of the corresponding periodic and solitary
traveling wave solutions.
© 2014 The Authors. Published by Elsevier Ltd.

1. Introduction and main result

A number of competing nonlinear model equations for water waves have been proposed to this day to account for
fascinating phenomena, such as wave breaking or solitary waves, which are not captured by linear theory. The well-known
Camassa–Holm equation [1] is one of the most prominent examples, due to its rich structural properties. It is an integrable
infinite-dimensional Hamiltonian system [2–4] whose solitary waves are solitons [5,6]. Some of its classical solutions
develop singularities in finite time in the form of wave breaking [7], and recover in the sense of global weak solutions
after blow up [8,9]. For a discussion on integrability in the periodic case we refer the reader to [10,11], and a classification
of weak traveling wave solutions of the Camassa–Holm equation may be found in [12]. The manifold of its enticing features
led Johnson to demonstrate the relevance of the Camassa–Holm equation as a model for the propagation of shallow water
waves of moderate amplitude. He proved that the horizontal component of the fluid velocity field at a certain depth within
the fluid is indeed described by a Camassa–Holm equation [13,14]. Constantin and Lannes [15] followed up on the matter
in search of a suitable corresponding equation for the free surface and derived an evolution equation for surface waves of
moderate amplitude in the shallow water regime,

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt + 14uuxxx + 28uxuxx = 0. (1)

The authors show that Eq. (1) approximates the governing equations to the same order as the Camassa–Holm equation,
and also prove that the Cauchy problem on the line associated to (1), is locally well-posed [15]. Employing a semigroup
approach due to Kato [16], Duruk [17] shows that this result also holds true for a larger class of initial data, as well as for the
corresponding spatially periodic Cauchy problem [18]. Consequently, solutions of (1) depend continuously on their initial
data in Hs for s > 3/2, and it can be shown that this dependence is not uniformly continuous [19]. In the context of Besov
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spaces, well-posedness is discussed [20] using Littlewood–Paley decomposition, along with a study about analytic solutions
and persistence properties of strong solutions. One of the important aspects of Eq. (1) lies in its relevance for capturing the
non-linear phenomenon of wave breaking [15,17], a feature it shares with the Camassa–Holm equation. While the latter
equation is known to possess global solutions [9,21], it is not apparent how to obtain global control of the solutions of
Eq. (1), owing to its involved structure and due to the higher order nonlinearities. However, passing to a moving frame one
can study so-called traveling wave solutions, whose wave profiles move at constant speed in one direction without altering
their shape. Introducing the traveling wave Ansatz

ξ = x − c t, u(ξ) = u(t, x), (2)

Eq. (1) reads upon integration

(1 − c)u + 3u2
− 2u3

+ 3u4
+ (1 + c + 14u)ü + 7u̇ = E, (3)

for some real constant E, where the dot denotes differentiationwith respect to ξ . Existence of smooth solitarywave solutions
of (3) which decay to zero at infinity has been established [22] for wave speeds c > 1, and their orbital stability has been
deduced [23] employing an approach due to Grillakis, Shatah and Strauss [24] taking advantage of the Hamiltonian structure
of (1). In the present paper we set out to improve the existence result [22] by loosening the assumption that solitary waves
tend to zero at infinity. Allowing for a decay to an arbitrary constant, we establish existence of a variety of novel traveling
wave solutions of (1).

Theorem 1.1. For every speed c ∈ R\{c∗
} there exist peaked periodic, as well as smooth solitary and periodic traveling

wave solutions of (1). Periodic waves may be obtained also for c = c∗, where c∗
≈ 0.35328 is the unique real solution of

3c3 + 30c2 + 1031c − 368 = 0.
Moreover, the solitary waves can be characterized in terms of two parameters – the wave speed c and the level of the

undisturbed water surface s – allowing us to determine the exact regions in this parameter space which give rise to the following
types of waves, cf. Fig. 1:

• Solitary waves in C1 with compact support on R (along the straight line c + 1 + 14s = 0).
• Smooth solitary waves of elevation whose amplitude is strictly increasing (in region I) or decreasing (in regions II and III)

with respect to c, once E is fixed.
• Smooth solitary waves of depression whose amplitude is strictly increasing (in region V) or decreasing (in region IV) with

respect to c, once E is fixed.

All solitary waves are symmetric with respect to their unique crest/trough, they are monotonic and decay exponentially to the
undisturbed water surface s at infinity.

The proof of these results hinges on the observation that for traveling waves, Eq. (1) may be written as an autonomous
Hamiltonian system involving two parameters. This insight allows us to explicitly determine bounded orbits in the phase
plane which correspond to solitary and periodic traveling waves of elevation as well as depression (Sections 2.1 and 2.2).
Moreover, we characterize all solitary traveling waves in terms of two parameters—the wave speed c and the water level s
of the undisturbed surface at infinity. This enables us to prove the existence a family of solitary waves with compact support
(Section 2.3). Furthermore, we obtain a family of peaked periodic waves (Section 2.4). Our work also extends the analysis
of qualitative properties regarding the shape of solitary waves given in [22]: we prove that the profile is strictly monotonic
between crest and trough, and derive explicit algebraic curves in the parameter space (c, s) to determine the regions where
their amplitude is increasing and decreasing with respect to the wave speed c once a value E is fixed (Section 3). These are
quite remarkable properties of solitary waves which, to our knowledge, contribute novel aspects to the study of traveling
waves in evolution equations for water waves. Our approach is in fact applicable to a large class of nonlinear dispersive
equations, whichwe exemplify by a discussion of travelingwaves of the aforementioned Camassa–Holm equation, including
peaked continuous solitary waves (Section 4). Some of the more involved computations regarding the algebraic curves are
carried out in the Appendix.

2. Existence of traveling waves

The proof of Theorem 1.1 relies on the fact that Eq. (1) has very nice structural features.

