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Abstract

The class of left and right strongly regularJ -inner mvf’s plays an important role in bitangenti
interpolation problems and in bitangential direct and inverse problems for canonical syste
integral and differential equations. A new criterion for membership in this class is presented in
of the matricial Muckenhoupt condition (A2) that was introduced for other purposes by Treil a
Volberg. Analogous results are also obtained for the class ofγ -generating functions that interven
in the Nehari problem. The new criterion is simpler than the criterion that we presented e
A determinental criterion is also presented.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let J be anm×m signature matrix, letΩ+ denote either the open unit diskD or the
open upper half planeC+ and letU(J,Ω+) denote the class ofm × m J -inner mvf’s
(matrix valued functions) with respect toΩ+.
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We recall that anm×mmvf U(λ) that is meromorphic inΩ+ is said to beJ -inner with
respect toΩ+ if

(1) U(λ)∗JU(λ)� J for every pointλ ∈Ω+ at whichU is holomorphic;
(2) U(µ)∗JU(µ)= J for a.e. pointµ on the boundaryΩ0 of Ω+.

We remark that condition (1) insures that every entry inU is the ratio of two functions
that are holomorphic and bounded inΩ+ and hence, by Fatou’s lemma, that nontangen
boundary limitsU(µ) exist at a.e. pointµ ∈Ω0.

It is well known that ifJ is equal to

jpq =
[
Ip 0
0 −Iq

]
, p � 1, q � 1, p+ q =m, (1.1)

and if them×m mvf

W(λ)=
[
w11(λ) w12(λ)

w21(λ) w22(λ)

]
(1.2)

with diagonal blocks of sizesp × p and q × q , respectively, belongs to the cla
U(jpq,Ω+), then the linear fractional transformation

TW [ε] = (w11ε+w12)(w21ε+w22)
−1 (1.3)

maps the Schur class

Sp×q (Ω+)=
{
p× q mvf’s ε(λ): ε(λ) is holomorphic and contractive inΩ+

}
(1.4)

into itself. A mvfW ∈ U(jpq,Ω+) is said to belong to the classUrsR(jpq,Ω+) of right
strongly regularjpq -inner mvf’s if there exists at least one mvfε ∈ Sp×q (Ω+) such that∥∥TW [ε]∥∥∞ < 1. (1.5)

There are many bitangential interpolation problems in the classSp×q (Ω+) for which the
set of solutions is equal to

TW
[
Sp×q (Ω+)

]= {
TW [ε]: ε ∈ Sp×q (Ω+)

}
for an appropriately chosenW ∈ U(jpq,Ω+); see, e.g., [11,12]. An interpolation proble
in the classSp×q (Ω+) is said to be strictly completely indeterminate if there exists at l
one solutions(λ) such that‖s‖∞ < 1. There exists a two sided correspondence betw
the classUrsR(jpq,Ω+) and the class of strictly completely indeterminate general
bitangential interpolation problems inSp×q (Ω+):

(1) If W ∈ UrsR(jpq,Ω+), then

TW
[
Sp×q (Ω+)

]= {
s ∈ Sp×q(Ω+): b−1

1 (s − s◦)b−1
2 ∈Hp×q∞ (Ω+)

}
, (1.6)

for some mvfs◦ ∈ Sp×q (Ω+) and some pair of mvf’sb1(λ) andb2(λ) of sizesp× p
andq × q , respectively, that are inner with respect toΩ+.
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(2) To every set of mvf’s defined by the right hand-side of formula (1.6) that contains
s(λ) such that‖s‖∞ < 1, there corresponds an essentially uniqueW ∈ UrsR(jpq,Ω+)
such that formula (1.6) holds.

Additional information on this correspondence may be found, e.g., in [2,9]. Ident
tion (1.6) implies that every problem in the classSp×q (Ω+) for which the set of solution
can be expressed asTW [Sp×q (Ω+)] for some mvfW ∈ UrsR(jpq,Ω+) is equivalent to a
strictly completely indeterminate generalized bitangential interpolation problem.

