
Comput. Math. Applic. Vol. 16, No. 12, pp. 983-992, 1988 0097-4943/88 $3.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1988 Pergamon Press pie 

G E N E R A L  V A R I A T I O N A L  A P P R O A C H  T O  T H E  

I N T E R P O L A T I O N  P R O B L E M  

L. MITA~ 
Institute of Physics, EPRC SAS, D~bravsk~. cesta 9, 842 28 Bratislava, Czechoslovakia 

H. MITA~OVA 
Department of Physical Geography and Cartography, Faculty of Natural Sciences, Comenius University, 

Mlynskfi dolina, 842 15 Bratislava, Czechoslovakia 

(Received I1 March 1988) 

Communicated by E. Y. Rodin 

Abstract--The Talmi and Gilat variational approach to the interpolation problem in arbitrary dimension 
is presented together with the corresponding physical model. The connection of this approach to some 
known spline methods is demonstrated and new interpolation functions are derived for one-, two- and 
three-dimensional cases. They are designed to be flexible through the use of meaningful parameters and 
to give good approximations of both the function itself and its derivatives as well. 

1. I N T R O D U C T I O N  

The interpolation problem is currently met in many disciplines when the studied phenomena is 
modeled by a continuous function measured only in a few discrete points. The problem is stated 
as follows: given the N values of studied phenomena z ~j), j = 1 . . . . .  N measured at discrete points 
x ~j) = ( x ~  ~, x~ j) . . . . .  x ~ ) ) , j  = 1 . . . . .  N within a certain region of a d-dimensional space. Construct 
a function S ( x )  so that 

S ( x  Cj)) = z ~j), j = 1 . . . . .  N .  (1) 

It is clear that there exist an infinite number of such functions and to find a unique solution (to 
ensure the problem to be well posed) additional conditions are introduced. According to various 
types of these conditions a large number of methods have been proposed, which give more or less 
satisfactory results in a variety of cases (for the review see, for example Lancaster and Sakauskas 
[1] de Boor [2], Franke [3]). 

A large class of interpolation methods including the splines are based on an intuitively appealing 
fact that the interpolation function should be smooth. The smoothness condition can be formulated 
within variational principles as a minimization of the considered smoothness functional. This 
condition was used in various modifications by several authors, for example Briggs [4], Terzopoulos 
[5], especially in connection with the spline interpolants presented, for example by Ahlberg et  al. 

[6], Duchon [7], Meinguet [8], Dyn and Levin [9], Renka [10] Bini [11]. Probably the most general 
form of this approach was introduced by Talmi and Gilat [12]. 

The purpose of this paper is to demonstrate the power of the variational approach in several 
aspects and to present some new results obtained within this principle. Special attention is paid 
to the control and interpretation of the interpolants' properties. The connection of this approach 
to some well known methods is given and new interpolation functions are derived. The problem 
is solved generally in d-dimensions, practical expressions are given for d = 1, 2, 3. The new methods 
have been designed to meet the requirements of flexibility, sufficient accuracy both for the function 
itself and its derivatives and reasonable computer implementation. 

In Section 2 the physical model for the smooth interpolation is presented and in Section 3 the 
method is introduced in its general-theoretical form. In Sections 4-7 special cases are studied and 
some new interpolation functions are proposed. In Section 8 we discuss the applications and 
extensions of the approach. 
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2. THE PHYSICAL MODEL FOR THE SMOOTH I N T E R P O L A T I O N  

The fundamental problem of the interpolation is the choice of a suitable additional condition 
to the interpolation constraints (1) which ensures the problem to be well posed. A clear and useful 
treatment of this problem can be presented in terms of the following physical model (considered 
in two dimensions as the most instructive for our purposes). 

Suppose we have a thin flexible plate of elastic material that is planar in the absence of 
external forces and constrain it to pass through the point supports which represent the data 
points. It is not difficult to imagine that in its equilibrium state the thin plate will generally 
trace a smooth surface. It is a known fact that the plate minimizes its blending energy what 
can be--at  a certain degree of approximation---expressed through the variational (minimization) 
condition 

Lt,7~Tx, 7 ) +\ -- x22]_jdxidx2:minimum, (2) 
where R denotes the set of all real numbers. The interpolation function which fulfils this condition 
is known as a thin plate spline developed by Duchon [7]. This model results in pleasantly smooth 
surfaces, however problems arise when we have the regions with a rapid change of gradients in 
the modeled phenomena. Due to the plate's stiffness unacceptable features appear in this case (for 
example false minimum or maximum). 

