

WWW.MATHEMATICSWEB.ORG

J. Math. Anal. Appl. 280 (2003) 387-399

*Journal of* MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

# Criteria for the strong regularity of *J*-inner functions and $\gamma$ -generating matrices

Damir Z. Arov<sup>a,1</sup> and Harry Dym<sup>b,\*,2</sup>

<sup>a</sup> South Ukraine Pedagogical University, Odessa 65020, Ukraine <sup>b</sup> Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 25 August 2002

Submitted by J.A. Ball

## Abstract

The class of left and right strongly regular *J*-inner mvf's plays an important role in bitangential interpolation problems and in bitangential direct and inverse problems for canonical systems of integral and differential equations. A new criterion for membership in this class is presented in terms of the matricial Muckenhoupt condition (A<sub>2</sub>) that was introduced for other purposes by Treil and Volberg. Analogous results are also obtained for the class of  $\gamma$ -generating functions that intervene in the Nehari problem. The new criterion is simpler than the criterion that we presented earlier. A determinental criterion is also presented.

© 2003 Elsevier Science (USA). All rights reserved.

*Keywords: J*-inner matrix valued functions; Matricial Nehari problem;  $\gamma$ -generating matrices; Strong regularity; Bitangential interpolation problems; Matricial Muckenhoupt condition

# 1. Introduction

Let *J* be an  $m \times m$  signature matrix, let  $\Omega_+$  denote either the open unit disk  $\mathbb{D}$  or the open upper half plane  $\mathbb{C}_+$  and let  $\mathcal{U}(J, \Omega_+)$  denote the class of  $m \times m$  *J*-inner mvf's (matrix valued functions) with respect to  $\Omega_+$ .

<sup>\*</sup> Corresponding author.

E-mail addresses: aspect@farlep.net (D.Z. Arov), dym@wisdom.weizmann.ac.il (H. Dym).

<sup>&</sup>lt;sup>1</sup> D.Z. Arov thanks The Weizmann Institute for hospitality and support through a Varon Visiting Professorship and a Minerva Foundation Grant.

<sup>&</sup>lt;sup>2</sup> H. Dym thanks Renee and Jay Weiss for endowing the chair that supports his research.

<sup>0022-247</sup>X/03/\$ – see front matter @ 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-247X(03)00067-2

We recall that an  $m \times m \mod U(\lambda)$  that is meromorphic in  $\Omega_+$  is said to be *J*-inner with respect to  $\Omega_+$  if

U(λ)\*JU(λ) ≤ J for every point λ ∈ Ω<sub>+</sub> at which U is holomorphic;
 U(μ)\*JU(μ) = J for a.e. point μ on the boundary Ω<sub>0</sub> of Ω<sub>+</sub>.

We remark that condition (1) insures that every entry in U is the ratio of two functions that are holomorphic and bounded in  $\Omega_+$  and hence, by Fatou's lemma, that nontangential boundary limits  $U(\mu)$  exist at a.e. point  $\mu \in \Omega_0$ .

It is well known that if J is equal to

$$j_{pq} = \begin{bmatrix} I_p & 0\\ 0 & -I_q \end{bmatrix}, \quad p \ge 1, \ q \ge 1, \ p+q = m,$$

$$(1.1)$$

and if the  $m \times m$  mvf

$$W(\lambda) = \begin{bmatrix} w_{11}(\lambda) & w_{12}(\lambda) \\ w_{21}(\lambda) & w_{22}(\lambda) \end{bmatrix}$$
(1.2)

with diagonal blocks of sizes  $p \times p$  and  $q \times q$ , respectively, belongs to the class  $\mathcal{U}(j_{pq}, \Omega_+)$ , then the linear fractional transformation

$$T_W[\varepsilon] = (w_{11}\varepsilon + w_{12})(w_{21}\varepsilon + w_{22})^{-1}$$
(1.3)

maps the Schur class

$$S^{p \times q}(\Omega_{+}) = \left\{ p \times q \text{ mvf's } \varepsilon(\lambda): \varepsilon(\lambda) \text{ is holomorphic and contractive in } \Omega_{+} \right\}$$
(1.4)

into itself. A mvf  $W \in \mathcal{U}(j_{pq}, \Omega_+)$  is said to belong to the class  $\mathcal{U}_{rsR}(j_{pq}, \Omega_+)$  of right strongly regular  $j_{pq}$ -inner mvf's if there exists at least one mvf  $\varepsilon \in S^{p \times q}(\Omega_+)$  such that

$$\left\|T_{W}[\varepsilon]\right\|_{\infty} < 1. \tag{1.5}$$

There are many bitangential interpolation problems in the class  $S^{p \times q}(\Omega_+)$  for which the set of solutions is equal to

$$T_W \Big[ \mathcal{S}^{p \times q}(\Omega_+) \Big] = \Big\{ T_W[\varepsilon] \colon \varepsilon \in \mathcal{S}^{p \times q}(\Omega_+) \Big\}$$

for an appropriately chosen  $W \in \mathcal{U}(j_{pq}, \Omega_+)$ ; see, e.g., [11,12]. An interpolation problem in the class  $S^{p \times q}(\Omega_+)$  is said to be strictly completely indeterminate if there exists at least one solution  $s(\lambda)$  such that  $||s||_{\infty} < 1$ . There exists a two sided correspondence between the class  $\mathcal{U}_{rsR}(j_{pq}, \Omega_+)$  and the class of strictly completely indeterminate generalized bitangential interpolation problems in  $S^{p \times q}(\Omega_+)$ :

(1) If  $W \in \mathcal{U}_{rsR}(j_{pq}, \Omega_+)$ , then

$$T_W\left[\mathcal{S}^{p\times q}(\Omega_+)\right] = \left\{s \in \mathcal{S}^{p\times q}(\Omega_+): \ b_1^{-1}(s-s^\circ)b_2^{-1} \in H^{p\times q}_{\infty}(\Omega_+)\right\},$$
(1.6)

for some mvf  $s^{\circ} \in S^{p \times q}(\Omega_+)$  and some pair of mvf's  $b_1(\lambda)$  and  $b_2(\lambda)$  of sizes  $p \times p$ and  $q \times q$ , respectively, that are inner with respect to  $\Omega_+$ . (2) To every set of mvf's defined by the right hand-side of formula (1.6) that contains a mvf s(λ) such that ||s||<sub>∞</sub> < 1, there corresponds an essentially unique W ∈ U<sub>rsR</sub>(j<sub>pq</sub>, Ω<sub>+</sub>) such that formula (1.6) holds.