The classUrsR(jpq,C+) was introduced in [3] because of the central role that it pla
in our study of direct and inverse problems for canonical integral and differential sy
[3–8].

If U ∈ U(J,Ω+) and

V is a unitary matrix such thatV ∗JV = jpq, (1.7)

thenW(λ)= V ∗U(λ)V belongs to the classU(jpq,Ω+) and we say thatU ∈ UrsR(J,Ω+)
if W ∈ UrsR(jpq,Ω+). In [3] it was shown thatU ∈ UrsR(J,Ω+) if and only if them× 1
vvf’s (vector valued functions) in the associated RKHS (reproducing kernel Hilbert s
H(U) all belong toLm2 (Ω0) (with respect to Lebesgue measure). This criterion leads e
to the following inclusion:

U(J,Ω+)∩Lm×m∞ (Ω0)⊂ UrsR(J,Ω+). (1.8)

An example that shows that the inclusion (1.8) is proper ifJ �= ±Im is presented in [9
Section 7.6].

To be more precise, in a number of our papers, the classUrsR(J,Ω+) is referred to as
UsR(J,Ω+). The classU�sR(J,Ω+) of left strongly regularJ -inner mvf’s was introduced
later in [9]. The definition can be formulated most simply in terms of the mvf

U˜(λ)=U(−λ̄)∗ if Ω+ = C+ and U˜(λ)=U(−1/λ̄)∗ if Ω+ = D (1.9)

as follows:

U ∈ U�sR(J,Ω+) ⇔ U˜ ∈ UrsR(J,Ω+). (1.10)

A mvf W ∈ U�sR(jpq,Ω+) if and only ifW ∈ U(jpq,Ω+) and{
(w22 + εw12)

−1(w21 + εw11): ε ∈ Sq×p
}

contains at least one

mvf s ∈ Sq×p(Ω+) with ‖s‖∞ < 1. (1.11)

This fact and additional discussion of the classU�sR(J,Ω+)may be found in [9, Section 6
A number of other characterizations of the classesU�sR(J,Ω+) and UrsR(J,Ω+)

were obtained in [9] in terms of the matricial Muckenhoupt condition (A2) of Treil and
Volberg [13]. To formulate their condition and our results for both domainsD andC+, it
is convenient to use a flexible notation that is spelled out in Table 1.

In the last column of Table 1 the averageAI (∆) of a mvf∆ is always computed with
respect to a finite subintervalI ofΩ0 with length|I |> 0.

The matricial Muckenhoupt condition(A2) may be written as

sup
∥∥(AI (∆))1/2(AI (∆−1)

)1/2∥∥<∞ (1.12)

I
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Ω+ ρω(λ) Ω0 IntΩ0(f ) AI (∆)

D 1− λω̄ T
1

2π

∫ 2π
0 f (eiθ ) dθ 1

|I |
∫
I ∆(e

iθ ) dθ

C+ −2πi(λ− ω̄) R
1
π

∫∞
−∞ f (µ)

dµ

1+µ2
1|I |
∫
I ∆(µ)dµ

for matrix valued weight functions∆(µ)� 0. In [9] we obtained the following character
zation of the classesUrsR(jp,Ω+) andU�sR(jp,Ω+), wherejp = jpp , that will serve both
as a good illustration and a useful tool for the developments in this paper.

Theorem 1. LetW ∈ U(jp,Ω+). ThenW ∈ UrsR(jp,Ω+) if and only if the following two
conditions are met:

(1) IntΩ0(W
∗W) is finite; (1.13)

(2) Thep× p mvf

∆(µ)= {
w21(µ)+w22(µ)

}∗{
w21(µ)+w22(µ)

}
(1.14)

that is defined in terms of the bottom entries in the block decomposition(1.2) ofW(λ)
meets condition(1.12).

The mvfW ∈ U�sR(jp,Ω+) if and only if(1) and(2) hold, but with

∆(µ)= {
w12(µ)+w22(µ)

}{
w12(µ)+w22(µ)

}∗ (1.15)

in (2).