The stiffness of the plate can be suppressed by assuming a more general model with the 
variational condition 

f FfasV fasVl = / : m i n i m u m ,  (3) 

where 40 t1> 0 is a weight constant. For 40 + 0  we obtain the model of the thin plate. On the other 
hand if 40 ~ m, the resulting function represents the shape of the membrane (rubber sheet) passing 
through the data points. The membrane does not exhibit the false effects mentioned above but it 
is not sufficiently smooth for most applications. The function corresponding to condition (3) can 
be also interpreted as a thin plate with a tension applied to its boundary. A similar idea for one 
or two dimensions has been used for splines with tension for example by Pruess [13], de Boor [2], 
Renka [10], Cox [14]. 

This model performs well until we want to estimate the second derivatives. For this purpose 
the interpolation surface is not smooth enough, which becomes evident through the fact 
that the corresponding function exhibits singularities in its second derivatives in the data 
points. We must improve the stiffness of the plate and this can be done by adding the third (or 
even higher) derivatives with appropriate weight r 1/> 0 to the variational condition 

E ( S )  = EMe(S) + r 2 E ~ S )  = minimum (4) 

and 

f Fia'sV ( a ' s y  I a's v I a,s vq  
=Lt ) + / (5) 

It is interesting to note that for z < 1 the stiffness of the interpolant is changed only in a small 
neighbourhood of the data point and thus the plate (40 = 0) or membrane-plate (40 ~ 0) character 
of the interpolant is saved. Of course there can exist several applications where the choice r >> l 
can be a more preferable one. 

In this way we obtain rather general model for the interpolation problem represented by the 
constrained equilibrium state of a thin flexible plate the stiffness (or smoothness) of which is 
controlled by the proper choice of the weights in condition (4). It is evident that analoguous models 
can be proposed also for the one- and three-dimensional cases. The brief mathematical background 
for this model is given in the following section. 
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3. F O R M U L A T I O N  OF THE I N T E R P O L A T I O N  PROBLEM A N D  ITS 
F O R M A L  S O L U T I O N  

To introduce the mathematical background in this section we will briefly describe some of the 
important results of  Talmi and Gilat [12]. We start with the definition of  the "smoothness 
co-functional" (inner product) which is the central point of  the theory. Let g(x)  and h(x) be 
the elements of the space W of the complex analytic functions of  d-real variables defined on 
some region [2 of the d-dimensional real space (x = (x~, x: . . . . .  Xd)). Let us further denote by 

= (~, ~2 . . . . .  ~d) the multiindex with nonnegative integer components, and its length as 

d 

= E (~m" (6) 
ra=l 

Then we can express this inner product in the form 

• an OxT'... Ox~ g(x)  .OxT---ox h(X) dx, 

where 

dx = dxl dx2 . . • dXd 

B, = some nonnegative constants which will be exactly defined in the particular cases 
• = the complex conjugation. 

(7) 

M 
T(x)  = ~ a~(x)  (13) 

I=l  

and ~(x)}  is a set of  linearly independent functions (monomials) which have zero SS, so that 

IIf, II = 0 ,  t = 1 . . . .  M, (14) 

while the generating function (GF) R(x, y)  is given by 

= ~., g*(x)g~,(y) (15) 
R ( x , y )  ~ Jig,[l: " 

where 

In the case when g(x)  = h(x) the functional (7) naturally induces a seminorm II g II of the function 
g(x)  

II g II = ~ / '~ , - -~  (8) 

in the subspace if" which is defined by 

i f '=  {g6W;  Ilgll < ~}- (9) 

The seminorm (8) will be called the smooth seminorm (SS) because in certain sense it represents 
the measure of  smoothness of  the given function g(x).  Furthermore we suppose that there exists 
a complete orthogonal set of  functions in if" where the orthogonality is understood in a sense of  
the inner product (7). We denote this set {g,(x)}. Now we will use the minimization of  the SS as 
an additional constrain to the interpolation function. The variational formulation of  the inter- 
polation problem is then as follows: 

Find an interpolation function S(x)  which fulfils the conditions 

(a) S(x  (j)) = z (j), j = 1 . . . . .  N, (10) 

(b) II S H = minimum. (11) 