Additional information on this correspondence may be found, e.g., in [2,9]. Identification (1.6) implies that every problem in the class  $S^{p \times q}(\Omega_+)$  for which the set of solutions can be expressed as  $T_W[S^{p \times q}(\Omega_+)]$  for some mvf  $W \in \mathcal{U}_{rsR}(j_{pq}, \Omega_+)$  is equivalent to a strictly completely indeterminate generalized bitangential interpolation problem.

The class  $\mathcal{U}_{rsR}(j_{pq}, \mathbb{C}_+)$  was introduced in [3] because of the central role that it played in our study of direct and inverse problems for canonical integral and differential systems [3–8].

If 
$$U \in \mathcal{U}(J, \Omega_+)$$
 and

$$V$$
 is a unitary matrix such that  $V^*JV = j_{pq}$ , (1.7)

then  $W(\lambda) = V^*U(\lambda)V$  belongs to the class  $\mathcal{U}(j_{pq}, \Omega_+)$  and we say that  $U \in \mathcal{U}_{rsR}(J, \Omega_+)$ if  $W \in \mathcal{U}_{rsR}(j_{pq}, \Omega_+)$ . In [3] it was shown that  $U \in \mathcal{U}_{rsR}(J, \Omega_+)$  if and only if the  $m \times 1$ vvf's (vector valued functions) in the associated RKHS (reproducing kernel Hilbert space)  $\mathcal{H}(U)$  all belong to  $L_2^m(\Omega_0)$  (with respect to Lebesgue measure). This criterion leads easily to the following inclusion:

$$\mathcal{U}(J,\Omega_{+}) \cap L^{m \times m}_{\infty}(\Omega_{0}) \subset \mathcal{U}_{rsR}(J,\Omega_{+}).$$
(1.8)

An example that shows that the inclusion (1.8) is proper if  $J \neq \pm I_m$  is presented in [9, Section 7.6].

To be more precise, in a number of our papers, the class  $\mathcal{U}_{rsR}(J, \Omega_+)$  is referred to as  $\mathcal{U}_{sR}(J, \Omega_+)$ . The class  $\mathcal{U}_{\ell sR}(J, \Omega_+)$  of left strongly regular *J*-inner mvf's was introduced later in [9]. The definition can be formulated most simply in terms of the mvf

$$U^{\tilde{}}(\lambda) = U(-\bar{\lambda})^* \text{ if } \Omega_+ = \mathbb{C}_+ \text{ and } U^{\tilde{}}(\lambda) = U(-1/\bar{\lambda})^* \text{ if } \Omega_+ = \mathbb{D}$$
 (1.9)

as follows:

$$U \in \mathcal{U}_{\ell s R}(J, \Omega_{+}) \quad \Leftrightarrow \quad U^{\tilde{}} \in \mathcal{U}_{r s R}(J, \Omega_{+}).$$
(1.10)

A mvf  $W \in \mathcal{U}_{\ell sR}(j_{pq}, \Omega_+)$  if and only if  $W \in \mathcal{U}(j_{pq}, \Omega_+)$  and

$$\{ (w_{22} + \varepsilon w_{12})^{-1} (w_{21} + \varepsilon w_{11}) \colon \varepsilon \in \mathcal{S}^{q \times p} \} \quad \text{contains at least one}$$
$$\text{mvf } s \in \mathcal{S}^{q \times p}(\Omega_+) \quad \text{with } \|s\|_{\infty} < 1.$$
 (1.11)

This fact and additional discussion of the class  $\mathcal{U}_{\ell s R}(J, \Omega_+)$  may be found in [9, Section 6].

A number of other characterizations of the classes  $\mathcal{U}_{\ell sR}(J, \Omega_+)$  and  $\mathcal{U}_{rsR}(J, \Omega_+)$ were obtained in [9] in terms of the matricial Muckenhoupt condition (A<sub>2</sub>) of Treil and Volberg [13]. To formulate their condition and our results for both domains  $\mathbb{D}$  and  $\mathbb{C}_+$ , it is convenient to use a flexible notation that is spelled out in Table 1.

In the last column of Table 1 the average  $A_I(\Delta)$  of a mvf  $\Delta$  is always computed with respect to a finite subinterval I of  $\Omega_0$  with length |I| > 0.

The matricial Muckenhoupt condition  $(A_2)$  may be written as

$$\sup_{I} \left\| \left( A_{I}(\Delta) \right)^{1/2} \left( A_{I}(\Delta^{-1}) \right)^{1/2} \right\| < \infty$$
(1.12)

| Table 1        |                                 |              |                                                                      |                                                  |
|----------------|---------------------------------|--------------|----------------------------------------------------------------------|--------------------------------------------------|
| $\Omega_+$     | $ ho_{\omega}(\lambda)$         | $\Omega_0$   | $\operatorname{Int}_{\Omega_0}(f)$                                   | $A_I(\Delta)$                                    |
| $\mathbb{D}$   | $1 - \lambda \bar{\omega}$      | Τ            | $\frac{1}{2\pi}\int_0^{2\pi} f(e^{i\theta})d\theta$                  | $rac{1}{ I }\int_{I}\Delta(e^{i\theta})d\theta$ |
| $\mathbb{C}_+$ | $-2\pi i(\lambda-\bar{\omega})$ | $\mathbb{R}$ | $\frac{1}{\pi} \int_{-\infty}^{\infty} f(\mu)  \frac{d\mu}{1+\mu^2}$ | $rac{1}{ I }\int_I \Delta(\mu)d\mu$             |

for matrix valued weight functions  $\Delta(\mu) \ge 0$ . In [9] we obtained the following characterization of the classes  $\mathcal{U}_{rsR}(j_p, \Omega_+)$  and  $\mathcal{U}_{\ell sR}(j_p, \Omega_+)$ , where  $j_p = j_{pp}$ , that will serve both as a good illustration and a useful tool for the developments in this paper.

