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We investigate the cosmological inflation in a class of supergravity models that are generalizations of 
non-supersymmetric R2 models. Although such models have been extensively studied recently, especially 
after the launch of the PLANCK and BICEP2 data, the class of models that can be constructed has not 
been exhausted. In this note, working in a supergravity model that is a generalization of Cecotti’s model, 
we show that the appearance of new superpotential terms, which are quadratic in the superfield �
that couples to the Ricci supermultiplet, alters substantially the form of the scalar potential. The arising 
potential has the form of the Starobinsky potential times a factor that is exponential in the inflaton field 
and dominates for large inflaton values. We show that the well-known Starobinsky inflation scenario is 
maintained only for unnaturally small fine-tuned values of the coupling describing the �2 superpotential 
terms. A welcome feature is the possible increase of the tensor to scalar ratio r, within the limits set by 
the new Planck and BICEP2 data.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Models of inflation are constrained by observations of WMAP 
[1] and Planck [2] satellites. The spectral index is found in the 
range ns = 0.9608 ± 0.0054 while the tensor to scalar ratio is 
bounded from above r < 0.111. In addition the BICEP2 [3] experi-
ment, claiming for the discovery of primordial gravitational waves 
resulting in a ratio r = 0.16+0.06

−0.05, aroused the interest of both ex-
perimentalists and theorists. PLANCK satellite data [2] are in per-
fect agreement with the Starobinsky model of inflation [4] which 
predicts a tensor to scalar ratio in the range r � 0.004, which is 
almost two orders of magnitude smaller than the claimed discov-
ery of BICEP2 which points towards chaotic inflation [5]. In the 
meantime Planck collaboration released new data with increased 
precision [6], which are in agreement with the previous data, ac-
cording to which ns = 0.968 ± 0.006 and r < 0.11. Also BICEP2 
and Planck joint collaboration [7] established a robust upper bound 
r < 0.12, which is substantially lower than the value quoted in [3].

Much effort has been expended towards building inflation-
ary models embedded in the framework of supergravity theories. 
Chaotic inflation [5] scenario can be incorporated in supergravity 
schemes [8,9] and more recently general chaotic inflationary su-
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pergravity potentials have been studied [10]. Supergravity models 
that incorporate R + R2 terms and reproduce Starobinsky’s infla-
tion predictions for r, ns have received a lot of attention recently 
[11–35]. A class of supergravity models are described by no-scale 
Kähler potentials [36] and many of the proposed inflationary mod-
els have a no-scale structure [12,13,17,24,28,29,32,35]. It is worth 
noting that in this class of models there is the possibility of ac-
commodating models interpolating between low (r ∼ 0.001) and 
large values (r ∼ 0.1) depending on the parameters. This can be 
also accomplished in attractor solutions that relate in a continuous 
manner the predictions of the Starobinsky model to those of the 
quadratic chaotic potential [37,38].

Among the possible theoretical schemes, incorporating the 
virtues of the Starobinsky R2 model that lead to successful in-
flation, are higher derivative supergravity Lagrangians [39–43]. In 
these, besides the matter chiral and vector multiplets, additional 
chiral multiplets are unavoidably introduced. In the minimal sce-
nario [40] one uses two multiplets that after eliminations of the 
auxiliary fields involved lead to a supergravity Lagrangian includ-
ing R2. This extends the Starobinsky model in a non-trivial manner 
in the sense that additional terms appear, in comparison with the 
non-supersymmetric theory, that only conditionally can sustain a 
successful inflationary scenario.

Our aim in this note is to further investigate natural extensions 
of some of these models that include superpotential couplings not 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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considered in previous works. Such couplings lead to inflaton po-
tentials that do not have the Starobinsky form, unless some of the 
parameters are fined tuned. The question that arises is under what 
conditions these supergravity generalizations lead to successful in-
flation and under which circumstances large values of the ratio r
can be obtained saturating the upper bounds set on r by Planck 
and BICEP2.

This article is organized as follows:
In Section 2 we review the equivalence of R2 supergravity to an 

ordinary supergravity theory, by generalizing the original Cecotti’s 
Lagrangian [40], working in the framework of the Poincaré super-
gravity. In Section 3, working in the context of this framework, we 
discuss the properties of a class of models as far as cosmological 
inflation is concerned. Section 4 is devoted to a numerical treat-
ment of the cosmological solutions and the consequences for the 
parameters describing the model under consideration. In Section 5
we discuss the cosmological predictions paying special emphasis 
on the tensor to scale ratio r. We end up with the conclusions.