The unique solution of conditions (10) and (11) according to Talmi and Gilat [12] is given by 

N 
S(x) = T(x) + ~ ~jR(x, x~J~), (12) 

j = l  
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The function T(x)  will be called the trend function, although it is not the trend in the usual 
statistical sense. The coefficients {a;} in equation (13) and {2j} in equation (12) are found by the 
solution of the system of linear equations 

N 

2 j f ( x  (j)) = 0, 1= 1 . . . . .  M, (16) 
j = l  

S(x  (j)) = z (j), j = 1 . . . . .  N. (17) 

It is useful to note that an arbitrary function G(x, y)  can be added to the GF if there exist such 
constants {b;} that the following equation holds: 

N M 

 ja(x, b;f,(x). (18) 
j = l  l = l  

Of course, by simple redefining of equation (13) 

M 

T(x)  = ~ (a ; -  b;)f;(x) (19) 
l = l  

the interpolating function S(x )  is not changed. We will use this property later. 
It is clear that the solution (12)-(17) is rather formal. Our aim is to show that under some general 

conditions it is possible to find the representation of the GF which essentially leads to explicit 
results for T(x)  and R(x,  y).  

We will continue with a proposal that the interpolating function we are looking for is periodic 
in all variables with period L(f2 - -L  a) so that the following equation holds: 

S(x )  = S (x  + vL), (20) 

where v = (v~, v2 . . . . .  vd) is an arbitrary vector with integer components. The natural choice for the 
set of orthogonal functions is 

2rt 
gk(x)= L-d/2e -i~k, k = - ~ v ,  (21) 

(x " k means, as usually, the scalar product of the vectors x and k, i denotes the imaginary unit). 
In this case 

__~ ~k e-ik'(x- y) 
R(x, y)  = II gk [I 2 (22) 

NOW we enlarge the region t~ to the whole space by assuming the limit L-o oo. In this limit the 
components of k change from discrete to continuous variables which induces the following 
correspondences: 

L--* oo 

-~E~,-W__~ dk, d k = d k , , d k z . . . d k u ,  k e R  ~ (23) 
d 

t lg ,  ll z a(k ) = Z =2 . . . (24) 

and the Fourier sum (22) changes to the following Fourier integral: 

l (D e -  ik. (x. y) 

R(x,  y)  = (-2~) a J.~ a ( k ~  dk (25) 

and this is the desired tractable form of the GF. Moreover, in all cases which will be considered 
below, we assume that the space in which the interpolation is performed is isotropic. This condition 
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makes useful the following notations: 

q = (k 2 + k 2 + . . .  + k2) 112 (26) 

r = [(xt - yj): + (x2 - y2) ~ + " "  + (Xd -- yd)2] 1/2 (27) 

I 1! 
~l !~(2! • • • %!' (28) 

which will be used later. 
There is still a large degree of freedom for the choice of the coefficients {B~} in equation (24). 

This allows us to find R ( x ,  y )  and T ( x )  in a closed form for some important cases as will be shown 
in the following sections. 

4. SPLINES 

In this section we will show the correspondence of the general results from the previous section 
to the well known spline interpolation methods. Let us choose the SS in the form which includes 
only the second derivatives. The constants {B~} are given by 

1 1=2, / 

\ 
O, otherwise. 

(29) 

The trends for the particular dimensions are given by 

T ( x )  = al + a2xl, 

T ( x )  = al + a2xl + 33x2, 

T ( x )  = al + a2xl + a3x2 + a4x3, 

while 

d = 1 (M = 2), (30) 

d = 2 (M = 3), (31) 

d = 3 (M = 4), (32) 

a (k  ) = q4 = ( k  2 + k 2 J r . ' .  "-F k 2 )  2. (33) 

A special care should be taken to the evaluation of the GF. A simple substitution of equation 
(33) to equation (25) leads to an unbounded integral. However, by using equation (16) we can 
see that 

N 

),j = 0 (34) 
j = l  

and moreover that 
N N d 

2j(x - x (J) ) ' (x  - x c j)) = ~ 2j ~ (x~)) 2 = constant, (35) 
jffil jffil mffil 

is independent on x and the resulting constant in equation (35) can be simply absorbed to a~. 
Now if we consider the properties of R(x ,  y )  together with equations (18) and (19) it is possible 
to rewrite the GF in the form which is finite for all x, y 

