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Abstract

The class of left and right strongly regularinner mvf’s plays an important role in bitangential
interpolation problems and in bitangential direct and inverse problems for canonical systems of
integral and differential equations. A new criterion for membership in this class is presented in terms
of the matricial Muckenhoupt condition g that was introduced for other purposes by Treil and
Volberg. Analogous results are also obtained for the clags-@énerating functions that intervene
in the Nehari problem. The new criterion is simpler than the criterion that we presented earlier.
A determinental criterion is also presented.
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1. Introduction

Let J be anm x m signature matrix, let2, denote either the open unit digkor the
open upper half plan€ and leti/(J, £2+) denote the class ofi x m J-inner mvf’s
(matrix valued functions) with respect 12;..
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We recall that am x m mvf U (1) that is meromorphic i2 is said to be/-inner with
respect ta2 if

(1) U)*JU (1) < J for every pointh € £24 at whichU is holomorphic;
(2) U(w)*JU(u) = J for a.e. pointu on the boundary2p of £2.

We remark that condition (1) insures that every entryiis the ratio of two functions
that are holomorphic and boundedsin. and hence, by Fatou’s lemma, that nontangential
boundary limitsU () exist at a.e. point € £2o.

Itis well known that ifJ is equal to

. 1 0
qu=[6’ —IJ’ p=>21lq9g>21 p+g=m, (1.1)

and if them x m mvf

| wii(d)  wi2(X)
W(”‘[wmm wzz(k)} (1-2)

with diagonal blocks of sizep x p and ¢ x ¢, respectively, belongs to the class
U(jpq. $24), then the linear fractional transformation

Twlel = (wi1e + w12) (w216 + w22) * (1.3)
maps the Schur class
SP*4(2,) ={p x g mvf's e(1): e(1) is holomorphic and contractive i }
(1.4)

into itself. A mvf W € U(j,q, $2+) is said to belong to the clagsz(j,q, $2+) of right
strongly regularj,,-inner mvf’s if there exists at least one mwE S7*9(§2,) such that

|Twlel||,, < 1. (1.5)

There are many bitangential interpolation problems in the 539 (£2.+) for which the
set of solutions is equal to

Tw[SP*9(2)] = {Twlel: ¢ € SP*(24)}

for an appropriately choseiW e U(j,q, 24); see, e.g., [11,12]. An interpolation problem
in the classS?*(£2.) is said to be strictly completely indeterminate if there exists at least
one solutions (1) such that]|s|l.c < 1. There exists a two sided correspondence between
the classitsr(jpq, 2+) and the class of strictly completely indeterminate generalized
bitangential interpolation problems 8°*7(£2,):

(1) If W €Ursr(jpq. £24), then
Tw[SP*9(24)] = |s € SP*9(21): b7 (s —5°)by ' € HE I (24)], (1.6)

for some mvfs® € SP*9(§2) and some pair of mvf'é1(1) andba()) of sizesp x p
andg x g, respectively, that are inner with respect®q .



D.Z. Arov, H. Dym / J. Math. Anal. Appl. 280 (2003) 387-399 389

(2) To every set of mvf’s defined by the right hand-side of formula (1.6) that contains a mvf
s(») such that|s]ls < 1, there corresponds an essentially uniue U sz (jpq, £2+)
such that formula (1.6) holds.

Additional information on this correspondence may be found, e.g., in [2,9]. Identifica-
tion (1.6) implies that every problem in the cla$®8*7 (£2.) for which the set of solutions
can be expressed d%/[S”*?(£24)] for some mviW e U.sr(jpq, $2+) is equivalent to a
strictly completely indeterminate generalized bitangential interpolation problem.

The clasg/.sr(jpq, C+) was introduced in [3] because of the central role that it played
in our study of direct and inverse problems for canonical integral and differential systems
[3-8].