**Theorem 1.** Let  $W \in \mathcal{U}(j_p, \Omega_+)$ . Then  $W \in \mathcal{U}_{rsR}(j_p, \Omega_+)$  if and only if the following two conditions are met:

(1)  $\operatorname{Int}_{\Omega_0}(W^*W)$  is finite; (1.13)

(2) The  $p \times p$  mvf

$$\Delta(\mu) = \left\{ w_{21}(\mu) + w_{22}(\mu) \right\}^* \left\{ w_{21}(\mu) + w_{22}(\mu) \right\}$$
(1.14)

that is defined in terms of the bottom entries in the block decomposition (1.2) of  $W(\lambda)$  meets condition (1.12).

The mvf  $W \in \mathcal{U}_{\ell s R}(j_p, \Omega_+)$  if and only if (1) and (2) hold, but with

$$\Delta(\mu) = \left\{ w_{12}(\mu) + w_{22}(\mu) \right\} \left\{ w_{12}(\mu) + w_{22}(\mu) \right\}^*$$
(1.15)

in (2).

In this article we shall first present another condition that is equivalent to the matricial Muckenhoupt condition (A<sub>2</sub>), but is formulated in terms of determinants rather than norms and has the potential advantage of dispensing with square roots. We shall then present a new characterization of the classes  $U_{rsR}(J, \Omega_+)$  and  $U_{\ell rR}(J, \Omega_+)$ . In particular, if  $W \in U(j_{pq}, \Omega_+)$ , then this criterion is most easily formulated in terms of the off diagonal blocks of the Potapov–Ginzburg transform

$$\begin{bmatrix} s_{11}(\lambda) & s_{12}(\lambda) \\ s_{21}(\lambda) & s_{22}(\lambda) \end{bmatrix} = \begin{bmatrix} w_{11}(\lambda) & w_{12}(\lambda) \\ 0 & I_q \end{bmatrix} \begin{bmatrix} I_p & 0 \\ w_{21}(\lambda) & w_{22}(\lambda) \end{bmatrix}^{-1}$$
(1.16)

as follows:

**Theorem 2.** Let  $W \in \mathcal{U}(j_{pq}, \Omega_+)$ . Then:

(1)  $W \in \mathcal{U}_{rsR}(j_{pq}, \Omega_+) \Leftrightarrow the \ m \times m \ weight$ 

$$\Delta(\mu) = \begin{bmatrix} I_p & s_{21}(\mu)^* \\ s_{21}(\mu) & I_q \end{bmatrix}$$

meets the matricial Muckenhoupt condition (1.12);

(2)  $W \in \mathcal{U}_{\ell sR}(j_{pq}, \Omega_+) \Leftrightarrow the \ m \times m \ weight$ 

$$\Delta(\mu) = \begin{bmatrix} I_p & s_{12}(\mu) \\ s_{12}(\mu)^* & I_q \end{bmatrix}$$

*meets the matricial Muckenhoupt condition* (1.12).

Notice that this new criterion replaces two conditions (1.13) and (1.14) (respectively, (1.15)), by a single matricial Muckenhoupt condition.

Finally, in the last section, we shall briefly discuss some analogues for the class  $\mathfrak{M}(p,q)$  of  $\gamma$ -generating functions that play an important role in the study of the Nehari problem.

We have already noted that class of strongly regular *J*-inner mvf's play an important role in the study of bitangential direct and inverse problems of canonical integral and differential systems and in bitangential interpolation problems. They also play a useful role in the study of operator nodes. Every *J*-inner mvf  $U(\lambda)$  that is holomorphic at zero can be expressed as the characteristic function of a simple operator node with main operator *A* equal to the backward shift  $R_0: f \to \{f(\lambda) - f(0)\}/\lambda$  acting on the RKHS  $\mathcal{H}(U)$ . If  $U \in \mathcal{U}_{rsR}(J, \Omega_+)$ , then *A* and  $\mathcal{H}(U)$  decompose in a nice way. This and a number of related results have been obtained by Arova in her Ph.D. thesis [10].

## 2. Preliminaries

**Lemma 3.** Let  $\Delta$  be a measurable positive semidefinite  $p \times p$  mvf on  $\Omega_0$  such that  $\Delta$  and  $(\Delta^{-1})$  are both summable on some interval I. Then the matrix  $(A_I(\Delta))^{1/2}(A_I(\Delta^{-1}))^{1/2}$  is expansive:

$$\left\| \left( A_I(\Delta) \right)^{1/2} \left( A_I(\Delta^{-1}) \right)^{1/2} \xi \right\| \ge \|\xi\|$$

for every vector  $\xi \in \mathbb{C}^p$ .

**Proof.** This fact is established in Corollary 3.3 of Treil and Volberg [13].  $\Box$ 

**Lemma 4.** Let X be a  $p \times p$  expansive matrix. Then

$$\|X\| \leqslant |\det X| \leqslant \|X\|^p. \tag{2.1}$$

Proof. This is immediate from the singular value decomposition

$$X = U \begin{bmatrix} s_1 & & \\ & \ddots & \\ & & s_p \end{bmatrix} V$$

of *X*, since *U* and *V* are unitary,  $s_1 \ge \cdots \ge s_p$  and, under the given assumptions,  $s_p \ge 1$ .