1 fRe -ik(x-y)- 1 +½[k ' (x  - y ) ] 2 d k  ' 
R(x ,  y) = ~ q4 d = l, (36) 

1 fq e - i k ( x - Y ) - - l - I - l [ k ' ( x - - y ) ]  2 
R ( x , y ) = ~  <~ q4 dk  

] ~ e - i k ' ( x -y ) -  1 
+~-5n2J.~q q4 dk, O < u < ~ ,  d = 2 ,  (37) 

1 {"  e - i k ' ( x - y )  - -  1 
R(x ,  y) = ~ in3 q '  dk, d = 3. (38) 
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(In fact, this step is not completely correct in the presented manner but it can be rigorously justified 
within the framework of generalized functions. However, this aspect is out of the scope of this 
paper.) For d = 1 and d = 3 the integrals (36) and (38) are simple 

r 3 

R ( x , y ) = R ( r ) = ~ ,  d = l ,  (39) 

r 
R ( x , y ) = R ( r ) -  8n' d = 3 .  (40) 

For the two-dimensional case it is convenient to rewrite equation (37) to the form 

1 lim ° e -'k{x-y' 1 +½[k. (x-y)]2dk  
R(x, y) = ~ q4 31 - E4 q4 E~ " (41) 

< u  ~ q  "~- 

After the integration [15] one obtains 

R(x ,y )=R(r )=l im  1 {--~kei(Er)+-~SE2 r2 I 1} ,40 ~ + ]-6 ln(ul/4 + e4) -- In 64 , (42) 

where kei(.) is the Kelvin function [16]. Using the series expansion of this function we can finally 
perform the limit with the result 

R(r) = 1__ r2 In r + cr 2 (43) 
8n 

where c is a certain constant. The second term here is not important because it can be absorbed 
to T(x) due to condition (35) and thus 

1 r2 R ( r ) = ~  lnr,  d = 2 .  (44) 

As one expects the one-dimensional result is simply the spline of the third order [6]. Similarly, 
for d = 2 we have obtained the interpolation function which is known as the thin plate spline 
developed by Duchon [7] and successfully applied, for example, by Dubrule [17] and Franke [18]. 
While these two results (39) and (44) are often used in practice the three-dimensional case is 
not very useful because the first (partial) derivatives are divergent at the data points (for d = 2 
this unpleasant effect appears in second derivatives, for d = 1 in the third one). In Sections 6 and 
7 we will show how to regularize these divergencies by the inclusion of the higher derivatives in 
the SS. 

5. SPLINES WITH TENSION 

According to our discussion in Section 2 there are some cases when the spline method can be 
considerably improved by the inclusion of the first derivatives (a tension or membrane term) into 
the SS. Thus, 

l=l--2, / 
B= =--q~2C(ct), let ] = 1, (45) 

\ 
0, otherwise, 

where ~0 > 0 represents the weight of the tension term in the SS. The trend function is given by 

T(x) = a~ (46) 

for all dimensions and further 

a(k) = tp2q 2 + q4. (47) 

In order to keep the GF finite it should be modified by the arguments analogical to that in the 
previous section with the result 

R(r)=(2 f " e-ik"x-Y' -- 1 q~2q2 -k- q4 dk, d = 1, 2. (48) 
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The expressions for the GF's  are 

1 R(r) = ~ (1 - cpr - e-*'), d = 1, (49) 

R(r)= 2 In -~- +cE+/~( rq~)  , d = 2 ,  (50) 

where a somewhat more complicated case for d -- 2 has been derived by rewriting equation (48) 
to the form 

i m0 f, R(r)  = 1 2 ( q ~ - ~ p 2 ) d k ,  d = 2 .  (51) 

In equation (50), K0(') is the modified Bessel function of the zeroth order and cE = 0.577215. . .  
is the Euler constant. For the practical purposes there exist relatively simple and accurate 
polynomial-like approximations of  the Bessel functions in Abramowitz and Stegun [16]. We have 
not presented the result for d = 3 because of  the deficiency of  the G F  which is the same as that 
one in the Section 4. 

The results of  this section offer the possibility to tune the character of  the interpolant from 
a simple spline (~p ~ 0 )  to the membrane-like shape ( ~ p ~ )  according to the interpolated 
phenomenon. 