2.1. Hamiltonian formulation

Consider a general partial differential equationwhich, upon introducing the travelingwaveAnsatz (2) can be transformed
into an autonomous ordinary differential equation of the form

ü(u − ū) +
1
2
(u̇)2 + F ′(u) = 0, (4)
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Fig. 1. We obtain a variety of traveling waves for (1) with different behavior, cf. Theorem 1.1: solitary waves of elevation and depressionwhose amplitude
increases or decreaseswith c. Along the straight line c +1+14s = 0, we obtain solitary waves with compact support. The algebraic curve R(c, s) = 0 arising
from a polynomial of degree nine is given in Section 3.1.

where ū is a constant, F(u) is a smooth function and the dot denotes differentiation with respect to ξ . The corresponding
planar system is given by

u̇ = v

v̇ =
−F ′(u) −

1
2v

2

u − ū
,

(5)

and we observe that a reparametrization of the independent variable according to dξ
dτ = u − ū transforms (5) into

u′
= (u − ū)v

v′
= −F ′(u) −

1
2
v2,

(6)

where the prime denotes differentiationwith respect to τ . The latter system is clearly topologically equivalent to the former
(cf. [25,26]) on each connected component ofR\{u = ū}, preserving orientation in the openhalf-plane {u > ū} and reversing
orientation in the other half. The advantage of (6) is that it possesses a Hamiltonian

H(u, v) = F(u) +
1
2
v2(u − ū) = h (7)

satisfying u′
= Hv and v′

= −Hu, which is constant along the solution curves of (6). Explicit knowledge of the critical points
and (closed) orbits

v = ±


2
h − F(u)
u − ū

(8)

in the phase plane of (6) therefore completely characterizes the traveling wave solutions of the partial differential equation.
Applying these ideas to (1), the associated equation for travelling waves (3) is

(1 − c)u + 3u2
− 2u3

+ 3u4
+ (1 + c + 14u)ü + 7u̇ = E = −14K ,

for some constant K ∈ R, which may be written in the form (4) with

F(u) = K u +
1 − c
28

u2
+

1
14

u3
−

1
28

u4
+

3
70

u5, (9)

and

ū = −
1 + c
14

.
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Fig. 2. A sketch of how bounded orbits in the (u, v) phase plane are obtained using relation (8), where choosing h = hp and h = hs give rise to periodic
and solitary traveling waves, respectively.

In view of the above considerations, we obtain the following existence result for bounded traveling wave solutions of (1):

Proposition 2.1. Solitary wave solutions of (4) with F defined in (9) are obtained from the homoclinic connection based at the
saddle point of (6), whereas periodic waves correspond to periodic orbits around the center. These solutions are symmetric with
respect to the crest/trough and have one maximum per period. The solitary waves tend exponentially to a constant on either side
of the crest/trough.

Proof. In order to obtain bounded orbits of system (6), we study the critical points of the Hamiltonian system which are
closely related to the local extrema of F , since (u′, v′) = (0, 0) exactly when v = 0 and F ′(u) = 0. Notice that u = ū is an
invariant line for (6). The fact that any non-degenerate critical point of an analytic Hamiltonian system is either a topological
saddle or a center (cf. [27, p. 154]) simplifies our analysis considerably. Computing the Jacobian J of (6) and evaluating it
at the critical points shows that det J = F ′′(u)(u − ū). Recall that a non-degenerate critical point is a center whenever
det J > 0 and a topological saddle when det J < 0, cf. [27]. Hence, all further analysis regarding the number, location and
type of critical points in the phase plane is based on the specific structure of the polynomial F , depending on the parameters
c and K . It is straightforward to check that F has at most two local extrema andwe conclude that system (6) has at most two
critical points.

Next we show how to obtain the expressions for bounded orbits corresponding to bounded traveling wave solutions
from relation (8), cf. Fig. 2, and infer some basic properties of the waves. Homoclinic orbits are obtained by letting h = hs,
where hs = F(s) and s solves

F ′(y) = 0 and

F ′′(y) < 0 when y > ū,
F ′′(y) > 0 when y < ū. (10)

We will see below that this definition of s giving rise to the saddle point (s, 0) of system (6), aptly captures the physical
interpretation of s being the level of the undisturbed water surface at infinity in certain regions of the parameter space.

Regarding v in (8) as a function of u and choosing h = hs yields an explicit expression of the homoclinic connection in the
phase plane. The orbit leaves the critical saddle point (s, 0) and crosses the horizontal axis once at (m, 0), before returning
to the saddle point symmetrically with respect to the horizontal axis. The value m is obtained at the unique intersection of
the horizontal line hs with the polynomial F , where F(m) = F(s). The corresponding solitary wave solution therefore has
a unique maximum m and is symmetric with respect to the crest point. Furthermore, the solution decays exponentially to
the constant s on either side of the crest. Indeed, by the Hartman–Grobman Theorem (cf. [28,29]) the vectorfield (u̇, v̇) is
locally C1-conjugate to its linearization at the hyperbolic saddle point (s, 0), and therefore solutions on the stable manifold
converge exponentially to the fixed point. The decay rate is given by the eigenvalues of the Jacobian at the saddle point of
system (5), hence we recover the result for K = 0 obtained in [22]. Observe that for s < ū we obtain solitary waves of
depression with the same qualitative properties.
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Similarly to solitary waves, periodic traveling waves are obtained by choosing h ∈ (hc, hs) in (8) where hc = F(uc) and
uc is a solution of

F ′(y) = 0 and

F ′′(y) > 0 when y > ū,
F ′′(y) < 0 when y < ū.

These periodic waves undulate about u = uc . �

2.2. Conditions for the existence of solitary traveling waves

We now derive algebraic conditions for the existence of homoclinic orbits, which give rise to solitary traveling wave
solutions of (1) as we have just seen. At this point, our problem involves three interdependent parameters:

c . . . the wave speed,
K . . . the constant of integration,
s . . . the level of the undisturbed water surface at infinity.