In this article we shall first present another condition that is equivalent to the ma
Muckenhoupt condition (A2), but is formulated in terms of determinants rather than no
and has the potential advantage of dispensing with square roots. We shall then
a new characterization of the classesUrsR(J,Ω+) and U�rR(J,Ω+). In particular, if
W ∈ U(jpq,Ω+), then this criterion is most easily formulated in terms of the off diago
blocks of the Potapov–Ginzburg transform[

s11(λ) s12(λ)

s21(λ) s22(λ)

]
=
[
w11(λ) w12(λ)

0 Iq

][
Ip 0

w21(λ) w22(λ)

]−1

(1.16)

as follows:

Theorem 2. LetW ∈ U(jpq,Ω+). Then:

(1) W ∈ UrsR(jpq,Ω+)⇔ them×m weight

∆(µ)=
[
Ip s21(µ)

∗
s21(µ) Iq

]

meets the matricial Muckenhoupt condition(1.12);
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(2) W ∈ U�sR(jpq,Ω+)⇔ them×m weight

∆(µ)=
[

Ip s12(µ)

s12(µ)
∗ Iq

]

meets the matricial Muckenhoupt condition(1.12).

Notice that this new criterion replaces two conditions (1.13) and (1.14) (re
tively, (1.15)), by a single matricial Muckenhoupt condition.

Finally, in the last section, we shall briefly discuss some analogues for the classM(p, q)

of γ -generating functions that play an important role in the study of the Nehari probl
We have already noted that class of strongly regularJ -inner mvf’s play an importan

role in the study of bitangential direct and inverse problems of canonical integra
differential systems and in bitangential interpolation problems. They also play a usef
in the study of operator nodes. EveryJ -inner mvfU(λ) that is holomorphic at zero ca
be expressed as the characteristic function of a simple operator node with main o
A equal to the backward shiftR0 :f → {f (λ) − f (0)}/λ acting on the RKHSH(U). If
U ∈ UrsR(J,Ω+), thenA andH(U) decompose in a nice way. This and a numbe
related results have been obtained by Arova in her Ph.D. thesis [10].

2. Preliminaries

Lemma 3. Let∆ be a measurable positive semidefinitep× p mvf onΩ0 such that∆ and
(∆−1) are both summable on some intervalI . Then the matrix(AI (∆))1/2(AI (∆−1))1/2

is expansive:∥∥(AI(∆))1/2(AI(∆−1)
)1/2

ξ
∥∥� ‖ξ‖

for every vectorξ ∈ Cp .

Proof. This fact is established in Corollary 3.3 of Treil and Volberg [13].✷
Lemma 4. LetX be ap× p expansive matrix. Then

‖X‖ � |detX| � ‖X‖p. (2.1)

Proof. This is immediate from the singular value decomposition

X =U

 s1 . . .

sp


V

of X, sinceU andV are unitary,s1 � · · · � sp and, under the given assumptions,sp � 1.✷
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Theorem 5. Let∆(µ) be a measurable positive semidefinitep×p mvf∆ onΩ0 such that
∆ and∆−1 are both summable on each subintervalI ofΩ0 with |I |<∞. Then∆(µ) will
meet the matricial Muckenhoupt condition(1.12) if and only if

sup
I

{
det
(
AI(∆)

)
det
(
AI(∆

−1)
)}
<∞. (2.2)

Proof. In view of the last two lemmas, inequality (2.1) is directly applicable to the ma

X = (
AI(∆)

)1/2(
AI(∆

−1)
)1/2

and also yields the bound

‖X‖2 �
{
det(X)

}2 � ‖X‖2p.