If U eU(J, 2,)and

V is a unitary matrix such that*JV = j,,, .7)

thenW (L) = V*U 1)V belongsto the clagg(j,,, £2+) and we say thall € Uy r(J, 24)

if Welsr(jpg, 24). In[3]it was shown thal € U 4r(J, $24) if and only if them x 1

vvf’s (vector valued functions) in the associated RKHS (reproducing kernel Hilbert space)
H(U) all belong toL% (£20) (with respect to Lebesgue measure). This criterion leads easily
to the following inclusion:

U, 24) NLET™ (820) C Ursr(J, £24). (1.8)

An example that shows that the inclusion (1.8) is propef i £1,, is presented in [9,
Section 7.6].

To be more precise, in a number of our papers, the élags(J, 2.+) is referred to as
Usr(J, £24). The clasddy g (J, 2+) of left strongly regulat/-inner mvf’s was introduced
later in [9]. The definition can be formulated most simply in terms of the mvf

UM =UN* ifR2,=Cy and UQ)=U-1/0)* if2,=D (1.9)
as follows:

Uelyr(J,21) < U elUsr(J, 24). (2.10)
AmvE W elysr(jpg, $24) ifand only it W e U(j,q, £24) and

{(waz+ sw12) H(wor + ewia): € € 8§77} contains at least one
mvfs e ST*P(24)  With [|s]les < 1. (1.11)

This fact and additional discussion of the clégsg (J, £2+) may be foundin [9, Section 6].

A number of other characterizations of the claségsg(J, 24+) and U,sg(J, £24+)
were obtained in [9] in terms of the matricial Muckenhoupt condition)(&f Treil and
Volberg [13]. To formulate their condition and our results for both domairendC., it
is convenient to use a flexible notation that is spelled out in Table 1.

In the last column of Table 1 the average(A) of a mvf A is always computed with
respect to a finite subintervalof £2¢ with length|/| > 0.

The matricial Muckenhoupt conditiai\2) may be written as

su] (A7) 2 (Ar(a™H) 2| < 00 (1.12)
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Table 1

24 o) 20 Intey (f) Ap(2)

D 1-1@ T A & r@®yde g 1 Ay ao
Cy —27i (. — @) R 2% T 11  Jr A dp

for matrix valued weight functiond () > 0. In [9] we obtained the following characteri-
zation of the class€g.sr (j,, $24) andidysr(jp, £24), Wherej, = j,,, that will serve both
as a good illustration and a useful tool for the developments in this paper.

Theorem 1. LetW e U(jp, $24). ThenW € Usr(j,p, £24) if and only if the following two
conditions are met

(1) Into,(W*W) is finite (1.13)
(2) Thep x p mvf
A(p) = {wa1(w) + wao(w) } {wa1(i) + waz(w) } (1.14)
that is defined in terms of the bottom entries in the block decompositidnof W (i)
meets conditionil.12).

The mviW e Uesr(jp, $24) if and only if (1) and (2) hold, but with

A(w) = {wiz2(w) + wao(u) Hwiz2(w) + w22} (1.15)
in (2).

In this article we shall first present another condition that is equivalent to the matricial
Muckenhoupt condition (4), but is formulated in terms of determinants rather than norms
and has the potential advantage of dispensing with square roots. We shall then present
a new characterization of the clasddsr(/, 2+) and U, g(J, £24+). In particular, if
W eU(jpq, £24), then this criterion is most easily formulated in terms of the off diagonal
blocks of the Potapov—-Ginzburg transform

[m(x) 512()»):|=|:w11()») wlz(x)M I, 0 }1 (1.16)
s21(A)  s22(0) 0 I, w21(A)  wa2(R) '

as follows:
Theorem 2. Let W € U(jpq, £21). Then

(1) W elrsr(jpg, 24) < them x m weight

Ip SZ1(M)*]

Alw) = [S21(M) Iy

meets the matricial Muckenhoupt conditidinl2);
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(2) W elUpsr(jpg, 24) < them x m weight

Ip s12() }

Alw) = [Slz(u)* I

meets the matricial Muckenhoupt conditi@inl2).