It turns out to be more convenient to eliminate the parameter K in favor of s using relation F ′(s) = 0 from the definition
(10) of s. This leads us to the following change of parameters:

Φ : (c, s) −→ (c, K) = (c, ϕ(c, s)), (11)

where

ϕ(c, s) =
1
14

s(−3s3 + 2s2 − 3s + c − 1). (12)

Remark 2.2. Notice that Φ is not bijective on R2. For instance, for each c ∈ R and K big enough the point (c, K) has no
preimage. However, this happens precisely when there are no simple solutions of F ′(s) = 0, in which case system (6) does
not have homoclinic orbits. In the remaining cases, observe that for each fixed c ∈ R there exist two s1 ≠ s2 such that
ϕ(c, s1) = ϕ(c, s2) = (c, K). This leads to a redundancy in the parameter regions, since for each c there are two values s
which yield the same K , and hence the same F , which gives rise to the same phase portrait of system (6), and therefore also
to the same wave solution. The difference between the two values of s is that one of them, say s1, satisfies (10) and hence
corresponds to the saddle point of system (6). The other value, s2, which satisfies the reverse inequalities, gives rise to a
center of the system. The solitary wave solution corresponding to the homoclinic orbit around this center (s2, 0) decays to
the undisturbed water level given precisely by the former value s1, which means that this solitary wave solution is already
obtained via the value s1. To avoid this redundancy, we select the value s in (12) satisfying

F ′′(s) < 0 when s > ū,
F ′′(s) > 0 when s < ū, (13)

which makes the transformation (11) bijective on the relevant regions. In this way, we choose the value corresponding to
the saddle point of the system, which is in accordancewith the physical interpretation of s being the level of the undisturbed
water surface at infinity.

Performing the substitution K = ϕ(c, s) given in (12) facilitates our analysis considerably and we proceed to study
conditions for the existence of homoclinic orbits in terms of the parameters s and c . The discussion in the proof of
Proposition 2.1 ensures that (6) has at most two critical points corresponding to the local extrema of F . It is easy to see
that homoclinic orbits exist when there is at most one saddle point and one center point in the phase plane, cf. Fig. 2. This
situation occurs when

(i) F has two distinct local extrema, and moreover,
(ii) both extrema lie either to the left or to the right of the invariant line u = ū.

To ensure condition (i) we study the roots of the discriminant of F ′, which in view of the substitution (12) is given by

Dis(F ′(u), u) = αF ′′(s)2M(c, s), (14)

whereα < 0 is a real constant andM(c, s) is a polynomial with no real roots, cf. Appendix A.1. Condition (ii) holdswhenever
F ′(ū) is non-zero, i.e. we study the roots of

F ′(ū) = β(s − ū)N(c, s), (15)

where β > 0 is a real constant and N(c, s) is a cubic polynomial in c and s. The algebraic curves corresponding to the zeros
of these factors intersect precisely in one point (c∗, s∗) in the parameter plane, cf. Appendix A.1 and Fig. 3. We distinguish
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Fig. 3. The shaded region A = R1 ∪ R4 in the parameter plane (c, s) yields homoclinic orbits which give rise to solitary wave solutions of (3) traveling
at speed c and decaying to the undisturbed water level s at infinity. When s > ū we obtain solitary waves of elevation (R1), whereas for s < ū we obtain
solitary waves of depression (R4).

the following six regions:

s > ū s < ū
R1: F ′′(s) < 0 and N(c, s) > 0 R4: F ′′(s) > 0 and N(c, s) < 0
R2: F ′′(s) > 0 and N(c, s) > 0 R5: F ′′(s) < 0 and N(c, s) < 0
R3: F ′′(s) > 0 and N(c, s) < 0 R6: F ′′(s) < 0 and N(c, s) > 0

(16)

Let us focus first on the regions where s > ū. Choosing (c, s) in R3, we have that F ′(ū) < 0 in view of (15) and (16),
meaning that there is one extremum of F on each side of the invariant line ū. In this case, both extrema of F yield a center for
system (6) which impedes the existence of a homoclinic connection. Hence, region R3 gives rise to periodic orbits only (see
Section 2.4). Choosing (c, s) inR2 violates the condition on F ′′(s) in (13), andhencewe refrain fromany further analysis (recall
the redundancy discussed in Remark 2.2). Finally, (c, s) in R1 yields F with two distinct local extrema to the right of ū since
F ′(ū) > 0, and hence F has a local maximum in s in view of F ′′(s) < 0. The homoclinic orbit based in the corresponding
saddle point (s, 0) gives rise to a solitary traveling wave solution of (1) which propagates at speed c and decays to the
undisturbed water level s at infinity. Notice that all solitary wave solutions obtained in this way from parameters in region
R1 are waves of elevation. Applying the same reasoning to the regions where s < ū, we find that R6 gives rise to periodic
orbits only, whereas choosing parameters in region R4 yield solitary waves of depression. We conclude that there are two
algebraic curves A1 and A2 bounding the region A = R1 ∪ R4 which admits solitary traveling wave solutions of (1):

A1 := {F ′′(s) = −1 − 6s + 6s2 − 12s3 + c = 0}

A2 :=


s − ū = s +

1 + c
14

= 0


.
(17)

We summarize our conclusions in the following proposition.

Proposition 2.3. Solitary wave solutions of (1) propagating at speed c and decaying to the undisturbed water level s at infinity
exist if and only if (c, s) ∈ A = R1 ∪ R4, the region which is bounded by the algebraic curves A1 and A2 defined in (17) above.
Parameters in R1 yield solitary waves of elevation, whereas R4 gives rise to solitary waves of depression.