**Theorem 5.** Let  $\Delta(\mu)$  be a measurable positive semidefinite  $p \times p$  mvf  $\Delta$  on  $\Omega_0$  such that  $\Delta$  and  $\Delta^{-1}$  are both summable on each subinterval I of  $\Omega_0$  with  $|I| < \infty$ . Then  $\Delta(\mu)$  will meet the matricial Muckenhoupt condition (1.12) if and only if

$$\sup_{I} \left\{ \det \left( A_{I}(\Delta) \right) \det \left( A_{I}(\Delta^{-1}) \right) \right\} < \infty.$$
(2.2)

**Proof.** In view of the last two lemmas, inequality (2.1) is directly applicable to the matrix

$$X = \left(A_I(\Delta)\right)^{1/2} \left(A_I(\Delta^{-1})\right)^{1/2}$$

and also yields the bound

$$||X||^2 \leq \left\{ \det(X) \right\}^2 \leq ||X||^{2p}.$$

However, this does the trick, since

$$\left\{\det(X)\right\}^2 = \det(X^2) = \det(A_I(\Delta))\det(A_I(\Delta^{-1})).$$

Let J be any  $m \times m$  signature matrix, and let

$$P = (I_m + J)/2$$
 and  $Q = (I_m - J)/2$ . (2.3)

Then, since P and Q are complementary orthogonal projectors on  $\mathbb{C}^m$ , i.e.,

$$P = P^2 = P^*, \qquad Q = Q^2 = Q^*, \quad \text{and} \quad P + Q = I_m,$$
 (2.4)

it is readily checked that the  $2m \times 2m$  matrix

$$\tilde{V} = \begin{bmatrix} P & Q \\ Q & P \end{bmatrix}$$
(2.5)

is also a signature matrix and that

$$\tilde{V}\begin{bmatrix}J&0\\0&-J\end{bmatrix}\tilde{V}=\begin{bmatrix}I_m&0\\0&-I_m\end{bmatrix}=j_m.$$
(2.6)

**Lemma 6.** Let  $U \in \mathcal{U}(J, \Omega_+)$  and let

$$\tilde{W}(\lambda) = \tilde{V} \begin{bmatrix} U(\lambda) & 0\\ 0 & I_m \end{bmatrix} \tilde{V}.$$
(2.7)

Then  $\tilde{W} \in \mathcal{U}(j_m, \Omega_+)$  and

- (1)  $\tilde{W} \in \mathcal{U}_{rsR}(j_m, \Omega_+) \Leftrightarrow U \in \mathcal{U}_{rsR}(J, \Omega_+);$ (2)  $\tilde{W} \in \mathcal{U}_{\ell sR}(j_m, \Omega_+) \Leftrightarrow U \in \mathcal{U}_{\ell sR}(J, \Omega_+).$

**Proof.** It is readily checked that

$$j_m - \tilde{W}(\lambda) j_m \tilde{W}(\omega)^* = \tilde{V} \begin{bmatrix} J - U(\lambda) J U(\omega)^* & 0 \\ 0 & 0 \end{bmatrix} \tilde{V}.$$

Thus,  $\tilde{W} \in \mathcal{U}(j_m, \Omega_+)$  and the RK (reproducing kernel)

$$K_{\omega}^{\tilde{W}}(\lambda) = \frac{j_m - W(\lambda) j_m W(\omega)^*}{\rho_{\omega}(\lambda)}$$

of the RKHS  $\mathcal{H}(\tilde{W})$  is related to the RK

$$K_{\omega}^{U}(\lambda) = \frac{J - U(\lambda)JU(\omega)^{*}}{\rho_{\omega}(\lambda)}$$

of the RKHS  $\mathcal{H}(U)$  by the formula

$$K_{\omega}^{\tilde{W}}(\lambda) = \tilde{V} \begin{bmatrix} K_{\omega}^{U}(\lambda) & 0\\ 0 & 0 \end{bmatrix} \tilde{V}.$$

Therefore,

$$\mathcal{H}(\tilde{W}) = \tilde{V} \begin{bmatrix} \mathcal{H}(U) \\ \oplus \\ \{0\} \end{bmatrix}$$

and hence

$$\mathcal{H}(\tilde{W}) \subset L_2^{2m}(\Omega_0) \quad \Leftrightarrow \quad \mathcal{H}(U) \subset L_2^m(\Omega_0).$$

Consequently assertion (1) follows from the criterion for right strong regularity that was established in Theorem 6.7 of [3] and was discussed earlier. Assertion (2) then follows by applying assertion (1) to  $(\tilde{W})^{\tilde{}}(\lambda)$  and  $\tilde{U}(\lambda)$ .  $\Box$ 

The proof of the preceding lemma clearly exhibits the fact that the mvf  $\tilde{W}(\lambda)$  has special structure. Another consequence of this special structure is revealed in the next lemma.

**Lemma 7.** Let  $\tilde{w}_{ij}(\lambda)$ , i, j = 1, 2, denote the  $m \times m$  mvf's in the standard four block decompositions of the  $2m \times 2m$  mvf  $\tilde{W}(\lambda)$  that is defined by formula (2.7). Then:

(1) 
$$\operatorname{Int}_{\Omega_0}\{(\tilde{w}_{21}+\tilde{w}_{22})^*(\tilde{w}_{21}+\tilde{w}_{22})\}$$
 finite  $\Rightarrow \operatorname{Int}_{\Omega_0}\{(\tilde{w}_{22}^*\tilde{w}_{22}) \text{ finite};$   
(2)  $\operatorname{Int}_{\Omega_0}\{(\tilde{w}_{12}+\tilde{w}_{22})(\tilde{w}_{12}+\tilde{w}_{22})^*\}$  finite  $\Rightarrow \operatorname{Int}_{\Omega_0}\{(\tilde{w}_{22}\tilde{w}_{22}^*) \text{ finite}.$ 

**Proof.** In view of formulas (2.3)–(2.7), it is readily checked that

$$\left(\tilde{w}_{21}(\mu) + \tilde{w}_{22}(\mu)\right)^* \left(\tilde{w}_{21}(\mu) + \tilde{w}_{22}(\mu)\right) = P + U(\mu)^* Q U(\mu), \tag{2.8}$$

$$\tilde{w}_{22}(\mu)^* \tilde{w}_{22}(\mu) = P + QU(\mu)^* QU(\mu)Q, \qquad (2.9)$$

$$\left(\tilde{w}_{12}(\mu) + \tilde{w}_{22}(\mu)\right) \left(\tilde{w}_{12}(\mu) + \tilde{w}_{22}(\mu)\right)^* = P + U(\mu)QU(\mu)^*,$$
(2.10)

$$\tilde{w}_{22}(\mu)\tilde{w}_{22}(\mu)^* = P + QU(\mu)QU(\mu)^*Q.$$
(2.11)