2. Reviewing the R2 supergravity model

It has been proven that R2 gravity [44], upon supersymmetriza-
tion is equivalent to ordinary supergravity theory which includes 
two chiral multiplets with specific couplings [40]. In this note we 
start by considering the locally supersymmetric Lagrangian of Su-
perPoincaré algebra which involves two chiral multiplets �, � al-
lowing for non-linear superpotential couplings of the field � that 
couples to the curvature multiplet. One can also start from a su-
perconformal action, see for example [19,22], and then proceed to 
Poincaré supergravity action by a proper gauge fixing but this case 
is not considered in this work.

Our starting Lagrangian is therefore given by

L =
∫

d2�2E
[
−�R− 1

8

(
D̄D̄ − 8R

)
�(�, �̄) + W (�,�)

]
+ h.c. (1)

which is described by the real kinetic function �(�, �̄), which 
is a function of �, �̄, and a superpotential W (�, �) which is a
holomorphic function of the supermultiplets �, �. Note that the 
curvature supermultiplet R couples to a chiral multiplet which we 
denote by � and this choice covers the most general case up to 
field redefinitions. The particular case W (�, �) = � �, in which 
� and � are coupled linearly to each other, is the one studied 
by Cecotti but evidently other options are available. The above La-
grangian can be cast in the form,

L =
∫

d2�2E
[
−1

8

(
D̄D̄ − 8R

)
�′(�,�, �̄) + W (�,�)

]
+ h.c. (2)

which is also a supergravity Lagrangian with a redefined kinetic 
function

�′(�,�, �̄, �̄) = �(�, �̄) − 1

2
(� + �̄) .

The superpotential can be brought to the following form by merely 
segregating the linear in � terms, which in general couples to a 
superfield which is a function of the chiral multiplet �,

W (�,�) = g(�)� + P (�,�) .

The function g(�) is non-linear, in general, and its departure from 
linearity brings about new features that may affect the cosmologi-
cal evolution as we shall see.
For our purposes it suffices to keep only the bosonic fields and 
thus the superfields can be expanded in the following way

� = ϕ + �� Fϕ, � = λ + ��Fλ

leading to

g(�) = g(λ) + ��
∂ g

∂λ
Fλ,

W (�,�) = W (λ,ϕ) + ��(Wλ Fλ + Wϕ Fϕ) .

An analogous treatment for the supergravity chiral multiplets E
and R, following standard notation, leads to

2E = e{1 − ��M̄}
and

R = −1

6

{
M + ��

[
−1

2
R + 2

3
MM̄ + 1

3
bμbμ − iDμbμ

]}
.

Then the bosonic part of the off-shell Lagrangian is written as

e−1LB = 1

6

[
� − 1

2
(λ + λ̄)

](
R + 2

3
MM̄ − 2

3
bμbμ

)
− �ϕϕ̄∂μϕ∂μϕ̄ + �ϕϕ̄ Fϕ F̄ ϕ̄

− i

3

[
�ϕ∂μϕ − �ϕ̄∂μϕ̄

]
bμ − i

6
(λ − λ̄)Dμbμ

− [
(g(λ)ϕ + P )M̄ + h.c.

]
+

{[
g(λ) + Pϕ − 1

3
M�ϕ

]
Fϕ

+
[

∂ g

∂λ
ϕ + Pλ + 1

6
M

]
Fλ + h.c.

}
.

The ordinary supergravity model is derived by solving the equa-
tions of the auxiliary fields M, bμ, Fλ, Fϕ in the usual manner. 
However in this frame (Jordan frame) the field λ has no kinetic 
term so alternatively one can use its equation of motion in elimi-
nating the auxiliary fields. In doing this the equation of motion for 
the field λ yields[

∂ g

∂λ
ϕ + Pλ

]
M̄ + 1

12

[
R + 2

3
MM̄ − 2

3
bμbμ + 2iDμbμ

]

−
(

∂ g

∂λ
+ Pϕλ

)
Fϕ −

(
∂2 g

∂λ2
ϕ + Pλλ

)
Fλ = 0

while those stemming from Fλ and M yield respectively

∂ g

∂λ
ϕ + Pλ + 1

6
M = 0

and

1

3
�′M̄ − �ϕ Fϕ + 1

2
Fλ − 3(ḡϕ̄ + P̄ ) = 0 .

Eliminating M, Fλ and substituting back in the Lagrangian the re-
sulting expression for Fϕ we get a supergravity model which in-
cludes R2 term

