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Abstract

Aspergillus terreus (A. terreus) is of serious concern because of a high propensity to dissemination and in vitro and in vivo resistance to

Amphotericin B (AmB). The underlying molecular mechanism of AmB is not known yet and here we want to explore whether fungal

heat shock protein 90 (HSP90) is involved in polyene resistance in A. terreus. AmB-susceptible (ATS) and AmB-resistant (ATR) A. terreus

and AmB-susceptible Aspergillus fumigatus (AFS) were investigated in response to AmB with a special focus on HSP90. HSP90 inhibitors

resulted in significant improvement of AmB activity against ATR as minimum inhibitory concentrations (MIC) decreased from 32 to

0.38 mg/L. Gene expression profiling showed a greater basal amount of HSP90 levels in ATR and ATS when compared with AFS.

HSP90 blockers in combination with AmB were evaluated in a murine model of disseminated aspergillosis. HSP90 inhibitors were not

beneficial for mice infected with ATR, and neither mono- nor combination treatment with AmB yielded clinical improvement. HSP90

inhibition with 17-allylamino-17-demethoxygeldanamycin (17-AAG) was harmful. HSP90 seems to play a vital role in antifungal stress

response in all aspergilli tested, whereas HSP90 does not substantiate the origin of AmB resistance in ATR.
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Introduction

Invasive fungal infections (IFIs) are an important cause of

morbidity and mortality in patients with underlying risk fac-

tors (e.g. neutropenia, cancer chemotherapy or AIDS) [1,2].

There are a wide variety of pathogens associated with IFIs,

yet the predominant players are Candida and Aspergillus spe-

cies [3]. The most frequently isolated mould from clinical

specimens is Aspergillus fumigatus, but Aspergillus terreus

appears to be an emerging cause of infection at some institu-

tions (e.g. the Medical University Hospital of Innsbruck, Aus-

tria, and the M. D. Anderson Cancer Center in Houston,

Texas, USA) [4,5] and an endemic appearance of A. terreus is

shown [6]. A. terreus infections are of serious concern

because most isolates exhibit in vivo and in vitro resistance

(MIC ‡2 mg/L) to Amphotericin B (AmB) [7,8]. The reason

for this resistance is not known yet and the exact mode of

AmB action is still incompletely understood [9–11]. Recent

studies identified HSP90 as a regulator for emergence of fun-

gal drug resistance of two leading fungal pathogens, Candida

albicans and A. fumigatus [12,13]. The molecular chaperone

HSP90 assists in protein folding, cell signalling, and tumour

repression. HSP90 is one of the most represented proteins

in the cytosol of eukaryotes as it makes up 1–2% of the

complete protein level, also without the influence of stress.

Cellular stress can be induced by nutrient deprivation, chan-

ged temperature or pH and exposure to various toxins and

drugs [14,15]. Another study demonstrated that Mycograb�,

a single-chain variable fragment genetically recombinant

monoclonal antibody, which acts against the fungal molecular

chaperone HSP90, increased AmB efficacy in vivo [16].

Biamonte et al. [17] showed that pharmacological HSP90

inhibition leads to a degradation of oncogenic proteins and
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that HSP90 inhibitors can be used in the treatment of a

wide range of diseases [15,17,18], including fungal [12,14,19]

and parasitic pathogens [20], both in humans and animals.

In light of these observations, we investigated the in vivo

and in vitro role of HSP90 in polyene resistance in A. terreus.

Materials and Methods

Fungal strains

All Aspergillus spp. isolates (species identification via sequenc-

ing of ITS3-ITS4, calmodulin, b-tubulin, enolase and cyto-

chrom B) used in this study were derived from clinical

specimens. AFS showed AmB MIC of £1.0 mg/L, ATS of

£0.5 mg/L and ATR of ‡32 mg/L.

Susceptibility testing

AmB MIC were determined by Etest� (AB BIODISC, Vienna,

Austria) on defined agar plates (RPMI-1640 + MOPS + 2% glu-

cose + 1.5% Agar granulated) performed according to the man-

ufacturer‘s instructions with an inoculum of 1–4 · 106 colony

forming units (CFU) per mL. HSP90 was blocked with geldana-

mycin (InVivoGen, Nottingham, UK), 17-AAG (Sigma, Vienna,

Austria), tacrolimus FK506 (Sigma) and cyclosporin A (Sandim-

mun, Novartis, Vienna, Austria). Preparation of each blocking

solution was carried out according to the manufacturer‘s rec-

ommendations and added to the chilled RPMI agar. For each

substance concentrations of 5, 10 and 20 lM were used.