6. R E G U L A R I Z E D  SPLINES 

In order to remove the singularities of  the derivatives at the data points (what is severe especially 
for d = 2, 3) we propose to include the third derivatives into the SS 

1 1=2, 
/ 5  

B, = 3, (52) 
\ 

0, otherwise. 

The parameter r > 0 obviously measures the weight of the term with the third derivatives in the 
SS. The trends are given by equations (30)-(32) and by arguments essentially same to that in Section 
4 we can write the G F  in the form 

mr)=4  f. e - i k ( x - y ) - -  l q -½[k ' ( x  -- y)]2 
2 q4.~_,~Eq6 dk, d -- 2, (53) 

R(r)= ~__~ f a e-ik(x-Y)-- a q 4 + z 2 q b l d k ,  d = 3 .  (54) 

The resulting expressions are 

R(r)=~ In +CE--1 +T 2 Ko + C E + l n  ~ , d = 2 ,  (55) 

T2 I r r2 1 R(r)=~ e - n ' - l + - z  ~-z 2 '  d = 3 .  (56) 

For d = 2 it can be checked by the series expansion of  K0(') that the GF  has regular partial 
derivatives everywhere up to the third order. For d = 3 this is the case for the derivatives up to 
the second order. We recall that the explicit expressions for the derivatives of  K0(') can be found 
in terms of  K0 ( ' )  and/(1( ' )  by using the corresponding recurrent relations from the theory of  Bessel 
functions (see, for example, Abramowitz and Stegun [16]). Finally, by the inspection of  equation 
(55) we can see that for ~ ,~ 1 the change of the GF  when comparing to the spline case [equation 
(44)] is significant only for r ,~ 1. This implies that, as we have mentioned in the Section 2, the 
inclusion of  third derivatives with the small weight changes the interpolation function only in the 
small neighbourhoods of  the data points. 
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7. R E G U L A R I Z E D  SPLINES WITH T E N S I O N  

In this section we will derive a rather general interpolation functions which, in a certain way, 
synthetize the advantages of the previous cases--the control of  the interpolant's tension with the 
preserved regularity of  the derivatives of  sufficiently high order. For d = 1 and d = 3 it is even 
possible to obtain the explicit results with all derivatives in the SS in a manner proposed by Talmi 
and Gilat [12] 

0, =0, 
/ 

\ 
C(~)D 21~1, otherwise. (57) 

The relative weight of  the particular members in the SS series is controlled by the parameter D. 
The trend functions are given by equation (46) and the GF  by 

_2n)a f e - ik~ - ' )  -- 1 R(r)= J , a ~  ~ ] d k '  a = l , 3 .  (58) 

It is possible to obtain the GF's  in the closed form 

r [lrr\ 
R ( r ) =  - ~ - ~ c o t h ~ ) ,  d =  1, (59) 

1 1 c3 [ h/~zr'~-] 
R(r)=21t2OZrO r r c o t  ~ - ~ ) J ,  d = 3 .  (60) 

In two dimensions the situation is more complicated and we did not succeed in obtaining the 
explicit result with the choice (57). However, we can modify the SS as follows: 

D2cp2C(o0, [o~l= 1, 

=2, 

I = 3, 

0, otherwise. (61) 

While the trend function is the same as for d = 1, 3 by inspection of  equations (34) and (48) one 
finds that the G F  is given by 

4-~f,  e-i*(x-y)-I R(r) = 2 ~p2(Dq)i-+ ~D-~4--+-~2(Dq)6 dk. (62) 

The integration can be carried out by the decomposition of  the fraction into the partial ones and 
then by manipulations similar to those used in Section 4 we have 

R(r) 1 {_ ln ( .~D  ) 1 [ ( D  v / v )  ( D  v / w )  w v ] }  =--D(o2 --CE+v_w WKo -vKo + ~ l n v - ~ l n w  , (63) 

where 

v = ~ (1 + x / l  - 4~02C), w = (1 - x/1 - 4~o2C). (64) 

From conditions (64) there is an obvious condition for ~o, ~ 

1 - 4q~2~ 2 > 0, (65) 

but otherwise their choice is arbitrary. However, in order to avoid too many parameters, we can 
set for instance ~o 2 = r 2 = 10 .2 and thus the properties of  the interpolation function is dependent 
solely on D. Clearly, if D ~ 1 the term with second derivatives has the largest relative weight in 
the SS. On the other hand, if D ~ 1 (D >> 1) the term with the first (third) derivatives becomes to 
be the dominant one. Finally we note that for d = 2 the derivatives are regular everywhere up to 
the third order while for d = 1, 3 this is the case for the derivatives of  all orders. 
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8. DISCUSSION AND CONCLUSIONS 