1

144

�ϕϕ̄∣∣∣∣∂ g

∂λ
+ Pϕλ + 2�ϕ

(
∂2 g

∂λ2
ϕ + Pλλ

)∣∣∣∣
2

R2 . (3)

Note that this term arises from the Fϕ F̄ ϕ̄ term of the original off-
shell Lagrangian.1 The prefactor of R2 in Eq. (3), in the general 

1 In the case of non-linear g(λ) the R2 coefficient is different from the one ap-
pearing in [22]. The difference is due to the specific superconformal gauge fixing 
adopted in that work.
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case, is a complicated function of the fields involved but it simpli-
fies a great deal, becoming actually a constant, when �(�, �̄) =
� �̄, g(�) = � and P (λ, �) = 0, retrieving in this way Starobin-
sky’s model. More general cases regarding mainly the field � have 
also been studied in [42] as far as the vacuum structure and the 
supersymmetry breaking is concerned. Recently in [43], besides 
the vacuum structure, the inflationary properties of generalized 
cases have been addressed.

We have thus seen that the Lagrangian given by Eq. (1) and 
(2) yields the “dual” prescription of R2 supergravity where the 
R2 term couples with two fields. This result can be generalized 
with the inclusion of additional chiral multiplets as well. The cru-
cial point for the R2 description is the existence of a field λ for 
which �′

λλ̄
= 0. In general we expect that R2 terms will naturally 

arise from corrections which may involve, for instance, the dila-
ton and other moduli fields coming from string theory [45] and so 
identifying the field λ with one of these fields we actually consider 
a model with non-linear dependencies on this field. In this sense 
the study of models with nonlinear behavior, besides being inter-
esting per se, it is useful in order to investigate the particular role 
these fields may play in the cosmological evolution.

3. No-scale supergravity with �2 terms

As already outlined in the previous section we consider su-
pergravity models described, in the Einstein frame, by the Kähler 
function2

K = −3ln

(
−�′

3

)

and a superpotential whose scalar component reads

W (λ,ϕ) = g(λ)ϕ + P (λ,ϕ).

For our considerations the relevant terms are the kinetic terms of 
the fields λ, ϕ

−1

2

[
Kϕϕ̄∂μϕ∂μϕ̄ + Kϕλ̄∂μϕ∂μλ̄ + Kλϕ̄∂μλ∂μϕ̄ + Kλλ̄∂μλ∂μλ̄

]
where

Kϕϕ̄ = 3

�′ 2

(
�ϕ�ϕ̄ − �′�ϕϕ̄

)
, Kλλ̄ = 3

4�′ 2
,

Kλϕ̄ = − 3

2�′ 2
�ϕ̄, Kϕλ̄ = − 3

2�′ 2
�ϕ,

and the scalar potential which, for the specific linear dependence 
of �′ on λ and λ̄, takes on the following form

V = 9

�′ 2

{ 1

�ϕϕ̄

[
Wϕ W̄ ϕ̄ + 2�ϕ WλW̄ ϕ̄ + 2�ϕ̄ Wϕ W̄ λ̄

+ 4
(
�ϕ�ϕ̄ − �′�ϕϕ̄

)
WλW̄ λ̄

]
− 6

[
WλW̄ + W̄ λ̄W

]}
.

For its derivation we have used the fact that �′
ϕ = �ϕ, �′

ϕ̄ = �ϕ̄

and �′
λ = �′̄

λ
= −1/2. Moreover we shall assume that

�′ = −3 + ϕϕ̄ − ζ(ϕϕ̄)2 − 1

2
(λ + λ̄)

or in other words the function �′ includes quadratic in ϕϕ̄ terms, 
specified by the constant ζ . Omitting the quadratic in ϕϕ̄ term this 

2 In this work we follow closely the notation of Bagger and Wess [46].
Fig. 1. 3D plot of the scalar potential of the Lagrangian (5) for values of parameters 
d = −3 × 10−5, d1 = 10−5, and d2 = 5 × 10−10. The axes are along the real and the 
imaginary direction of the field λ ≡ s + i σ .

is of the no-scale type [36]. Such terms are introduced for the sta-
bilization of the potential in the ϕ direction and have been also 
considered in [14]. For the superpotential we take P (φ, λ) = α, 
that is a constant, and also assume a nonlinear function of g(�)

which includes quadratic in λ terms. We shall see that these terms 
may play an important role and their presence upsets the cosmo-
logical inflation scenario. With these in mind the superpotential 
has the form

W (�,�) = g(�)� + α, g(�) = d + d1� + d2�
2,

and thus it is described by four arbitrary constants namely d, d1, d2
and α. Note that throughout this paper the reduced Planck mass, 
M P ≡ MPlanck/

√
8π , is set to unity, M P = 1.