Notice that this new criterion replaces two conditions (1.13) and (1.14) (respec-
tively, (1.15)), by a single matricial Muckenhoupt condition.
Finally, in the last section, we shall briefly discuss some analogues for thé&&ilass;)
of y-generating functions that play an important role in the study of the Nehari problem.
We have already noted that class of strongly regulamner mvf’s play an important
role in the study of bitangential direct and inverse problems of canonical integral and
differential systems and in bitangential interpolation problems. They also play a useful role
in the study of operator nodes. Evefyinner mvf U (1) that is holomorphic at zero can
be expressed as the characteristic function of a simple operator node with main operator
A equal to the backward shig: f — {f (1) — f(0)}/A acting on the RKHSH(U). If
U elUr(J,24), thenA and H(U) decompose in a nice way. This and a number of
related results have been obtained by Arova in her Ph.D. thesis [10].

2. Preliminaries

Lemma 3. Let A be a measurable positive semidefinitec p mvf on§2g such thatA and
(A~1) are both summable on some intervalThen the matriXA;(A)Y2(A;(A~1)V/2
is expansive

1/2

(A7) 2(AraH) %] = Jg]

for every vectog e C?.
Proof. This fact is established in Corollary 3.3 of Treil and Volberg [13[

Lemmad4. Let X be ap x p expansive matrix. Then

X1 < |detx| < I X|1”. (2.1)

Proof. This is immediate from the singular value decomposition
51
X=U . 1%
Sp

of X, sinceU andV are unitarysy > --- > s, and, under the given assumptions> 1.
O
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Theorem 5. Let A(u) be a measurable positive semidefinite p mvf A on £2g such that
A and A~1 are both summable on each subinteryaif 2 with || < co. ThenA(u) will
meet the matricial Muckenhoupt conditioh12) if and only if

sup{det(A;(4)) def(A; (A7)} < 0. (2.2)
1

Proof. In view of the last two lemmas, inequality (2.1) is directly applicable to the matrix
X = (Ar()*(A;(aH)Y?

and also yields the bound
1X112 < {det0) ) < 1 X127

However, this does the trick, since
{detX)}? = det(x?) = def(A;(4)) det(A;(A™Y). O

Let J be anym x m signature matrix, and let

P=U,+J)/2 and 9=, —J)/2. (2.3)
Then, sinceP and Q are complementary orthogonal projectors@h, i.e.,

P = P?= pP*, 0=0%=0* and P+0Q=1,, (2.4)
it is readily checked that thes2x 2m matrix

~ P 0

v-[2 9] 29
is also a signature matrix and that

~(J 0|~ [In O | .

o[y O)v-[% 5 ]-m 2o
Lemma6. LetU eU(J, £2+) and let

W0y =V [U(“ 0 } V. 2.7)

0 Iy

ThenW € U(jn, £24) and

(1) W €Ursr(jm. 21) < U €Upsr(J. 24);
(2) W eUpsr(m» 21) & U €Upsr(J, 24).

Proof. It is readily checked that

= WO ju W (@) = V [J — UMW JU (@) o} .

0 0 V.
Thus,W € U(jn, $2+) and the RK (reproducing kernel)
Jm = W) jm W (@)*

P ()

KV o) =
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of the RKHSH(W) is related to the RK
J—-UMN)JU(w)*

Po(X)
of the RKHSH (U) by the formula

- U
K¥Yo)=V [Kw () O} V.

KY() =

0 0
Therefore,
~ _[HW)
H(W):V[ &) ]
{0}
and hence

H(W)C L3"(20) & HU)C LY (20).

Consequently assertion (1) follows from the criterion for right strong regularity that was
established in Theorem 6.7 of [3] and was discussed earlier. Assertion (2) then follows by
applying assertion (1) toW) (A) andU~(A). O

The proof of the preceding lemma clearly exhibits the fact that theWhwf) has special
structure. Another consequence of this special structure is revealed in the next lemma.