HSP90 gene expression by northern blotting

To observe the fungal HSP90 biology we determined gene

expression of HSP90 in ATR, ATS and AFS. Conidial suspen-

sions (final range of 1 · 105 CFU/mL) were grown in Sabou-

raud medium (Merck, Vienna, Austria) for 24 h (37�C) with

slight shaking and fungi were treated with AmB (Bristol-Myers

Squibb, Vienna, Austria) at sub-lethal (S) and lethal (L) concen-

trations for 15 min. S and L concentrations were 2 mg/L (S) and

5 mg/L (L) and 0.1 mg/L (S) and 1 mg/L (L) for ATR and ATS,

and 0.25 mg/L (S) and 1 mg/L (L) for AFS, respectively. North-

ern blotting was carried out according to a previous protocol

[21]. Hybridization probes were generated by PCR using oligo-

nucleotides for the HSP90 gene 5¢-TCATGATACGCTC-

CATGTTG-3¢—forward and 5¢-GAGGAGCTCAACAAGA

CCAA-3¢—reverse for A. terreus and 5¢-CAT CTC CTA CCC

CAT CTA CC-3¢—forward and 5¢-CTG TCA AGG AAG GGA

GAC TT-3¢—reverse for A. fumigatus.

HSP90 gene expression by real-time PCR

Isolates (1 · 105 CFU/mL, 24 h at 37�C with slight shaking)

were treated with sub-lethal and lethal AmB concentrations

for 15 min. RNA was isolated by use of TRI reagent (Sigma)

[21]. For cDNA preparation 4 lg of RNA were transcribed

using the Superscript-III-RT-Kit (Invitrogen, Vienna, Austria).

Real-time PCR experiments were performed on a Light-Cycler

2.0 (Roche) via Light-Cycler Software 4.1. SensiMix�Lite-Kit

(Quantace, London, UK) was used for all reactions. Each real-

time PCR was carried out in 20-lL glass capillaries (Roche,

Vienna, Austria) containing 4 lL SensiMix Lite, 1.5 lL Enzyme

Mix, 0.4 lL 50· SYBR Green I solution, 0.8 lL of each corre-

sponding primer (10 lM), 7.5 lL PCR grade water and 5 lL

cDNA (80 ng). A. terreus primers were designed using HSP90

(GenBank accession no. XM_001216617) and beta-tubulin

(BTU) (GenBank accession no. NT_165972) genes. For

A. fumigatus HSP90 (GenBank accession no. XM_742833) and

beta-tubulin (BTU) (GenBank accession no. AY048754) genes

were used. Relative expression was evaluated as previously

described [22]. The ratio of the target gene is expressed vs.

the control in comparison with the reference gene.

In vivo combination of AmB and HSP90 blocker

The in vivo effect of AmB treatment in combination with

HSP90 blockers was investigated with a murine model

including 54 female BALB/c-mice (groups A to I; six mice per

group; weight 23–28 g; age 14–16 weeks). Mice in groups A-

H received intravenous cyclophosphamid (200 mg/kg), mice

in group I did not receive immunosuppression. Animals in

group A to G were infected intravenously (100 lL) with

2 · 106 CFU of ATR [23]. Mice were treated daily (days 1–

5) with the corresponding therapies; group A received 2 mg/

kg/day AmB, group B 2 mg/kg/day AmB plus 20 mg/kg/day

17-AAG (less toxic geldanamycin analogue, Invivo Gen),

group C 2 mg/kg/day AmB plus 60 mg/kg/day 17-AAG, group

D 60 mg/kg/day 17-AAG, group E 2 mg/kg/day AmB plus

50 mg/kg/day cyclosporin A (Sandimmun) and group F

50 mg/kg/day cyclosporin A. Mice in group G, which were

immunosuppressed and infected daily received phosphate

buffered saline (PBS). Animals in group H (immunosup-

pressed, not infected) received PBS daily and mice in group I,

which were not immunosuppressed and not infected, did not

obtain any treatment. High and low level treatment of 17-

AAG was investigated [24]. Each substance was prepared

according to the manufacturer‘s recommendations. Mice

were observed daily and evaluated by assigning body weight

and clinical signs of infection (e.g. scrubby coat, head mis-

alignment, excessive loss of weight and banded back). On

day six, surviving animals were sacrificed and several organs

were removed for further analyses (histopathological analysis

and fungal burden in lungs). Animal studies were in compli-

ance/accordance with the Austrian animal protection law and

guidelines for scientific purposes.
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Quantitative Aspergillus real-time PCR of mouse lungs

ATR burden in lungs was examined by quantitative real-time

PCR assay on a Light Cycler 2.0 (Roche) using the real-time

quantitative PCR settings on Light Cycler Software Version

4.1. DNA isolation and real-time PCR were carried out as

previously described [25,26].