2.3. Solitary waves with compact support

It turns out that Eq. (1) admits weak solitary wave solutions in C1 with compact support on R. This is essentially due to
the fact that the planar system (5) is discontinuous along the straight line u = ū (for a detailed account on various evolution
equations arising in the context of nonlinearwater waveswhich yield so-called ‘‘singular nonlinear travelingwave systems’’
we refer to [30]). The intuition behind this surprising observation is that the homoclinic orbit corresponding to the compactly
supported solitary wave has finite existence time when the local maximum of F lies at the invariant line ū, cf. Fig. 4. This
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Fig. 4. The choice of parameters c ∈ R and s = ū in F yields a homoclinic orbit with finite existence time, which gives rise to a solitary wave solution with
compact support.

situation occurs precisely on the curve A2, where s = ū, in which case the level line of the Hamiltonian corresponding to the
homoclinic orbit based in the saddle point is hs = F(ū) and F ′(ū) = 0. Therefore, relation (8) simplifies to

v = ±


2
F(ū) − F(u)

u − ū
= ±


(u − ū) p(u), (18)

where

p(u) := −F ′′(ū) −
2
3!

F (3)(ū)(u − ū) − · · · −
2
5!

F (5)(ū)(u − ū)3.

In particular, the existence time of these homoclinic orbits is finite. Indeed, notice that

T (u, u0) :=

 u

u0

dr
√

(r − ū)p(r)
is an elliptic integral and therefore finite, since p(r) is a third degree polynomial with no repeated roots and ū is not a root
of p(r). In view of (18) this yields

T (u(ξ), u0) =

 u(ξ)

u(ξ0)

dr
√

(r − ū)p(r)
=

 ξ

ξ0

√
(u − ū)p(u)

√
(u − ū)p(u)

dξ = ξ − ξ0,

for a solution of u̇(ξ) =
√

(u − ū)p(u) with initial data u(ξ0) = u0. Hence, the time it takes an orbit to get from ū to m,
wherem is the non-trivial solution of F(ū) = F(m), is given by

T := T (u(ξ), ū) − T (u(ξ),m) =

 m

ū

dr
√

(r − ū)p(r)
< ∞.

By symmetry it follows that the solitary traveling wave solution corresponding to the orbit with hs = F(ū) is defined on the
finite interval (−T , T ). We may extend this solution to the real line by setting u(ξ) = ū for ξ ∈ R\(−T , T ). This is possible
since u = ū is a constant solution of (4) when s = ū. Furthermore, u(ξ) → ū as ξ → ±T and therefore v → 0 in view of
(18), but v̇ → −1/2F ′′(ū). This proves that the extension is C1 with compact support in R. Therefore, u ∈ H1(R) is a weak
solitary wave solution of (1) with compact support, see Remark 2.4. Notice that, when ξ approaches±T , the solution decays
like

u(ξ) = ū −
1
4
F ′′(ū)(ξ ± T )2 + O((ξ ± T )3) (19)

which is readily checked.

Remark 2.4. Eq. (3) may be rewritten as

(1 − c)u + 3u2
− 2u3

+ 3u4
− 7

 d
dξ

u
2

= −
1
28

d2

dξ 2


(1 + c + 14u)2


− 14K . (20)

We say that u ∈ H1
loc(R) is a weak traveling wave solution of (1) if u satisfies (20) in the sense of distributions. Observe that

the weak formulation of Eq. (1) reads

ut + ∂x


−u − 7u2

+ (1 − ∂2
x )

−1(2u + 10u2
− 2u3

+ 3u4
− 7u2

x)


= 0,

which is equivalent to (20) for periodic traveling waves, or traveling waves which decay at infinity.
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Fig. 5. The choice of parameters (c, s) ∈ R3 ∪ R6 gives rise to peaked periodic waves (a) and (b), as well as smooth periodic waves undulating about ū (c).

2.4. Peaked periodic waves

For parameters in the regions R3 and R6, cf. Fig. 3, the invariant line ū lies between the two critical points of the polynomial
F . In this case, the extrema of F yield two centers in the phase portrait of (6) which impedes the existence of solitary waves
(and hence, the parameter s no longer accommodates the physical interpretation of the undisturbed water level at infinity).
However, we show by continuous extension that there exist peaked periodic waves above and below the line ū, and periodic
waves undulating about ū.

Indeed, for every (c, s) ∈ R3 ∪ R6, periodic waves are obtained as in Proposition 2.1 by choosing hp ∈ (h1, h2), where
hi = F(ui) for i = 1, 2, and ui is a solution of

F ′(y) = 0 and

F ′′(y) > 0 when y > ū,
F ′′(y) < 0 when y < ū,

and employing (8). We will now treat the special case hp = F(ū). Notice that, by construction,

hp − F(u) = (u − ū)(u − m1)(u − m2)q(u),

where q(u) is a second order polynomial with no real roots and mi ≠ ū, i = 1, 2, are the other two intersections of the
horizontal line hp with F(u). Using (8), we obtain two heteroclinic orbits of the system (6) leaving and returning to the
invariant line u = ū given in terms of

vi = ±


2(u − m1)(u − m2)q(u), (21)

for u ∈ (m1, ū) and u ∈ (ū,m2) respectively, which intersect the horizontal axis atm1 andm2, wherem1 < ū < m2. Observe
that for the topologically equivalent system (5), the existence times of these orbits are again finite and given in terms of

T1 =

 ū

m1

du
√
2(u − m1)(u − m2)q(u)

< ∞

and

T2 =

 m2

ū

du
√
2(u − m1)(u − m2)q(u)

< ∞.

Other than in Section 2.3 it is not possible to continuously extend the corresponding solutions by ū on the real line to
obtain solitary waves with compact support, since here ū (or any other constant) does not satisfy Eq. (4). However, we may
continue the solutions periodically and obtain peaked periodic waves ui, cf. Fig. 5. The period of these waves is 2Ti, and
they have countably many points of discontinuity at the wave crests or troughs, ξ = (2k + 1)Ti where k ∈ Z, i = 1, 2,
respectively. When T1 = T2, we obtain C2-periodic traveling waves uP with period 4T1, undulating about the flat surface at
ū. Indeed, a continuity argument guarantees the existence of parameters (c, s) ∈ R3 ∪ R6 such that T1 = T2. In this case, the
peaked periodic solutions ui obtained from (21) may be glued together at ξ = (2k+ 1)T1, k ∈ Z, cf. Fig. 5(c), which yields a
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smooth periodic solution uP undulating about ū defined on R by

uP(ξ) =


u1(ξ), when ξ ∈


k=2m+1,m∈Z

[(2k − 1)T1, (2k + 1)T1],

u2(ξ), when ξ ∈


k=2m,m∈Z

[(2k − 1)T1, (2k + 1)T1].