Moreover,

 $\operatorname{Int}_{\Omega_0}(U^*QU)$  is finite  $\Leftrightarrow \operatorname{Int}_{\Omega_0}(\operatorname{tr}\{U^*QU\}) < \infty$ 

and

$$\operatorname{Int}_{\Omega_0}(\operatorname{tr}\{U^*QU\}) = \operatorname{Int}_{\Omega_0}\left(\sum_{i=1}^m \|QUu_i\|^2\right) \ge \operatorname{Int}_{\Omega_0}\left(\sum_{i=1}^q \|QUu_i\|^2\right)$$

for every orthonormal basis  $\{u_1, \ldots, u_m\}$  of  $\mathbb{C}^m$ . But if the basis is chosen so that  $\{u_1, \ldots, u_q\}$  is an orthonormal basis for the q-dimensional subspace  $Q\mathbb{C}^m$ , then the last sum on the right is equal to

$$\operatorname{Int}_{\Omega_0}\left(\sum_{i=1}^{q} \|QUQu_i\|^2\right) = \operatorname{Int}_{\Omega_0}\left(\operatorname{tr}\{QU^*QUQ\}\right).$$

This serves to justify assertion (1) and also assertion (2), since the two are equivalent.  $\Box$ 

**Lemma 8.** Let  $W \in \mathcal{U}(j_{pq}, \Omega_+)$ . Then the following statements are equivalent:

- (1)  $Int_{\Omega_0}(W^*W)$  is finite;
- (2)  $Int_{\Omega_0}(w_{22}^*w_{22})$  is finite;
- (3)  $\operatorname{Int}_{\Omega_0}(\tilde{WW^*})$  is finite;
- (4)  $\operatorname{Int}_{\Omega_0}(w_{22}w_{22}^*)$  is finite.

**Proof.** The proof exploits the fact that

$$W(\mu)^* j_{pq} W(\mu) = j_{pq} = W(\mu) j_{pq} W(\mu)^*$$

for a.e. point  $\mu \in \Omega_0$  and that

Int $\Omega_0(j_{pq})$  is finite.

Thus,

(1) holds 
$$\Leftrightarrow \operatorname{Int}_{\Omega_0}(W^*W - W^*j_{pq}W) \text{ is finite} \\ \Leftrightarrow \operatorname{Int}_{\Omega_0}\left(\begin{bmatrix} w_{21}^* \\ w_{22}^* \end{bmatrix} [w_{21} \quad w_{22}]\right) \text{ is finite} \\ \Leftrightarrow \operatorname{Int}_{\Omega_0}\left(\operatorname{tr}\{w_{21}^* w_{21} + w_{22}^* w_{22}\}\right) < \infty \\ \Leftrightarrow \operatorname{Int}_{\Omega_0}\left(\operatorname{tr}\{s_{21}^* w_{22}^* w_{22} s_{21} + w_{22}^* w_{22}\}\right) < \infty \\ \Leftrightarrow \operatorname{Int}_{\Omega_0}\left(\operatorname{tr}\{w_{22}^* w_{22} (I_q + s_{21} s_{21}^*)\}\right) < \infty \\ \Leftrightarrow \operatorname{Int}_{\Omega_0}\left(\operatorname{tr}\{w_{22}^* w_{22}\}\right) < \infty \quad \Leftrightarrow \quad (2) \text{ holds.}$$

Much the same sort of argument serves to justify the equivalence of (3) and (4). Therefore, since  $tr\{w_{22}^*w_{22}\} = tr\{w_{22}w_{22}^*\}$ , all four statements are equivalent.  $\Box$ 

#### 3. A new characterization of strongly regular J-inner mvf's

In this section we shall formulate and establish a new characterization of each of the subclasses  $\mathcal{U}_{rsR}(J, \Omega_+)$  and  $\mathcal{U}_{\ell sR}(J, \Omega_+)$  of  $\mathcal{U}(J, \Omega_+)$  in terms of the  $m \times m$  mvf's

$$G_r(\mu) = P + U(\mu)^* Q U(\mu)$$
 and  $G_\ell(\mu) = P + U(\mu) Q U(\mu)^*$ . (3.1)

The orthogonal projections P and Q in formula (3.1) are defined in formula (2.3). The first step is to verify the invertibility of the mvf's defined in (3.1).

**Lemma 9.** Let  $U \in U(J, \Omega_+)$ . Then the  $m \times m$  mvf's  $G_r(\mu)$  and  $G_\ell(\mu)$  that are defined in formula (3.1) are invertible for a.e. point  $\mu \in \Omega_0$ . Moreover, if V is a unitary matrix such that  $V^*JV = j_{pq}$ , then

$$V^* G_r(\mu)^{-1} V = \begin{bmatrix} I_p & s_{21}(\mu)^* \\ s_{21}(\mu) & I_q \end{bmatrix}$$
(3.2)

and

$$V^* G_{\ell}(\mu)^{-1} V = \begin{bmatrix} I_p & -s_{12}(\mu) \\ -s_{12}(\mu)^* & I_q \end{bmatrix}$$
(3.3)

for a.e. point  $\mu \in \Omega_0$ , where  $s_{12}(\mu)$  and  $s_{21}(\mu)$  are the off-diagonal blocks in the Potapov– Ginzburg transform of  $W(\lambda) = V^*U(\lambda)V$ .