However, this does the trick, since{
det(X)

}2 = det(X2)= det
(
AI(∆)

)
det
(
AI(∆

−1)
)
. ✷

Let J be anym×m signature matrix, and let

P = (Im + J )/2 and Q= (Im − J )/2. (2.3)

Then, sinceP andQ are complementary orthogonal projectors onC
m, i.e.,

P = P 2 = P ∗, Q=Q2 =Q∗, and P +Q= Im, (2.4)

it is readily checked that the 2m× 2m matrix

Ṽ =
[
P Q

Q P

]
(2.5)

is also a signature matrix and that

Ṽ

[
J 0
0 −J

]
Ṽ =

[
Im 0
0 −Im

]
= jm. (2.6)

Lemma 6. LetU ∈ U(J,Ω+) and let

W̃ (λ)= Ṽ
[
U(λ) 0

0 Im

]
Ṽ . (2.7)

ThenW̃ ∈ U(jm,Ω+) and

(1) W̃ ∈ UrsR(jm,Ω+)⇔U ∈ UrsR(J,Ω+);
(2) W̃ ∈ U�sR(jm,Ω+)⇔U ∈ U�sR(J,Ω+).

Proof. It is readily checked that

jm − W̃ (λ)jmW̃ (ω)∗ = Ṽ
[
J −U(λ)JU(ω)∗ 0

0 0

]
Ṽ .

Thus,W̃ ∈ U(jm,Ω+) and the RK (reproducing kernel)

KW̃ω (λ)=
jm − W̃ (λ)jmW̃(ω)∗
ρω(λ)
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of the RKHSH(W̃ ) is related to the RK

KUω (λ)=
J −U(λ)JU(ω)∗

ρω(λ)

of the RKHSH(U) by the formula

KW̃ω (λ)= Ṽ
[
KUω (λ) 0

0 0

]
Ṽ .

Therefore,

H(W̃ )= Ṽ
[H(U)

⊕
{0}

]

and hence

H(W̃ )⊂ L2m
2 (Ω0) ⇔ H(U)⊂ Lm2 (Ω0).

Consequently assertion (1) follows from the criterion for right strong regularity that
established in Theorem 6.7 of [3] and was discussed earlier. Assertion (2) then follo
applying assertion (1) to(W̃ ) (̃λ) andU˜(λ). ✷

The proof of the preceding lemma clearly exhibits the fact that the mvfW̃ (λ) has specia
structure. Another consequence of this special structure is revealed in the next lemm

Lemma 7. Let w̃ij (λ), i, j = 1,2, denote them × m mvf’s in the standard four bloc
decompositions of the2m× 2m mvfW̃ (λ) that is defined by formula(2.7). Then:

(1) IntΩ0{(w̃21 + w̃22)
∗(w̃21 + w̃22)} finite ⇒ IntΩ0{(w̃∗

22w̃22) finite;
(2) IntΩ0{(w̃12 + w̃22)(w̃12 + w̃22)

∗} finite ⇒ IntΩ0{(w̃22w̃
∗
22) finite.

Proof. In view of formulas (2.3)–(2.7), it is readily checked that

(
w̃21(µ)+ w̃22(µ)

)∗(
w̃21(µ)+ w̃22(µ)

)= P +U(µ)∗QU(µ), (2.8)

w̃22(µ)
∗w̃22(µ)= P +QU(µ)∗QU(µ)Q, (2.9)(

w̃12(µ)+ w̃22(µ)
)(
w̃12(µ)+ w̃22(µ)

)∗ = P +U(µ)QU(µ)∗, (2.10)

w̃22(µ)w̃22(µ)
∗ = P +QU(µ)QU(µ)∗Q. (2.11)

Moreover,

IntΩ0(U
∗QU) is finite ⇔ IntΩ0

(
tr{U∗QU})<∞

and

IntΩ0

(
tr{U∗QU})= IntΩ0

(
m∑

‖QUui‖2

)
� IntΩ0

(
q∑

‖QUui‖2

)

i=1 i=1
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for every orthonormal basis{u1, . . . , um} of Cm. But if the basis is chosen so th
{u1, . . . , uq} is an orthonormal basis for theq-dimensional subspaceQCm, then the last
sum on the right is equal to

IntΩ0

(
q∑
i=1

‖QUQui‖2

)
= IntΩ0

(
tr{QU∗QUQ}).

This serves to justify assertion (1) and also assertion (2), since the two are equivale✷
Lemma 8. LetW ∈ U(jpq,Ω+). Then the following statements are equivalent:

(1) IntΩ0(W
∗W) is finite;

(2) IntΩ0(w
∗
22w22) is finite;

(3) IntΩ0(WW
∗) is finite;

(4) IntΩ0(w22w
∗
22) is finite.