This continuation is C2 since u1(ξ) → ū as ξ ↗ (2k + 1)T1, and therefore

u̇1 = v1 = ±


2
F(ū) − F(u)

u − ū
→


−2F ′(ū) and ü1 → −

F ′′(ū)
2

as ξ ↗ (2k + 1)T1,

and similarly for the limits as ξ ↘ (2k + 1)T1. The same reasoning shows that the continuation is C2 at the lower bounds
of the existence intervals.

3. Properties of solitary traveling waves

The analysis in Section 2 shows that traveling wave solutions of (1) are symmetric with respect to the crest point, and
that solitary waves tend (exponentially) to a constant on either side of their unique maximum or minimum. In the present
section we will explore further properties regarding the shape of traveling waves. We determine how the wave amplitude,
which is the positive difference between crest and trough, changes with respect to the wave speed. Furthermore, we prove
that traveling waves are strictly monotone between crest and trough.

3.1. Dependence of the amplitude on the wave speed

Our starting point is an algebraic expression for the change of a = m − swith respect to c.

Lemma 3.1. Let F be the polynomial defined in (9) with a fixed K and let (s,m) be a solution of
F ′(s) = 0,
F(s) − F(m) = 0, (22)

where s ≠ ū. Then, for a = m − s ∈ R, we have that

∂c a =
−1/28

F ′(m)F ′′(s)


(s2 − m2)F ′′(s) + 2s F ′(m)


. (23)

In the following proposition, we study the sign of (23) to determine the regions in the parameter set A which give rise to
solitary waves whose amplitude |a| is increasing or decreasing with respect to the wave speed c , cf. Fig. 6.

Proposition 3.2. We distinguish between the following cases:

• For (c, s) ∈ R1 we obtain solitary waves of elevation whose amplitude is strictly increasing with c in region (I),
and decreasing with c in regions (II) and (III), for fixed K .

• For (c, s) ∈ R4 we obtain solitary waves of depression whose amplitude is strictly decreasing with c in
region (IV) and increasing with c in region (V), for fixed K .

Proof of Proposition 3.2. Denote a = m − s, so that the wave amplitude is given by |a|, and a < 0 for waves of depression
(in R4) whereas a > 0 for waves of elevation (in R1). Observe that F ′(m) > 0 for all (c, s) ∈ A and recall that F ′′(s) < 0 in
R1 and F ′′(s) > 0 in R4. Therefore, and in view of (23), it suffices to study the sign of

(s2 − m2)F ′′(s) + 2s F ′(m),

which in view of (11) yields

1
14

(s − m)2 (6m2s − 4sm + 12ms2 − 2s2 + 6s3 − 1 + c)  
=:Qc,s(m)

. (24)

Recall that (s,m) solves (22) which reads

1
140

(s − m)2Pc,s(m) (25)
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where

Pc,s(m) := (6m3
− 5m2

+ 12m2s + 10m + 18ms2 − 10sm + 5 − 5c − 15s2 + 24s3 + 20s).

Since we are interested in solutions s ≠ m, we study the system
Qc,s(m) = 0
Pc,s(m) = 0 (26)

which has a solution if and only if Qc,s(m) and Pc,s(m) have a common root, i.e. if their resultant with respect tom,

R(c, s) := Res(Qc,s(m), Pc,s(m),m)

= 31104s9 − 10368s8 + 32832s7 + (−15552c + 39456)s6

+ (−3816 − 864c) s5 + (23472 − 3312c) s4 + 24 (c − 1) (108c − 593) s3

+ 24 (33c + 107) (c − 1) s2 − 690 (c − 1)2 s + 36 (c − 1)3 , (27)

is zero (see Appendix A.2 for a discussion on the involved curves). Hence, system (26) has a solution, i.e. ∂c a = 0, only
along the algebraic curve R(c, s) = 0, meaning that within the regions in A separated by this curve, the sign of ∂c a is
constant. Hence, it suffices to pick one pair of parameters (c̄, s̄) in each of these regions and compute the values of m and
Q to determine the sign of ∂c a in view of expression (23). For example, let s̄1 = −0.1 and c̄1 = 1.5 in R1 then, computing
the correspondingm1, we find that Qc̄1,s̄1(m1) > 0. Therefore, since F ′(m) < 0 and F ′′(s) < 0 in R1, we obtain that ∂c a > 0.
Hence, the amplitude |a| of solitary wave solutions of (1) arising from parameters in the region denoted by (I) in Fig. 6 is
increasing with respect to the wave speed c. To provide an example for waves of depression, pick s̄4 = −0.5 and c̄4 = 15
in R4, which yields m4 such that Qc̄4,s̄4(m4) < 0. Therefore, since F ′(m) < 0 and F ′′(s) > 0 in R4, we obtain that ∂c a > 0.
In view of the fact that a < 0 in R4 this means that the amplitude |a| of solitary waves with parameters in region (IV) is
decreasing with respect to c. The results for the other regions (II), (III) and (V) can be obtained in exactly the same way. �

Proof of Lemma 3.1. Consider F in (9), regarding it as a polynomial in u and c , and define

f (u, c) := F(u) = Ku +
1 − c
28

u2
+

1
14

u3
−

1
28

u4
+

3
70

u5.