Lemma 7. Let w;; (1), i, j = 1,2, denote then x m mvf’s in the standard four block
decompositions of th&n x 2m mvf W (1) that is defined by formulé2.7). Then

(1) Intey{(w21 + w22)* (W21 + w22)} finite = Intoy{(W5,w22) finite;
(2) Intoy{(W12 4 Wa2) (W12 + w22)*} finite = Intg {(W22w3,) finite.

Proof. In view of formulas (2.3)—(2.7), it is readily checked that

(W21(1) + Wo2(w)) (W21(w) + Wa2(w)) = P + U(w)* QU (), (2.8)

Wa2(w)*W22(p) = P + QU (1)* QU (n) Q, (2.9)

(W12(10) + W22(w)) (B12(w) + Wa2(w))™ = P + U () QU (w)*, (2.10)

W22 W22(w)* = P + QU (1) QU (11)* Q. (2.11)
Moreover,

Inte,(U*QU) isfinite < Inte, (tr{U*QU}) < oo

and

m q
Inte, (tr{U* QU}) = Intgo( Y llQUu; ||2) > lnt90< Y llQUu; ||2)

i=1 i=1
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for every orthonormal basi$us,...,u,} of C™. But if the basis is chosen so that
{ui,...,uq} is an orthonormal basis for thge-dimensional subspac@C™, then the last
sum on the right is equal to

q
Int.%(Z IIQUQuiHZ) = Inte, (tr{QU* QU 0}).

i=1

This serves to justify assertion (1) and also assertion (2), since the two are equivalent.
Lemmas8. LetW € U(j,q, £2+). Then the following statements are equivalent

(1) Intg,(W*W) is finite;
(2) Intgy(wi,wz2) is finite;
(3) Inte,(WW™) is finite
(4) Inte,(waow3,) is finite.

Proof. The proof exploits the fact that
W) jpg W () = jpg = W) jpg W ()*
for a.e. pointu € £2¢ and that
Into, (jpg) is finite.
Thus,
(D holds < Intoy(W*W — W*j,, W) is finite

*
Inte, ([zzﬂ [w21 w22]> is finite

Into, (tr{w§1w21 + w%zwzz}) < 00

Into, (tr{sé‘lw;zwzzszl + w;zwzz}) < 00
Into, (tr{wézwzz(lq + 52155"1)}) < 00

& Intgy(tr{w3,wzo}) <oco < (2) holds

AV I

Much the same sort of argument serves to justify the equivalence of (3) and (4). Therefore,
since t{w3,w22} = tr{iwzow3,}, all four statements are equivalenta

3. A new characterization of strongly regular J-inner mvf’'s
In this section we shall formulate and establish a new characterization of each of the
subclasses, g (J, $24+) andUysg(J, $2+) of U(J, £24) in terms of then x m mvf’s
G (W)=P+UW*QU(n) and Gg(u)=P+U(w) QU™ (3.1)

The orthogonal projection8 andQ in formula (3.1) are defined in formula (2.3). The first
step is to verify the invertibility of the mvf’s defined in (3.1).
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Lemma9.LetU eU(J, £2+). Then then x m mvf'sG,(u) andG,(r) that are defined in
formula(3.1) are invertible for a.e. point € £29. Moreover, ifV is a unitary matrix such
that V*JV = j,,, then

% 1, | s21(p)*
VG, () v = [mfm A } (3.2)
and
* 1y, _ I —s12(1n)
VEG(uw)™V = [—slzlzu)* I, } (3.3)

for a.e. pointu € 20, wheres12(w) andsz1(w) are the off-diagonal blocks in the Potapov—
Ginzburg transform oW ().) = V*U (L) V.