Proof. The proof exploits the fact that

W(µ)∗jpqW(µ)= jpq =W(µ)jpqW(µ)∗
for a.e. pointµ ∈Ω0 and that

IntΩ0(jpq) is finite.

Thus,

(1) holds ⇔ IntΩ0(W
∗W −W∗jpqW) is finite

⇔ IntΩ0

([
w∗

21
w∗

22

]
[w21 w22]

)
is finite

⇔ IntΩ0

(
tr{w∗

21w21 +w∗
22w22}

)
<∞

⇔ IntΩ0

(
tr{s∗21w

∗
22w22s21 +w∗

22w22}
)
<∞

⇔ IntΩ0

(
tr
{
w∗

22w22(Iq + s21s
∗
21)
})
<∞

⇔ IntΩ0

(
tr{w∗

22w22}
)
<∞ ⇔ (2) holds.

Much the same sort of argument serves to justify the equivalence of (3) and (4). The
since tr{w∗

22w22} = tr{w22w
∗
22}, all four statements are equivalent.✷

3. A new characterization of strongly regular J -inner mvf’s

In this section we shall formulate and establish a new characterization of each
subclassesUrsR(J,Ω+) andU�sR(J,Ω+) of U(J,Ω+) in terms of them×m mvf’s

Gr(µ)= P +U(µ)∗QU(µ) and G�(µ)= P +U(µ)QU(µ)∗. (3.1)

The orthogonal projectionsP andQ in formula (3.1) are defined in formula (2.3). The fi
step is to verify the invertibility of the mvf’s defined in (3.1).
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Lemma 9. LetU ∈ U(J,Ω+). Then them×mmvf’sGr(µ) andG�(µ) that are defined in
formula(3.1) are invertible for a.e. pointµ ∈Ω0. Moreover, ifV is a unitary matrix such
thatV ∗JV = jpq , then

V ∗Gr(µ)−1V =
[
Ip s21(µ)

∗
s21(µ) Iq

]
(3.2)

and

V ∗G�(µ)−1V =
[

Ip −s12(µ)

−s12(µ)
∗ Iq

]
(3.3)

for a.e. pointµ ∈Ω0, wheres12(µ) ands21(µ) are the off-diagonal blocks in the Potapo
Ginzburg transform ofW(λ)= V ∗U(λ)V .

Proof. It is readily checked that

V ∗Gr(µ)V =
[
Ip 0
0 0

]
+
[

0 w21(µ)
∗

0 w22(µ)
∗
][

0 0
w21(µ) w22(µ)

]

=
[
Ip +w21(µ)

∗w21(µ) w21(µ)
∗w22(µ)

w22(µ)
∗w21(µ) w22(µ)

∗w22(µ)

]

=
[
Ip −s21(µ)

∗
0 Iq

][
Ip 0
0 w22(µ)

∗w22(µ)

][
Ip 0

−s21(µ) Iq

]
for a.e. pointµ ∈Ω0. Therefore,Gr(µ) is invertible and

V ∗Gr(µ)−1V =
[
Ip s21(µ)

∗
s21(µ) Iq

]
.

Similar considerations lead easily to the formula

V ∗G�(µ)V =
[
Ip s12(µ)

0 Iq

][
Ip 0
0 w22(µ)w22(µ)

∗
][

Ip 0
s12(µ)

∗ Iq

]
and hence to the invertibility ofG�(µ) for a.e. pointµ ∈Ω0 and formula (3.3). ✷
Theorem 10. LetU ∈ U(J,Ω+). Then the following conditions are equivalent:

(1) U ∈ UrsR(J,Ω+) (respectively,U ∈ U�sR(J,Ω+));
(2) Them×m mvfGr(µ) (respectively,G�(µ)) meets the matricial Muckenhoupt con

tion (1.12);
(3) Them × m mvfGr(µ) (respectively,G�(µ)) meets the determinental Muckenho

condition(2.2).