# **Proof.** It is readily checked that

$$V^*G_r(\mu)V = \begin{bmatrix} I_p & 0\\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & w_{21}(\mu)^*\\ 0 & w_{22}(\mu)^* \end{bmatrix} \begin{bmatrix} 0 & 0\\ w_{21}(\mu) & w_{22}(\mu) \end{bmatrix}$$
$$= \begin{bmatrix} I_p + w_{21}(\mu)^* w_{21}(\mu) & w_{21}(\mu)^* w_{22}(\mu)\\ w_{22}(\mu)^* w_{21}(\mu) & w_{22}(\mu)^* w_{22}(\mu) \end{bmatrix}$$
$$= \begin{bmatrix} I_p & -s_{21}(\mu)^*\\ 0 & I_q \end{bmatrix} \begin{bmatrix} I_p & 0\\ 0 & w_{22}(\mu)^* w_{22}(\mu) \end{bmatrix} \begin{bmatrix} I_p & 0\\ -s_{21}(\mu) & I_q \end{bmatrix}$$

for a.e. point  $\mu \in \Omega_0$ . Therefore,  $G_r(\mu)$  is invertible and

$$V^* G_r(\mu)^{-1} V = \begin{bmatrix} I_p & s_{21}(\mu)^* \\ s_{21}(\mu) & I_q \end{bmatrix}$$

Similar considerations lead easily to the formula

$$V^*G_{\ell}(\mu)V = \begin{bmatrix} I_p & s_{12}(\mu) \\ 0 & I_q \end{bmatrix} \begin{bmatrix} I_p & 0 \\ 0 & w_{22}(\mu)w_{22}(\mu)^* \end{bmatrix} \begin{bmatrix} I_p & 0 \\ s_{12}(\mu)^* & I_q \end{bmatrix}$$

and hence to the invertibility of  $G_{\ell}(\mu)$  for a.e. point  $\mu \in \Omega_0$  and formula (3.3).  $\Box$ 

**Theorem 10.** Let  $U \in \mathcal{U}(J, \Omega_+)$ . Then the following conditions are equivalent:

- (1)  $U \in \mathcal{U}_{rsR}(J, \Omega_+)$  (respectively,  $U \in \mathcal{U}_{\ell sR}(J, \Omega_+)$ );
- (2) The  $m \times m$  mvf  $G_r(\mu)$  (respectively,  $G_\ell(\mu)$ ) meets the matricial Muckenhoupt condition (1.12);
- (3) The  $m \times m$  mvf  $G_r(\mu)$  (respectively,  $G_\ell(\mu)$ ) meets the determinental Muckenhoupt condition (2.2).

**Proof.** By Lemma 6, (1) holds if and only if  $\tilde{W} \in U_{rsR}(j_m, \Omega_+)$  (respectively,  $\tilde{W} \in U_{\ell sR}(j_m, \Omega_+)$ ). Therefore, in view of Theorem 1, Lemmas 6–8, and formulas (2.8) and (2.10), (1) holds if and only if  $G_r(\mu)$  (respectively,  $G_\ell(\mu)$ ) meets the matricial Muckenhoupt condition (1.12). (These last conditions guarantee that the left hand side of (1) (respectively, (2)) in Lemma 7 is finite via formula (2.8) (respectively, (2.10)) and

the discussion in Section 2 of [13] combined with Theorem 7.1 of that article.) Thus, we have verified (1)  $\Leftrightarrow$  (2). The equivalence with (3) is now immediate from Theorem 5.  $\Box$ 

## 4. Strongly regular $\gamma$ -generating matrices

Let

$$f^{\#}(\lambda) = \begin{cases} f(\bar{\lambda})^* & \text{if } \Omega_+ = \mathbb{C}_+ \\ f(1/\bar{\lambda})^* & \text{if } \Omega_+ = \mathbb{D}. \end{cases}$$

Let  $\mathfrak{M}_r(p,q)$  denote the class of measurable  $m \times m$  mvf's  $\mathfrak{A}(\mu)$  on  $\Omega_0$  of the form

$$\mathfrak{A}(\mu) = \begin{bmatrix} \mathfrak{a}_{11}(\mu) & \mathfrak{a}_{12}(\mu) \\ \mathfrak{a}_{21}(\mu) & \mathfrak{a}_{22}(\mu) \end{bmatrix}$$
(4.1)

such that

- (1)  $\mathfrak{A}(\mu)$  is  $j_{pq}$ -unitary for a.e. point  $\mu \in \Omega_0$ ;
- (2) a<sub>22</sub>(μ) and a<sub>11</sub>(μ)\* are the boundary values of mvf's a<sub>22</sub>(λ) and a<sup>#</sup><sub>11</sub>(λ) that are holomorphic in Ω<sub>+</sub> and, in addition, (a<sub>22</sub>)<sup>-1</sup> and (a<sup>#</sup><sub>11</sub>)<sup>-1</sup> are outer mvf's of class S<sup>q×q</sup>(Ω<sub>+</sub>) and S<sup>p×p</sup>(Ω<sub>+</sub>), respectively;

 $(3_r)$  The mvf

$$s_{21}(\mu) = -\mathfrak{a}_{22}(\mu)^{-1}\mathfrak{a}_{21}(\mu) = -\mathfrak{a}_{12}(\mu)^* \left[\mathfrak{a}_{11}(\mu)^*\right]^{-1}$$
(4.2)

is the boundary value of a mvf  $s_{21}(\lambda)$  that belongs to the class  $S^{q \times p}(\Omega_+)$ .

This class of mvf's was introduced and investigated in [1]. It plays a fundamental role in the study of the matrix Nehari problem. The mvf's in this class are called  $\gamma$ -generating matrices.

Let  $\mathfrak{M}_{\ell}(p,q)$  denote the class of measurable  $m \times m$  mvf's  $\mathfrak{A}(\mu)$  on  $\Omega_0$  of the form (4.1) that meet conditions (1) and (2) that are stated above for  $\mathfrak{M}_r(p,q)$  and (in place of  $(3_r)$ )

#### $(3_\ell)$ The mvf

$$s_{12}(\mu) = \mathfrak{a}_{12}(\mu)\mathfrak{a}_{22}(\mu)^{-1} = \left[\mathfrak{a}_{11}(\mu)^*\right]^{-1}\mathfrak{a}_{21}(\mu)^*$$
(4.3)

is the boundary value of a mvf  $s_{12}(\lambda)$  that belongs to the class  $S^{p \times q}(\Omega_+)$ . This class of functions was introduced and briefly discussed in [9, Section 7.3].