Statistical analyses

All in vitro assays were performed on three independent

occasions. Statistical analyses were performed using Student’s

two-tailed t-test with values of p <0.05 considered statisti-

cally significant.

Results

In vitro combination of HSP90 blockers and AmB

AmB MIC without any HSP90 blocker was ‡32 mg/L for

ATR, and £1 mg/L for ATS and AFS. In ATR, HSP90 blocking

with geldanamycin (5 and 10 lM) decreased MIC to <1 mg/L

(Table 1). Cyclosporin A and tacrolimus FK506 also reduced

MIC in ATR, but not as strongly as geldanamycin. Similar

data were obtained in ATS and AFS. Geldanamycin analog

17-AAG, a less toxic substance used in our mouse model,

showed comparable effects to geldanamycin.

Northern blot and real-time PCR analyses of HSP90 after

AmB treatment

Gene expression profiling by northern blot (Fig. 1a) and real-

time PCR (Fig. 1b) analyses revealed expression of HSP90 in

ATR, ATS and AFS with different basal expression levels.

Compared with AFS, a higher amount of HSP90 was

detected in ATR and ATS. AFS showed a slight HSP90 up-

regulation after lethal and sub-lethal AmB treatment; in ATR

and ATS, HSP90 gene expression was not up-regulated after

lethal AmB treatment.

In vivo combination of HSP90 blockers and AmB

Overall, survival was significantly better in all groups with no

17-AAG, as seen in Fig. 2 (p <0.05). Survival was 100% in

group A (AmB), group E (AmB and cyclosporin A) and group

F (cyclosporin A), as well as in control group G (ATR and

PBS), H (no infection and PBS) and I (control). Survival in

group B (AmB and 20 mg/kg 17-AAG), group C (AmB and

60 mg/kg 17-AAG) and group D (60 mg/kg 17-AAG) was

83.3%, 66.7% and 16.7%, respectively. Mice infected with

ATR showed clinical abnormalities such as scrubby coat, as

well as excessive loss of weight and head misalignment.

Quantitative PCR was applied to measure A. terreus load in

lungs (Fig. 3). Groups B and F showed the lowest fungal

CFU, whereas all other groups had comparable CFU

amounts. Fungal dissemination was identified in all ATR

infected groups via histopathological analyses (data not

shown).

Discussion

Our in vitro data showed that harnessing HSP90 function

increased AmB activity in A. terreus. Cowen et al. [12,13]

demonstrated that HSP90 plays an important role in antifun-

gal drug resistance. Compromising HSP90 function in C. albi-

cans reduces resistance to azoles and blocks de novo

emergence of resistance. The same effects were also noticed

in A. fumigatus for echinocandin resistance. Cowen et al.

[13,27] also showed that blocking the HSP90 client protein

calcineurin with cyclosporin A and FK506 reduced fungal

drug resistance. The immunosuppressant geldanamycin is

now in clinical development as an anticancer agent and it

binds directly to the ATP-binding pocket of HSP90, thus

altering its function [18]. In our study, geldanamycin

decreased AMB MIC of ATR from >32 mg/L to <1 mg/L.

Similar, yet slightly reduced, effects were observed for cyclo-

sporin A and FK506 in ATR, ATS and AFS. Northern blot-

ting demonstrated an approximately equal basal amount of

HSP90 gene expression in ATR and ATS. No significant up-

regulation in response to AmB in comparison to untreated

controls was detected in both isolates. This higher basal

HSP90 equipment in A. terreus makes this species probably

more stable against different environmental and other exoge-

nous stress exposures. Thus, northern blotting and real-time

PCR showed marginal up-regulation of equal genes in AFS,

TABLE 1. In vitro effects of various HSP90 blockers on

Amphotericin B efficacy

HSP90 blockers

Amphotericin B MIC (mg/L) (48 h, Etest)