Proof. By Lemma 6, (1) holds if and only ifW̃ ∈ UrsR(jm,Ω+) (respectively,W̃ ∈
U�sR(jm,Ω+)). Therefore, in view of Theorem 1, Lemmas 6–8, and formulas (
and (2.10), (1) holds if and only ifGr(µ) (respectively,G�(µ)) meets the matricia
Muckenhoupt condition (1.12). (These last conditions guarantee that the left han
of (1) (respectively, (2)) in Lemma 7 is finite via formula (2.8) (respectively, (2.10))
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have verified (1)⇔ (2). The equivalence with (3) is now immediate from Theorem 5.✷

4. Strongly regular γ -generating matrices

Let

f #(λ)=
{
f (λ̄)∗ if Ω+ = C+,

f (1/λ̄)∗ if Ω+ = D.

Let Mr (p, q) denote the class of measurablem×m mvf’s A(µ) onΩ0 of the form

A(µ)=
[

a11(µ) a12(µ)

a21(µ) a22(µ)

]
(4.1)

such that

(1) A(µ) is jpq -unitary for a.e. pointµ ∈Ω0;
(2) a22(µ) and a11(µ)

∗ are the boundary values of mvf’sa22(λ) and a#
11(λ) that are

holomorphic inΩ+ and, in addition,(a22)
−1 and (a#

11)
−1 are outer mvf’s of class

Sq×q (Ω+) andSp×p(Ω+), respectively;
(3r ) The mvf

s21(µ)= −a22(µ)
−1a21(µ)= −a12(µ)

∗[a11(µ)
∗]−1 (4.2)

is the boundary value of a mvfs21(λ) that belongs to the classSq×p(Ω+).

This class of mvf’s was introduced and investigated in [1]. It plays a fundamenta
in the study of the matrix Nehari problem. The mvf’s in this class are calledγ -generating
matrices.

LetM�(p, q) denote the class of measurablem×mmvf’s A(µ) onΩ0 of the form (4.1)
that meet conditions (1) and (2) that are stated above forMr (p, q) and (in place of(3r ))

(3�) The mvf

s12(µ)= a12(µ)a22(µ)
−1 = [

a11(µ)
∗]−1

a21(µ)
∗ (4.3)

is the boundary value of a mvfs12(λ) that belongs to the classSp×q (Ω+). This class
of functions was introduced and briefly discussed in [9, Section 7.3].

A mvf A ∈ Mr (p, q) is said to be right strongly regular if there exists a mvfε ∈ Sp×q
such that∥∥(a11ε+ a12)(a21ε+ a22)

−1
∥∥∞ < 1. (4.4)

A mvf A ∈ M�(p, q) is said to be left strongly regular if there exists a mvfε ∈ Sq×p(Ω+)
such that∥∥(a22 + εa12)

−1(a21 + εa11)
∥∥ < 1. (4.5)
∞



D.Z. Arov, H. Dym / J. Math. Anal. Appl. 280 (2003) 387–399 397

of
7.3. In
These two classes will be designatedMrsR(p, q) and M�sR(p, q), respectively. There
exists a two sided correspondence between the classMrsR(p, q) and the class of strictly
completely indeterminate Nehari problems for mvf’sf ∈ Bp×q , the unit ball inLp×q∞ (Ω0),
that is expressed by the formula

TA

[
Sp×q (Ω+)

]= {
f ∈ Bp×q : (f − f ◦) ∈Hp×q∞ (Ω+)

}
(4.6)

for some mvff ◦ ∈ Bp×q .
The classesMrsR(p, q) andM�sR(p, q) were introduced and characterized in terms

a matricial Muckenhoupt condition in [9]; see, e.g., Theorems 4.5, 4.8, and Section
the special case thatq = p, Theorem 4.5 of that paper yields the following result:

Theorem 11. LetA ∈ Mr (p,p). ThenA ∈ MrsR(p,p) if and only if

(1) IntΩ0(A
∗A) is finite;

(2) Thep× p mvf

∆(µ)= {
a21(µ)+ a22(µ)

}∗{
a21(µ)+ a22(µ)

}
satisfies the matricial Muckenhoupt condition(1.12).