Then the first equation in (22) rewrites as

fu(s, c) = 0,

where subscripts denote partial differentiation. Implicit differentiation with respect to c of the last equation yields

fuu(s, c)ṡ + fuc(s, c) = F ′′(s)ṡ −
1
14

s = 0,

where˙denotes differentiation with respect to c , and therefore

ṡ =
1
14

s
F ′′(s)

.

The second equation in (22) reads

f (s, c) − f (m, c) = 0,

which upon implicit differentiation yields

fu(s, c)ṡ + fc(s, c) − fu(m, c)ṁ − fc(m, c) = 0

so

ṁ =
fc(s, c) − fc(m, c)

fu(m, c)
=

−1/28
F ′(m)

(s2 − m2).

Since ȧ = ṁ − ṡ, this proves (23). �

3.2. Monotonicity

We show that the profile u of a solitary traveling wave solution of (1) is monotone from the undisturbed water level s
to its maximum or minimum m, with precisely one inflection point on either side of the wave crest or trough. To this end,
consider the right hand side of (8),

v =


2
F(s) − F(u)

u − ū  
=:D(u)

.
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Fig. 6. Choosing parameters in the lighter shaded regions (I) and (V) we obtain solitary waves which increase with the wave speed c , whereas solutions
corresponding to parameters in the darker shaded regions (II), (III) and (IV) decrease with respect to c.

We claim that, as a function of u, this expression has a unique critical point between s and m. Since the square root is
monotonous, it suffices to consider the number of critical points of the discriminantD(u) of this expression. By construction,
D(u) has a critical point at s. We will show that there exists precisely one critical point in (s,m), which corresponds to the
unique inflection point of the wave profile u between its trough and crest. To this end, we study D′(u) and prove that it has
exactly one real root to the right of s. For simplicity, we will give the proof only in the case u > ū, the other case can be
proven in exactly the same way. Indeed, consider the numerator of D′(u), which in view of (11) yields

(s − u)Ic,s(u), (28)

where Ic,s(u) is a fourth-order polynomial in u whose coefficients depend polynomially on the parameters s and c. In
Appendix A.3 we prove that the number of roots of Ic,s(u) in (s, ∞) remains constant if we vary the parameters (c, s) ∈ R1
(cf. also Lemma 3.6 in [31]). Therefore, it suffices to evaluate the polynomial at any point (c̄, s̄) ∈ R1 and to deduce that
the resulting univariate polynomial has a unique real root in (s̄, ∞) employing Sturm’s method (cf. [32]). We conclude that
D′(u) has a unique real root to the right of s for parameters in R1. The same reasoning shows that this holds also for u < ū
with parameters in R2, and for compactly supported solitary waves with parameters on s = ū, cf. Appendix A.3. This proves
the claim.

4. Traveling waves of the Camassa–Holm equation

We would like to point out that the method to prove existence of traveling waves put forward in Section 2 is applicable
to a wide class of nonlinear dispersive evolution equations. As an example, we apply our approach to the Camassa–Holm
equation, which is usually written in the form

ut + 2κ ux − utxx + 3uux = 2uxuxx + uuxxx, (29)

for x ∈ R, t > 0 and κ ∈ R. For traveling waves u(x, t) = u(x − c t), Eq. (29) takes the form

u′′(u − c) +
(u′)2

2
+ K + (c − 2κ)u −

3
2
u2

= 0,

where K is a constant of integration. If instead of u we study the translate

w = u − c,

the previous equation reads

w′′ w +
1
2
(w′)2 + F ′(w) = 0, (30)

where

F(w) = Aw − Bw2
−

1
2
w3, (31)

with constants A = K − 2κc −
1
2 c

2 and B = c + κ . Now, Eq. (30) is of the form (4) and we may prove existence of traveling
wave solutions as in Section 2:
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Theorem 4.1. There exist solitary and periodic traveling wave solutions of the Camassa–Holm equation (29) for every c, K and
κ satisfying

−
2
3
B2 < A < −

1
2
B2, (32)

with constants A and B defined as above. All solitary waves are symmetric with respect to their unique maximum/minimum and
tend exponentially to a constant at infinity. Periodic waves exist also for −

1
2B

2 < A < 0.

Proof. Bounded orbits in the phase plane associated to (30) give rise to traveling waves of (29) in view of Proposition 2.1
as before. To work out conditions for the existence of homoclinic and periodic orbits we proceed along the lines of the
proof of Proposition 2.3. Bounded orbits exist as long as the local extrema of F are distinct, i.e. when the discriminant of F ′,
discrim(F ′, w) = 6A+4B2, is greater than zero. This yields the lower bound in (32). To guarantee the existence of homoclinic
orbits we have to ensure that there is one saddle point and one center point in the phase plane. To this end, we study the
relation F(s) = F(0), where s is the solution of F ′(s) = 0 with F ′′(s) < 0 for s > 0 and F ′′(s) > 0 for s < 0, which yields the
curve A = −

1
2B

2 marking the upper bound in (32). �

Proposition 4.2. There exist peaked continuous solitary traveling wave solutions of the Camassa–Holm equation (29) for c, K
and κ satisfying A = −

1
2B

2.

Proof. For parameters satisfying A = −
1
2B

2 we obtain homoclinic orbits which give rise to continuous solitary traveling
wave solutions of (29) with a peaked crest. Indeed, for this choice of parameters hs = F(s) = 0, so the relation equivalent
to (8) reduces to

w′
= ±


−2F(w)

w
= ±|B + w| and w′′

= ±1.

Hence, w′
→ ±|B| when w → 0, so there is a discontinuity of w′ at (0, ±|B|), the crestpoint of the solitary wave solution.