At this point it would be useful to make contact with the find-
ings of other authors who use the following notation for the Kähler 
function and the super potential [14],

K = −3 ln (T + T̄ − C C̄ ) , W = 3M C (T − 1) . (4)

Our model corresponds precisely to this model with the identifica-
tions

� = 6 T − 3 , � = √
3 C

if the constants are taken as

α = d2 = 0 , d = −3d1 ≡ −
√

3

2
M

and the superpotential part P (�, �) is taken zero. In the model 
under consideration for simplicity we take α = 0, in which case 
there is a minimum at ϕ = 0 and the potential is concave in the ϕ
direction. Denoting the real and imaginary parts of λ by s and σ
respectively the relevant Lagrangian part takes on the form

e−1L = −1

2
R − 3

4

∂μs∂μs

(s + 3)2
− 3

4

∂μσ∂μσ

(s + 3)2
− 9 |g(s + iσ)|2

(s + 3)2
(5)

where the last part of it is the scalar potential. Its form, as function 
of s and σ is displayed in Fig. 1. We can see, by taking d, d1 and 
d2 real, that the minimum of the potential is at σ = 0. Ignoring 
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Fig. 2. The general form of the scalar potential (9) as function of φ for the cases A > 0 (left panel) and A < 0 (right panel).
then the fluctuations of the field σ around its minimum [31] we 
have a single-field theory specified by the Lagrangian

e−1L = −1

2
R − 3

4

∂μs∂μs

(s + 3)2
− 9 |g(s)|2

(s + 3)2
(6)

whose kinetic terms can appear canonical if we properly redefine 
the field s. In particular we define φ, not to be confused with the 
scalar component of the superfield � used so far, so that

s = −3 + (3 + �) e

√
2
3 φ (7)

with the constant � defined by

� =
−d1 +

√
d2

1 − 4 d d2

2 d2
. (8)

With these definitions the field φ is canonically normalized and 
the potential receives a form reminiscent of the Starobinsky po-
tential. In fact the potential as function of φ is given by

V (φ) = 3M2

4
(1 − e−

√
2
3 φ

)2 |1 + A (e

√
2
3 φ − 1)|2 . (9)

In the expression above the constants M, A are related to those 
appearing in the superpotential by

M2 = 12 |d1|2 (1 − 4ab) , A = 6b − 1 + √
1 − 4ab

2
√

1 − 4ab
(10)

where a, b are the ratios

a = d

d1
, b = d2

d1
.

The parameter M defined above sets the scale of inflation.3

Therefore the model is described by the three parameters 
d1, a, b but essentially only the combinations M, A enter into the 
potential and are relevant for cosmological considerations. Note 
that the case d2 = 0, that is when the quadratic in � terms are 
absent in g(�), corresponds to A = 0 and the potential receives 
the well-known form of the Starobinsky potential. In that limit-
ing case the value of � is � = −a, as can be shown by expanding √

1 − 4ab = 1 − 2ab. The potential of Eq. (9) has a single minimum 
when A > 0, but exhibits two minima when A < 0 as shown in 
Fig. 2. In the following we shall consider the A > 0 case for which 

3 As we shall see for small A and moderate φ the potential (9) is that of Starobin-
sky having a plateau where slow-roll can be realized. The normalization of CMB 
anisotropies yields then M � 10−5.
the potential exhibits an almost flat region (plateau) for values of 
φ that are smaller than

φi =
√

3

2
ln

(
1 + 1

A

)
. (11)

For larger values of φ the terms proportional to A in the poten-
tial dominate and the potential departs from its Starobinsky form 
exhibiting a rapid exponential behavior,

V (φ) = 3M2

4
A2 e 2

√
2
3 φ

.

The coefficient of φ in the exponent is too large to sustain suc-
cessful inflation unless the value of A is small in which case there 
is a rather extended plateau for values of φ less than φi . Then 
in this region the potential resembles that of Starobinsky’s and 
the inflaton, after a short time, falls into the plateau and slow-
roll inflation starts. These qualitative features will be quantified 
numerically in the following sections. In particular we shall see 
that the features of the Starobinsky inflation are maintained if A
is taken at per thousand level so that we have sufficient number 
of e-foldings, larger than ∼60, for values of φ belonging to the al-
most flat regime. This guarantees that in the slow-roll regime a 
pivot scale φ∗ can be obtained for which the number of e-foldings 
left, N(φ∗), is in the range 50–60 as required. We have verified, by 
solving the pertinent equations numerically, that for typical initial 
values of the inflaton field, its value rapidly drops to φi , follow-
ing then a slow-roll inflation a la Starobinsky and the motion of φ
from its initial position to φi it actually plays little role. This will 
be shown in the following section where a numerical solution is 
presented.