There is an analogous characterization of the classM�sR(p,p) that follows from the
discussion in [9, Section 7.3]:

Theorem 12. LetA ∈ M�(p,p). ThenA ∈ M�sR(p,p) if and only if

(1) IntΩ0(AA∗) is finite;
(2) Thep× p mvf

∆(µ)= {
a12(µ)+ a22(µ)

}{
a12(µ)+ a22(µ)

}∗
satisfies the matricial Muckenhoupt condition(1.12).

The next step is to introduce the 2m× 2m mvf

Ã(µ)=
[

ã11(µ) ã12(µ)

ã21(µ) ã22(µ)

]
=



a11(µ) 0 0 a12(µ)

0 Iq 0 0
0 0 Ip 0

a21(µ) 0 0 a22(µ)




with blocksãij of sizem×m and to check that

A ∈ Mr (p, q) ⇔ Ã ∈ Mr (m,m)

and

A ∈ M�(p, q) ⇔ Ã ∈ M�(m,m).

Lemma 13. A ∈ MrsR(p, q)⇔ Ã ∈ MrsR.
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s,

e

.5) in

can be
Proof. If A ∈ MrsR(p, q), then there exists a mvfε ∈ Sp×q such that (4.4) holds. Thu
upon setting

ε̃ =
[

0p×p ε

0q×p 0q×q

]
and s̃ = T

Ã
[ε̃],

it is readily checked that

s̃ = (ã11ε̃+ ã12)(ã21ε̃+ ã22)
−1 =

[
0p×p s

0q×p 0q×q

]

meets the condition‖s̃‖∞ < 1, since

s = (a11ε+ a12)(a21ε+ a22)
−1.

Conversely, if

s̃ = (ã11ε̃+ ã12)(ã21ε̃+ ã22)
−1

meets the condition‖s̃‖∞ < 1 for some choice of

ε̃ =
[
ε11 ε12
ε21 ε22

]
∈ Sm×m(Ω+)

(with diagonal blocksε11 of sizep× p andε22 of sizeq × q), then there exists a positiv
constantγ < 1 such that

s̃(µ)∗s̃(µ)� γ Im for a.e.µ ∈Ω0.

Thus, the factors

α̃ = ã11ε̃+ ã12 and β̃ = ã21ε̃+ ã22

are subject to the inequality

α̃(µ)∗α̃(µ)� γ β̃(µ)∗β̃(µ) for a.e.µ ∈Ω0.

Consequently, the inequality

[0 Iq ]α̃(µ)∗α̃(µ)
[

0
Iq

]
� γ [0 Iq ]β̃(µ)∗β̃(µ)

[
0
Iq

]
must also hold for a.e.µ ∈Ω0. But this turn leads easily to the conclusion that

(a11ε12 + a12)
∗(a11ε12 + a12)� γ (a21ε12 + a22)

∗(a21ε12 + a22)

for a.e. pointµ ∈Ω0, and hence thatA ∈ MrsR(p, q). ✷
Lemma 14. A ∈ M�sR(p, q)⇔ Ã ∈ M�sR(m,m).

Proof. The proof is much the same as the proof of the previous lemma, but with (4
place of (4.4). ✷

Now, having these two lemmas available, the analysis of the preceding section
applied directly to obtain the following conclusions:
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(2001)
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1989.
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–308.
Theorem 15. Let A ∈ Mr (p, q). ThenA ∈ MrsR(p, q) if and only if them× m matrix
weight

∆(µ)=
[
Ip s21(µ)

∗
s21(µ) Iq

]
(4.7)

meets the matricial Muckenhoupt condition(1.12).

Theorem 16. Let A ∈ M�(p, q). ThenA ∈ M�sR(p, q) if and only if them× m matrix
weight

∆(µ)=
[

Ip s12(µ)

s12(µ)
∗ Iq

]
(4.8)

meets the matricial Muckenhoupt condition(1.12).
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