However, it is straightforward to check that such a solution still satisfies the Eq. (30) in this point. Thus, we obtain solitary
wave solutions with a peaked crest. �

Remark 4.3. Solitary traveling waves decaying to the flat surface at zero are known to exist when c > 2κ , cf. [5]. This result
is reflected in our condition A > −

2
3B

2 for K = 0. Moreover, we recover the fact that peaked solitons (peakons) exist when
κ = 0, cf. [33], from the relation A = −

1
2B

2 for K = 0. The peakons and their periodic counterparts are orbitally stable,
cf. [34–36]. For a discussion on periodic traveling waves of the Camassa–Holm equation we refer to [21,14].
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Appendix. Algebraic curves

We want to provide some remarks on the algebraic curves involved in our analysis and show that our figures display
correctly the graphs of the corresponding expressions. We only exemplify the procedure by proving some selected cases.
First, recall a result on the number of roots of polynomials (cf. [31]), which we will use repeatedly:

Lemma A.1. Set Ω = R and consider a family of real polynomials whose coefficients depend continuously on a real parameter
b,

Gb(x) = gn(b)xn + gn−1(b)xn−1
+ · · · + g1(b)x + g0(b).

Suppose there exists an open interval I ⊂ R such that:

(i) There is some b0 ∈ I , such that Gb0(x) has exactly k simple roots on Ω .
(ii) For all b ∈ I , the discriminant of Gb with respect to x is different from zero.
(iii) For all b ∈ I, gn(b) ≠ 0.

Then for all b ∈ I,Gb(x) has exactly k simple roots on Ω .
Moreover, if Ω = Ωb := (c(b), ∞) ⊂ R for some continuous function c(b) the same result holds if we add the hypothesis:

(iv) For all b ∈ I,Gb(c(b)) ≠ 0.
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The intuition behind this result is as follows: In view of the hypotheses (i)–(iv), the roots of Gb(x) depend continuously on
b. Assumptions (iii) and (iv) impede possible bifurcations of roots from infinity or from the boundary of Ω when varying
b ∈ I . Moreover, assumption (ii) prevents the appearance of multiple real roots in the interior of Ω . Therefore, the number
of roots of Gb(x) is constant in Ω when the parameter b ∈ I varies, and hence Gb(x) has k simple roots for all b ∈ I in view
of assumption (i).

A.1. On the curves in Section 2.2

We want to ensure that the algebraic curve M(c, s) = 0 in (14) has no real roots, and that N(c, s) in (15) has a unique
root for every choice of parameters (c, s). Furthermore, we want to show that the curves N(c, s) = 0 and A1, A2 of (17) all
intersect in precisely one point. We have

M(c, s) = 243c2 +

−900s − 778 + 540s2 − 1080s3


c

+ 823 + 1284s + 480s2 + 480s3 + 2700s4 − 1296s5 + 1296s6,

which we regard as a polynomial in c with parameter s. To show that it has no real roots, we check that the conditions
of Lemma A.1 are satisfied for k = 0. Assumption (iii) holds, since the coefficient of the highest order term is constant.
Computing the discriminant ofM(c, s) with respect to c yields

−16

18s2 − 6s + 23

3
,

for which it is straightforward to prove that it has no zeros in R. To check assumption (i) we choose, for example, s = −1
which gives

M(c, −1) = 243c2 + 1742c + 4831 > 0.

In view of Lemma A.1, we find thatM(c, s) is strictly positive for all c, s ∈ R. Next we focus on

N(c, s) = 3c3 + (−42s + 37) c2 +

−476s + 588s2 + 3397


c + 6076s2 − 8232s3 − 8666s − 2125.

It is straightforward to show that assumptions (ii) and (iii) hold. Regarding (i), we choose for example s = 1 and find that

N(c, 1) = (3c − 11)(c2 + 2c + 1177)

which clearly has a unique root. Hence, for each s ∈ R there exists precisely one c ∈ R such that N(c, s) = 0. To prove that
the curves A1, A2 and N(c, s) = 0 all intersect in precisely one point, observe that the Ai are linear in c and it is therefore
easy to check that they intersect at a point (c∗, s∗) where s∗ is the root of the cubic polynomial P∗

:= −2− 20s+ 6s2 − 12s3
and c∗, the corresponding value on the curve A2, is given by the unique real solution of 3c3 + 30c2 + 1031c − 368 = 0 as
stated in Theorem 1.1. To see that N(c, s) = 0 also intersects in that point, compute the resultant of A2 and N with respect
to c and find that the resulting polynomial is just a factor of P∗ which proves the claim.

A.2. On the curves in Section 3.1

In this subsection, we want to discuss the curves in (24), (25) and (27). We show that the curve R(c, s) = 0 intersects
the curve A2 three times whereas it intersects A1 only once, which yields the different regions depicted in Fig. 6. To prove
the latter result, we solve both A1 and A2 for c and plug the resulting expressions into R(c, s). We obtain two univariate
polynomials in s for which it is straightforward to show that they have three roots (two negative and one positive) and one
root (in zero), respectively. To show that the polynomial expressions defining the involved curves in (24), (25) and (27) yield
a unique root for each (c, s) ∈ R2, we again employ Lemma A.1 and check that the assumptions are satisfied. We exemplify
the procedure by showing that the result is true for the curve Pc,s(m) = 0, where

Pc,s(m) = −6m3
+ (5 − 12s)m2

+ (−18s2 + 10s − 10)m − 24s3 + 15s2 − 20s − 5 + 5c.

Note that we are now dealing with a polynomial which depends on two parameters. Assumption (iii) holds in view of the
fact that the coefficient of the highest order term is constant, and it is straightforward to check (i) choosing parameters
(c̄, s̄) which yield that Pc̄,s̄(m) has precisely one root. To prove assumption (ii), we compute the discriminant of Pc,s(m) with
respect tom and obtain

Dis(Pc,s(m),m) = −24300c2 + (120600s − 75600s2 + 73100 + 151200s3)c

− 70300 − 96200s2 − 163600s − 504000s4 + 259200s5 + 2400s3 − 259200s6.