A mvf  $\mathfrak{A} \in \mathfrak{M}_r(p,q)$  is said to be right strongly regular if there exists a mvf  $\varepsilon \in S^{p \times q}$  such that

$$\left\| (\mathfrak{a}_{11}\varepsilon + \mathfrak{a}_{12})(\mathfrak{a}_{21}\varepsilon + \mathfrak{a}_{22})^{-1} \right\|_{\infty} < 1.$$

$$(4.4)$$

A mvf  $\mathfrak{A} \in \mathfrak{M}_{\ell}(p,q)$  is said to be left strongly regular if there exists a mvf  $\varepsilon \in S^{q \times p}(\Omega_+)$  such that

$$\left\| \left(\mathfrak{a}_{22} + \varepsilon \mathfrak{a}_{12}\right)^{-1} \left(\mathfrak{a}_{21} + \varepsilon \mathfrak{a}_{11}\right) \right\|_{\infty} < 1.$$

$$(4.5)$$

These two classes will be designated  $\mathfrak{M}_{rsR}(p,q)$  and  $\mathfrak{M}_{\ell sR}(p,q)$ , respectively. There exists a two sided correspondence between the class  $\mathfrak{M}_{rsR}(p,q)$  and the class of strictly completely indeterminate Nehari problems for mvf's  $f \in \mathcal{B}^{p \times q}$ , the unit ball in  $L^{p \times q}_{\infty}(\Omega_0)$ , that is expressed by the formula

$$T_{\mathfrak{A}}\left[\mathcal{S}^{p\times q}(\Omega_{+})\right] = \left\{f \in \mathcal{B}^{p\times q} \colon (f - f^{\circ}) \in H^{p\times q}_{\infty}(\Omega_{+})\right\}$$
(4.6)

for some mvf  $f^{\circ} \in \mathcal{B}^{p \times q}$ .

The classes  $\mathfrak{M}_{rsR}(p,q)$  and  $\mathfrak{M}_{\ell sR}(p,q)$  were introduced and characterized in terms of a matricial Muckenhoupt condition in [9]; see, e.g., Theorems 4.5, 4.8, and Section 7.3. In the special case that q = p, Theorem 4.5 of that paper yields the following result:

**Theorem 11.** Let  $\mathfrak{A} \in \mathfrak{M}_r(p, p)$ . Then  $\mathfrak{A} \in \mathfrak{M}_{rsR}(p, p)$  if and only if

(1)  $\operatorname{Int}_{\Omega_0}(\mathfrak{A}^*\mathfrak{A})$  is finite;

(2) The  $p \times p$  mvf

$$\Delta(\mu) = \left\{\mathfrak{a}_{21}(\mu) + \mathfrak{a}_{22}(\mu)\right\}^* \left\{\mathfrak{a}_{21}(\mu) + \mathfrak{a}_{22}(\mu)\right\}$$

satisfies the matricial Muckenhoupt condition (1.12).

There is an analogous characterization of the class  $\mathfrak{M}_{\ell sR}(p, p)$  that follows from the discussion in [9, Section 7.3]:

**Theorem 12.** Let  $\mathfrak{A} \in \mathfrak{M}_{\ell}(p, p)$ . Then  $\mathfrak{A} \in \mathfrak{M}_{\ell s R}(p, p)$  if and only if

- (1)  $\operatorname{Int}_{\Omega_0}(\mathfrak{AA}^*)$  is finite;
- (2) The  $p \times p$  mvf

$$\Delta(\mu) = \{ \mathfrak{a}_{12}(\mu) + \mathfrak{a}_{22}(\mu) \} \{ \mathfrak{a}_{12}(\mu) + \mathfrak{a}_{22}(\mu) \}$$

satisfies the matricial Muckenhoupt condition (1.12).

The next step is to introduce the  $2m \times 2m$  mvf

$$\tilde{\mathfrak{A}}(\mu) = \begin{bmatrix} \tilde{\mathfrak{a}}_{11}(\mu) & \tilde{\mathfrak{a}}_{12}(\mu) \\ \tilde{\mathfrak{a}}_{21}(\mu) & \tilde{\mathfrak{a}}_{22}(\mu) \end{bmatrix} = \begin{bmatrix} \mathfrak{a}_{11}(\mu) & 0 & 0 & \mathfrak{a}_{12}(\mu) \\ 0 & I_q & 0 & 0 \\ 0 & 0 & I_p & 0 \\ \mathfrak{a}_{21}(\mu) & 0 & 0 & \mathfrak{a}_{22}(\mu) \end{bmatrix}$$

with blocks  $\tilde{a}_{ij}$  of size  $m \times m$  and to check that

$$\mathfrak{A} \in \mathfrak{M}_r(p,q) \quad \Leftrightarrow \quad \mathfrak{A} \in \mathfrak{M}_r(m,m)$$

and

$$\mathfrak{A} \in \mathfrak{M}_{\ell}(p,q) \quad \Leftrightarrow \quad \mathfrak{A} \in \mathfrak{M}_{\ell}(m,m).$$

**Lemma 13.**  $\mathfrak{A} \in \mathfrak{M}_{rsR}(p,q) \Leftrightarrow \tilde{\mathfrak{A}} \in \mathfrak{M}_{rsR}$ .

**Proof.** If  $\mathfrak{A} \in \mathfrak{M}_{rsR}(p,q)$ , then there exists a mvf  $\varepsilon \in S^{p \times q}$  such that (4.4) holds. Thus, upon setting

$$\tilde{\varepsilon} = \begin{bmatrix} 0_{p \times p} & \varepsilon \\ 0_{q \times p} & 0_{q \times q} \end{bmatrix} \text{ and } \tilde{s} = T_{\tilde{\mathfrak{A}}}[\tilde{\varepsilon}]$$

it is readily checked that

$$\tilde{s} = (\tilde{\mathfrak{a}}_{11}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{12})(\tilde{\mathfrak{a}}_{21}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{22})^{-1} = \begin{bmatrix} 0_{p \times p} & s \\ 0_{q \times p} & 0_{q \times q} \end{bmatrix}$$

meets the condition  $\|\tilde{s}\|_{\infty} < 1$ , since

$$s = (\mathfrak{a}_{11}\varepsilon + \mathfrak{a}_{12})(\mathfrak{a}_{21}\varepsilon + \mathfrak{a}_{22})^{-1}.$$

Conversely, if

$$\tilde{s} = (\tilde{\mathfrak{a}}_{11}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{12})(\tilde{\mathfrak{a}}_{21}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{22})^{-1}$$

meets the condition  $\|\tilde{s}\|_{\infty} < 1$  for some choice of

$$\tilde{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{bmatrix} \in \mathcal{S}^{m \times m}(\Omega_+)$$

(with diagonal blocks  $\varepsilon_{11}$  of size  $p \times p$  and  $\varepsilon_{22}$  of size  $q \times q$ ), then there exists a positive constant  $\gamma < 1$  such that

$$\tilde{s}(\mu)^* \tilde{s}(\mu) \leq \gamma I_m$$
 for a.e.  $\mu \in \Omega_0$ .