Proof. It is readily checked that

. [, o 0 wa(w)* 0 0
VG (w)V = 0 0} + [O wzz(ﬂ)*} |:w21(/L) wzz(u)}

_ [ 1 + w2y w2 () w21(M)*w22(M)}
w22()*wa1 () w22()*waz(p)

_[1 —szl(m*Mlp 0 M Iy 0}
0 1, 0 waa(w)*wa2(w) || —s21(n) I

for a.e. pointu € £29. ThereforeG, (1) is invertible and

I,  sa(w* }
s21(1) I, '

Similar considerations lead easily to the formula

. 1, s12) [ 1, 0 H I, 0}
v G“‘”V—[o I, Ho waa(waa()* | | s12G)* 1

and hence to the invertibility aff, (1) for a.e. pointu € £2¢0 and formula (3.3). O

VG, (W)~ = [

Theorem 10. LetU € U(J, £2+). Then the following conditions are equivalent

(1) U elUysr(J, £24) (respectivelyly € Upsr(J, £24));

(2) Them x m mvfG,(u) (respectivelyG, (1)) meets the matricial Muckenhoupt condi-
tion (1.12);

(3) Them x m mvfG,(n) (respectivelyG¢(n)) meets the determinental Muckenhoupt
condition(2.2).

Proof. By Lemma 6, (1) holds if and only iW € Usz(jm, £21) (respectively,W
Uesr(m, $24+)). Therefore, in view of Theorem 1, Lemmas 6-8, and formulas (2.8)
and (2.10), (1) holds if and only i, (u) (respectively,G¢(t)) meets the matricial
Muckenhoupt condition (1.12). (These last conditions guarantee that the left hand side
of (1) (respectively, (2)) in Lemma 7 is finite via formula (2.8) (respectively, (2.10)) and



396 D.Z. Arov, H. Dym / J. Math. Anal. Appl. 280 (2003) 387-399

the discussion in Section 2 of [13] combined with Theorem 7.1 of that article.) Thus, we
have verified (1) (2). The equivalence with (3) is now immediate from Theorem 5.

4. Strongly regular y-generating matrices

Let

foy*if 24 =Cy,

f@/0* if 24 =D.

Let 9, (p, g) denote the class of measurablex m mvf's 2(u) on £2g of the form

_ | ea1(w)  az2(p)
m(ﬂ)_[azl(u) azz(u)} 1)

Ao = {

such that

(1) 2A(w) is jpq-unitary for a.e. poini € $2o;

(2) az2(n) andagi(n)* are the boundary values of mvfigo(1) and aﬁl(k) that are
holomorphic in2,. and, in addition,(app) 1 and(a*fl)*l are outer mvf’s of class
S9*4(£24) andSP*P (£2,), respectively;

(3,) The mvf

s21(1) = —a22(10) ~La21(w) = —ar2(w)* [ara(w)*] (4.2)
is the boundary value of a my$1(1) that belongs to the class’*? (£2,).
This class of mvf’s was introduced and investigated in [1]. It plays a fundamental role
in the study of the matrix Nehari problem. The mvf’s in this class are callggnerating
matrices.

LetM, (p, g) denote the class of measuralde m mvf's 2(uw) on 20 of the form (4.1)
that meet conditions (1) and (2) that are stated abov®Ta(p, ¢) and (in place of3,))

(3¢) The mvf

s12(0) = ax2(m)az2() "t = [a11(0)*] a2a(w)* (4.3)
is the boundary value of a myf2(A) that belongs to the clas®’*?(£2.). This class
of functions was introduced and briefly discussed in [9, Section 7.3].