Amphotericin
B-resistant
A. terreus

Amphotericin
B-susceptible
A. terreus

Amphotericin
B-susceptible
A. fumigatus

No blocker (control) >32 0.25 1.0
Geldanamycin (5 lM) 0.75 0.125 0.19
Geldanamycin (10 lM) 0.38 0.003 0.125
Geldanamycin (20 lM) No growth No growth No growth
17-AAG (5 lM) 1.0 0.125 0.19
17-AAG (10 lM) 0.5 0.008 0.19
17-AAG (20 lM) No growth No growth No growth
Cyclosporin A (5 lM) 3.00 0.19 0.19
Cyclosporin A (10 lM) 1.00 0.125 0.19
Cyclosporin A (20 lM) 0.5 0.047 No growth
FK506 (5 lM) 4.00 0.125 0.25
FK506 (10 lM) 1.00 0.125 0.19
FK506 (20 lM) No growth No growth 0.094

Tests were performed three times in duplicates and showed similar results.
17-AAG, 17-allylamino-17-demethoxygeldanamycin.
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illustrating stress interaction emanating from the exposure

to AmB. A well-established murine model of disseminated

aspergillosis gave detailed in vivo insight into 6-day survival

and fungal tissue burden by comparing combination therapies

with AmB and HSP90 inhibitors.

Our in vitro data were not confirmed in vivo as antifungal

therapy of AmB in combination with HSP90 inhibitors did

not reduce fungal burden significantly and showed no

improvement in survival. Pathological and PCR analysis

revealed fungal growth in all infected groups and did not indi-

cate a reduction of fungal dissemination. Mice receiving AmB

plus 17-AAG (20 mg) showed reduction in fungal load, yet

the survival was lower. A significant lower survival appeared

in those groups receiving HSP90 blockers alone or in combi-

nation with AmB, indicating that this agent might negatively

influence fungal host defence. Regarding fungal tissue burden

and mortality, HSP90 blockers alone or in combination with

AmB may be too toxic for in vivo therapy for invasive asper-

gillosis due to ATR.

In clinical practice these drugs have several side-effects

such as hepatotoxicity of geldanamycin or nephrotoxicity of

calcineurin inhibitors and in fact, these immunosuppressants

render patients to be highly susceptible to fungal infections

[28], probably reduced immune response. These major

drawbacks of direct HSP90 blocking substances explain the

worse outcome in our animal setting, although 17-AAG, a

less toxic blocker, was used. Pachl et al. [29] demonstrated

that a recombinant antibody of C. albicans HSP90 in combi-

nation with AmB improved clinical outcome. Mycograb�, a

human recombinant monoclonal antibody, affects fungal

pathogens specifically and does not influence host immune

response, and in general acts in a different way to pharma-

cological inhibitors [30] tested herein. Mycograb� plus lipid-

associated AmB produced significant clinical and culture-

confirmed improvement in outcome for patients with inva-

sive candidiasis. Also, in larvae of the greater wax moth

Galleria mellonella and in a murine model of disseminated

candidiasis the combination therapy with HSP90 inhibitors

and azole rescued larvae from lethal C. albicans infections

and enhanced the therapeutic efficacy of azoles in vivo [16].

In comparison to our data, the reasons for such differences

in outcome are not clear in detail as HSP90 inhibitors tar-

get fungal lifeblood directly and thus deregulate fungal

stress management and increase vulnerability against drugs

decrease fungal vitality.

Our data showed that fungi treated with the highest dos-

age of HSP90 inhibitors in vitro failed to grow anymore.

However, such fungicidal in vitro effects may be overlapped in

vivo. It is known that HSPs have a dual function depending on

their intracellular or extracellular location: intracellular HSPs

have a protective function and extracellular HSPs mediate

immunological functions. In our case it is imaginable that

application of cyclophosphamid, selection of pathogenic fungi

(C. albicans vs. A. terreus), laboratory animals (BALB/c mice

vs. CD1 mice) and choice of drugs (azoles vs. AmB) influ-

ence fungal progression and drug–drug interactions followed

by complexities of immune responses. Also, combination of

AmB plus 17-AAG might increase toxicity issues in our

study. It is not known yet how an extension of treatment

and further reduction of 17-AAG dosage would have posi-

tively influenced the outcome in our test animals.

In conclusion, we observed that blocking HSP90 in vitro

enhances antifungal activity of AmB against ATR, ATS and

AFS, and the basal equipment of HSP90 is higher in ATR and

ATS compared with AFS; this renders A. terreus to be proba-

bly more ‘environmentally resistant’ than AFS. At higher dos-

ages HSP90 inhibitors were fungicidal per se for all tested

isolates. In vivo, application of HSP90 inhibitors does not

improve outcome. Fungal HSP90 seems to play a central role

in stress handling, and seems not to be the specific origin of

AmB resistance in A. terreus.
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