Thus, the factors

$$\tilde{\alpha} = \tilde{\mathfrak{a}}_{11}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{12}$$
 and  $\tilde{\beta} = \tilde{\mathfrak{a}}_{21}\tilde{\varepsilon} + \tilde{\mathfrak{a}}_{22}$ 

are subject to the inequality

$$\tilde{\alpha}(\mu)^* \tilde{\alpha}(\mu) \leq \gamma \beta(\mu)^* \beta(\mu)$$
 for a.e.  $\mu \in \Omega_0$ .

Consequently, the inequality

$$\begin{bmatrix} 0 & I_q \end{bmatrix} \tilde{\alpha}(\mu)^* \tilde{\alpha}(\mu) \begin{bmatrix} 0 \\ I_q \end{bmatrix} \leqslant \gamma \begin{bmatrix} 0 & I_q \end{bmatrix} \tilde{\beta}(\mu)^* \tilde{\beta}(\mu) \begin{bmatrix} 0 \\ I_q \end{bmatrix}$$

must also hold for a.e.  $\mu \in \Omega_0$ . But this turn leads easily to the conclusion that

$$(\mathfrak{a}_{11}\varepsilon_{12} + \mathfrak{a}_{12})^*(\mathfrak{a}_{11}\varepsilon_{12} + \mathfrak{a}_{12}) \leqslant \gamma(\mathfrak{a}_{21}\varepsilon_{12} + \mathfrak{a}_{22})^*(\mathfrak{a}_{21}\varepsilon_{12} + \mathfrak{a}_{22})$$

for a.e. point  $\mu \in \Omega_0$ , and hence that  $\mathfrak{A} \in \mathfrak{M}_{rsR}(p,q)$ .  $\Box$ 

**Lemma 14.**  $\mathfrak{A} \in \mathfrak{M}_{\ell s R}(p,q) \Leftrightarrow \tilde{\mathfrak{A}} \in \mathfrak{M}_{\ell s R}(m,m).$ 

**Proof.** The proof is much the same as the proof of the previous lemma, but with (4.5) in place of (4.4).  $\Box$ 

Now, having these two lemmas available, the analysis of the preceding section can be applied directly to obtain the following conclusions:

**Theorem 15.** Let  $\mathfrak{A} \in \mathfrak{M}_r(p,q)$ . Then  $\mathfrak{A} \in \mathfrak{M}_{rsR}(p,q)$  if and only if the  $m \times m$  matrix weight

$$\Delta(\mu) = \begin{bmatrix} I_p & s_{21}(\mu)^* \\ s_{21}(\mu) & I_q \end{bmatrix}$$
(4.7)

meets the matricial Muckenhoupt condition (1.12).

**Theorem 16.** Let  $\mathfrak{A} \in \mathfrak{M}_{\ell}(p,q)$ . Then  $\mathfrak{A} \in \mathfrak{M}_{\ell sR}(p,q)$  if and only if the  $m \times m$  matrix weight

$$\Delta(\mu) = \begin{bmatrix} I_p & s_{12}(\mu) \\ s_{12}(\mu)^* & I_q \end{bmatrix}$$
(4.8)

meets the matricial Muckenhoupt condition (1.12).

#### References

- D.Z. Arov, γ-generating matrices, *j*-inner matrix-functions and related extrapolation problems, I, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen 51 (1989) 61–67, 52 (1989) 103–109; English transl. J. Soviet Math. 52 (1990) 3487–3491, 52 (1990) 3421–3425.
- [2] D.Z. Arov,  $\gamma$ -generating matrices, *j*-inner matrix-functions and related extrapolation problems, IV, Math. Phys. Anal. Geom. 2 (1995) 3–14.
- [3] D.Z. Arov, H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, I: Foundations, Integral Equations Operator Theory 29 (1997) 373–454.
- [4] D.Z. Arov, H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, II: The inverse monodromy problem, Integral Equations Operator Theory 36 (2000) 11–70.
- [5] D.Z. Arov, H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, III: More on the inverse monodromy problem, Integral Equations Operator Theory 36 (2000) 127–181.
- [6] D.Z. Arov, H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, IV: Direct and inverse bitangential input scattering problems, Integral Equations Operator Theory 43 (2001) 1–67.
- [7] D.Z. Arov, H. Dym, *J*-inner matrix functions, interpolation and inverse problems for canonical systems, V: The inverse input scattering problem for Wiener class and rational  $p \times q$  input scattering matrices, Integral Equations Operator Theory 43 (2001) 68–129.
- [8] D.Z. Arov, H. Dym, The bitangential inverse impedance problem for canonical systems, I: Weyl–Titchmarsh classification, existence and uniqueness, preprint.
- [9] D.Z. Arov, H. Dym, Matricial Nehari problems, J-inner matrix functions and the Muckenhoupt condition, J. Funct. Anal. 181 (2001) 227–299.
- [10] Z.D. Arova, Conservative linear time invariant systems with infinite dimensional state spaces and J-inner transfer matrix functions, Ph.D. thesis, Free University of Amsterdam, 2002.
- [11] H. Dym, J-Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and Interpolation, in: CBMS Regional Conference Series in Mathematics, Vol. 71, American Mathematical Society, Providence, 1989.
- [12] H. Dym, Linear fractional transformations, Riccati equations and bitangential interpolation, revisited, Oper. Theory Adv. Appl. (2003), in press.
- [13] S. Treil, A. Volberg, Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997) 269-308.