A mvf 2 € M, (p, q) is said to be right strongly regular if there exists a mf SP*?
such that
[ (@116 + a12)(a21e + az2) | < 1. (4.4)

A mvf e M, (p, q) is said to be left strongly regular if there exists a ra\d S7*7 (£2)
such that

[(a22+ ea12) (a2 + carn) | < 1. (4.5)
oo
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These two classes will be designat®tl z(p.q) and Msr(p, q), respectively. There
exists a two sided correspondence between the 813sg(p, ¢) and the class of strictly
completely indeterminate Nehari problems for mvf's B7>4, the unit ball inL5“ (£20),
that is expressed by the formula

Ty [SP*9 ()] ={f eBP*: (f — f°) € HL(24)} (4.6)

for some mvff° e BP>4,

The classe, sz (p, g) andMiyr(p, g) were introduced and characterized in terms of
a matricial Muckenhoupt condition in [9]; see, e.g., Theorems 4.5, 4.8, and Section 7.3. In
the special case that= p, Theorem 4.5 of that paper yields the following result:

Theorem 11. Let2A € M, (p, p). ThenA € M,z (p, p) if and only if

(1) Intg,(A*2A) is finite;
(2) Thep x p mvf

A(w) = {az21(w) + az2(w) } {az1(1) + az2(1) }

satisfies the matricial Muckenhoupt conditicin12).

There is an analogous characterization of the d&issg (p, p) that follows from the
discussion in [9, Section 7.3]:

Theorem 12. Let2d € My (p, p). Thend € Mz (p, p) if and only if
(1) Intg, (AA*) is finite;
(2) Thep x p mvf

Ap) = {a12(w) + az2(u) Ha12(w) + azo() }*

satisfies the matricial Muckenhoupt conditicin12).

The next step is to introduce the2x 2m mvf

arz(w) 0 0 aip(w)
s o |a(u) aa(w) | 0 I, 0 0
2‘(")‘[&21(;0 ﬁzz(u)} 0 01, O
aa(uw) 0 0 axa(w)

with blocksa;; of sizem x m and to check that

Ae M (p.q) < AeM-(m,m)
and

AeM(p,q) & AeM(m,m).

Lemma 13. A € M, r(p, q) < A € Mgk,
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Proof. If 20 € M, r(p, q), then there exists a mefe SP*? such that (4.4) holds. Thus,
upon setting

I i| . -
£= and §=Ts5]I¢],
|:quz7 Oy xq 2

it is readily checked that

§ = (8118 4 @12) (8918 + do0)~ 0
§ = (a11€ + a12)(a21€ + az2) lz[opxp OS }
qxp qxq

meets the conditiofs ||~ < 1, since

s = (ag1e + a12) (az21e + azo) L.
Conversely, if

§ = (@128 + 812) (6218 + d22) 7t
meets the conditiofis| ., < 1 for some choice of

~ & &
i= 11 12 e §mxm (9+)
€21 €22

(with diagonal blocks11 of size p x p andey; of sizeg x ¢), then there exists a positive
constanty < 1 such that

SW*s(n) <yl, fora.e.ue Qo.
Thus, the factors
a@=d11F+dp and B =axé+ax
are subject to the inequality
G(w*a(w) <yBw B forae.n e .
Consequently, the inequality

[0 @wmﬁam[g}<yw QWWfﬂm[g}

must also hold for a.qu € £29. But this turn leads easily to the conclusion that

(a11612+ a12)* (a11612 + a12) < y(a21612 + a22)* (a21612 + a22)

for a.e. pointu € 29, and hence th& € M, sr(p,q). O
Lemma 14. A € Mysr(p, q) & A € Mysr(m, m).

Proof. The proof is much the same as the proof of the previous lemma, but with (4.5) in
place of (4.4). O

Now, having these two lemmas available, the analysis of the preceding section can be
applied directly to obtain the following conclusions:
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Theorem 15. Let 2 € M, (p, ¢). Then € M, r(p, q) if and only if them x m matrix
weight

4.7)

A = |: Ip 521(,“)*:|

s21(1) I
meets the matricial Muckenhoupt conditigin12).

Theorem 16. Let 2 € M, (p, g). Thenl € My r(p, q) if and only if them x m matrix
weight

1 s12(p)
A(p) = P 4.8
N A (4.8)
meets the matricial Muckenhoupt conditigin12).
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