To show that Discrim(Pc,s(m)) is different from zero, we repeat the scheme for this polynomial in c with parameter s and
ensure again that the assumptions of Lemma A.1 hold with k = 0.
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A.3. On the curves in Section 3.2

The goal of this subsection is to prove that for the polynomial

Ic,s(u) = −168u4
+ (90 − 15c − 168s) u3

+

10c − 130 − 168s2 + 90s − 15sc


u2

+ (−50 + 10sc + 20c − 130s + 90s2 − 168s3 − 15s2c)u
− 5 − 50s + 90s3 + 5c2 + 20sc − 130s2 − 168s4 + 10s2c − 15s3c,

obtained in (28), the number of roots do not change if we vary the parameters (c, s) in the admissible region A. We will
again employ Lemma A.1 above for I = A and Ωc,s = (s, ∞). Indeed, assumption (iii) holds since the highest coefficient of
Ic,s(u) is constant. To check that (iv) is satisfied, we evaluate the polynomial at u = s and find that

Ic,s(s) = (s − ū)F ′′(s).

These factors are exactly the relations which bound the admissible parameter region A, and hence they do not vanish in
the interior of A. Note, however, that solitary waves with compact support arise from a choice of parameters (c, s) on the
curve A2 = {s − ū = 0}, so we need a separate argument in that case which will be carried out below. Next we study the
discriminant of Ic,s(u) with respect to u,

Dis(Ic,s(u), u) = D1(c, s)D2(c, s), (A.1)

where the factors on the right hand side of the above expression are given below. We claim that the algebraic curves
corresponding to the zeros of these factors lie outside of A. To see this, observe that the curves A1, A2, {D1(c, s) = 0}
and {D2(c, s) = 0} intersect precisely once in the point (c∗, s∗). Then, we choose some c1 < c∗ and find that D1(c1, s) >
A1(c1, s) > A2(c1, s) > D2(c1, s), whereas for any c2 > c∗ we obtain the reverse order. Hence, the discriminant of Ic,s(u)
does not vanish in A, which proves the claim. Therefore, the assumptions (ii)–(iv) of Lemma A.1 hold, and we find that the
number of roots of Ic,s(u) is constant in the interior of A.

We now provide a separate but similar argument which asserts that this result holds also for parameters on the curve
A2. Indeed, for (c, s) on A2, i.e. when s = ū, we find that

D′(u) = Ĩc(u),

where Ĩc(u) is a cubic polynomial in u whose coefficients depend polynomially on c. Along the lines of the above proof we
argue that Ĩc(u) has a unique real root in (ū, ∞). Indeed, no bifurcations of roots occur at infinity, and evaluating Ĩc(u) at
the boundary u = ū yields a cubic polynomial in c which vanishes only in c∗

∉ A. Using Sturm’s method (cf. [32]) we show
that the discriminant of Ĩc(u) with respect to u does not vanish. Hence, the number of roots is constant, and choosing any c̄
we find that Ĩc̄(u) has a unique real root in (ūc̄, ∞).

We conclude with a discussion of the polynomials in expression (A.1),

D1(c, s) = −32928s3 + (1764c + 22344)s2 − (84c2 + 1148c + 28504)s + 3c3 + 44c2 + 7919c − 5842

and

D2(c, s) = 30375c5 + (67500s2 − 135000s3 + 93100 + 567900s)c4

+ (2083200s2 − 3518100s4 + 408900s + 162000s6 + 1280400s3 − 162000s5 + 880703)c3

+ (−368064s − 4730400s6 − 8347536s2 + 5443200s7 + 6777000s4 − 11014128s3

− 25691040s5 − 3605574)c2 + (−44997120s7 + 4400084 − 15110352s + 23678784s5

− 9163584s6 + 60963840s8 − 22971024s2 − 17525952s3 − 58261680s4)c + 227598336s9

− 138184704s8 + 31667136s + 301625856s7 + 71568192s3 + 152350848s6 + 1062232
+ 54393984s5 + 49720800s2 + 187454304s4.

We will only discuss the latter curve and employ Lemma A.1 again for I × Ω = A. Note that assumption (iii) holds in view
of the fact that the coefficient of the highest order term is constant. Computing the discriminant with respect to c yields

Dis(D2, c) = α0(11664000s12 − 23328000s11 + 367804800s10 − 487728000s9

+ 3390049800s8 − 2253805200s7 + 4960871884s6 + 2160459976s5

+ 1280057526s4 + 4059678628s3 + 1729573411s2 + 1328288220s + 695918709)
× (84672s4 + 22512s3 + 76402s2 + 58822s + 16767)3

× (16767 + 29606s − 12083s2 − 4040s3 + 20160s4  
=:D̃(s)

)2,

where α0 > 0 is a real constant. It is straightforward to see that the first two factors of the above expression have no real
roots, whereas the last factor D̃(s) vanishes for two values s1 and s2, meaning that D2(c, si) may have multiple roots in that
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case. To ensure that assumption (ii) holds, we have to prove that these values do not lie in A. To this end, we use Sturm’s
method to derive rational upper and lower bounds for si such that s1 ∈ [s1, s̄1] and s2 ∈ [s2, s̄2], to bound the curves Ai from
above and below by rational constants. For example, we find that s1 ∈ [−

131
128 , −

65
64 ] =: I1. We claim that all values of D2 in

the strip defined by I1 lie outside of A. To this end we compute a bound for A2,

M1 := min
s∈I1

{c ∈ R : A(c, s) = 0} =
423
32

∈ Q,

and construct a rational univariate polynomial

D̃2(c) = 30375c5 −
8897979325

32768
c4 −

602652229378808443
274877906944

c3

+
3196448247290763459

137438953472
c2 +

2641868472255829530863
70368744177664

c −
17460388511693021202337

35184372088832
,

using the upper and lower bounds of the interval I1 such that D2(c, s) < D̃2(c). Then, it is fairly straightforward to see that
D2(c, s)−M1 < D̃2(c)−M1 < 0, which proves the claim. Repeating this procedure with the root s2 and the other bounding
curves Ai shows that in the region A all involved curves are displayed correctly.
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