In this paper we have presented some results of the general variational approach to the 
interpolation problem. Within this treatment we have shown that some known spline interpolants 
are its special cases. We have also derived new interpolants with several useful properties. The 
regularized spline is designed to yield simultaneously good approximations both for the function 
itself and its derivatives as well. The spline with tension admits to tune the smoothness of the 
interpolant according to the character of modelled phenomenon. The natural synthesis of both 
cases is the regularized spline with tension. The flexibility of the interpolation functions is 
interpreted within a simple mechanical model which we consider rather instructive for the 
applications. 

Among the most useful properties of the presented methods is that no complicated numerical 
procedures are required. The interpolant is given in its explicit form and the only task is to 
compute the coefficients in equation (12) from the system of linear equations (16) and (17). 
Consequently also the derivatives are known explicitly what is rather important for the commonly 
required estimation of gradients, curvatures, topographic structures especially in two-dimensional 
cases. 

Concerning the computer processing it should be mentioned that the methods may seem to be 
uneffective for large data sets as the system of ~ N equations should be solved (the methods are 
global in the sense of Franke's [3] definition). However, this drawback can be overcome by 
segmented processing proposed by Franke [18] which is not very complicated and makes the 
method effective indeed. Another important feature is that the machinery is the same for the 
arbitrary dimension because going from one dimension to another the only change is the 
substitution of the appropriate expressions for R(.) and T(.) to equation (12). 

However, by this the whole potential of the approach is not exhausted and the methods can be 
further developed. For example, Talmi and Gilat [12] have proposed the following extensions. They 
showed the natural way to incorporate the prescribed values of derivatives, integrals or other linear 
conditions into the interpolation function. Moreover, they proposed a straightforward modification 
of the method to the problem of smoothing so it could be applied also to noisy data. 

We illustrate the result of this approach by the following test example. The regularized spline 
was used for the interpolation of the bivariate function proposed by Franke [3] and used in tests 
by Renka and Cline [19] and Foley [20]. The function is sampled by scattered 100 data points within 
the unit square (we have digitized their actual positions from the Fig. 5. in Renka and Cline [19]). 
The accuracy of the interpolation is tested at 1089 grid points of a 33 x 33 uniform mesh. The 
comparison of the results with some other methods including those based on the C ~ interpolants 
on the triangular networks is given in Table 1 (the first part of it is taken from Renka and Cline 
[19] and represents some of the methods which scored among the best in Franke's tests [3]). In this 
comparison the regularized spline gives significantly better results. Moreover, this is true over the 
relatively wide range of T values, so at least in this case the interpolant is rather stable with respect 
to changes of this parameter. 

However, the question of the choice of the parameters is a rather important point for discussion. 
We consider the free parameter(s) in the interpolation function to be a valuable tool for the control 
of the interpolant's character. We believe that it will be possible to find a procedure for the 

Table 1. Comparison of the mean and maximum absolute errors for 
various methods of bivariate interpolation 

Method Mean error Maximum error 

Akima Mod. I l l  0.00729 0.0520 
Mod. quadr. Shepard 0.00785 0.0573 
Lawson 0.00783 0.0951 
Renka global 0.00540 0.0499 
Renka local 0.00619 0.0505 
Nielson-Franke quadr. 0.00741 0.0782 
Nielson rain. norm 0.00537 0.0492 

Thin plate spline 0.00497 0.0470 
Regularized spline ~z= 0.5 0.00222 0.0259 
Regularized spline ~2 = 0.1 0.00207 0.0234 
Regularized spline ~2 = 0.01 0.00227 0.0233 
Regularized spline ~2 ~ 0.001 0.00324 0.0274 



992 L. M1xA~ and H. MITA~ovA 

automatic choice of optimal values (for example in the statistical sense) for the parameter(s) and 
this problem is currently being studied. Our aim is to minimize the empirical inputs which on one 
hand can give excellent results [20] but on the other hand they require considerable "trial and error" 
processing. 

In conclusion, we want to point out that this paper can be understood also as a methodological 
outline how to construct the interpolant with the desired properties within the possibilities of the 
variational approach. 
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