4. Numerical treatment of the cosmological equations

In this section we shall quantify the statements claimed in the 
previous section by solving the cosmological equation numerically. 
The system of the pertinent differential equations are well known 
given by

φ̈ + 3 H φ̇ + V ′(φ) = 0

3 H2 = φ̇2

2
+ V (φ) (12)

where H = ȧ/a is the Hubble expansion rate. We solve (12) for 
typical initial values of the inflation field at the start of inflation 
t = 0. The cosmic scale factor we take a(t = 0) = 1. Note that since 
the potential grows exponentially, with increasing φ, it approaches 
the Planck energy density scale for inflaton values φP dictated by, 
(see for instance [47]),

V (φP ) = 1 (13)
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Fig. 3. Evolution of the inflaton φ (left) and the logarithm of the cosmic scale factor loga (right) with time. The time is taken in units of the scale M = 10−5. The solid (red), 
dashed (green) and dash-dot (blue) lines correspond to values of A = 10−4, 2 × 10−4, 4 × 10−4 respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 4. Evolution of the Hubble rate H (left) and the number of e-foldings Nfold (right) with time. M, A are as in Fig. 3.
which entails to

φP =
√

3

8
ln

(
4

3 A2 M2

)
� 14.28 − 1.22 ln A . (14)

The scale of the inflation M has been set equal to M = 10−5. 
Therefore typical initial values at the beginning of inflation are 
given by

φ ∼ φP φ̇P
2
/2 ∼ V (φP ) = 1 . (15)

For A = 1, φP ∼ 14 while for small A = 10−4 the initial inflation 
value is φP ∼ 25.

The evolution for the inflaton φ and the cosmic scale factor 
for various values of the parameter A are displayed in Fig. 3. The 
solid (red), dashed (green) and dash-dot (blue) lines correspond to 
A = 10−4, 2 × 10−4 and A = 4 × 10−4 respectively. From the left 
panel of this figure we see that after a sharp drop the inflaton fol-
lows a normal slow-roll evolution during which the Universe un-
dergoes a de-Sitter expansion as shown on the right panel of this 
figure where the evolution of the cosmic scale factor is shown. The 
horizontal axis is the time in units of the inflation scale M = 10−5. 
The exit from inflation occurs when loga starts becoming almost 
constant. Note the damped oscillatory behavior of φ as it drops 
within the minimum of the potential. In Fig. 4, on the left panel, 
the evolution of the Hubble rate is shown while on the right we 
show the number of e-foldings as function of time, N(t) ≡ N(φ(t)). 
The parameters are as in Fig. 3. One observes that after a short 
drop-off H enters into the slow-roll era, during which it stays al-
most constant, exiting from it at a time, in each case displayed, 
that coincides with the time signaling departure of H from its con-
stancy, as expected. The number of e-foldings N(t) should be in 
the range is ∼50–60 at a time t∗ at which the inflation receives the 
pivot value φ∗ . One notices that for the largest of the sample val-
ues chosen, A = 4 × 10−4, we can marginally obtain a pivot value 
for which the number of the e-foldings left is in the aforemen-
tioned range. As a conclusion only small values of the A parameter 
are allowed which we have found to be bounded by A ≤ 5 × 10−4. 
Note that for moderate to large values of the parameter A the po-
tential is mainly exponential ∼e λ φ , with λ = 2

√
2/3, and such 

large values of λ in exponential potentials are known to be in-
compatible with slow-roll, unless λ2 < 2. Therefore the exponential 
part by itself cannot sustain inflation and an extended plateau is 
required, on which the inflaton rolls after a rapid fall from the ex-
ponential region. This plateau must be extended enough to obtain 
the desired number of e-foldings which is quantified by the above 
upper bound on A.

Although this inflationary scenario resembles that of Starobin-
sky’s model nevertheless both the slow-roll parameters ε, η de-
pend on the additional parameter A which although small may af-
fect the value of ε and hence the tensor to scalar ratio r. Whether 
large values for r can be obtained and if these can be consistent 
with the remaining observables, in particular the spectral index ns

will be investigated in the following section.

5. Slow-roll inflation

From the discussion of the previous section it becomes evident 
that only small values of A are allowed and all cosmological pa-
rameters depend on it. However small this might be it may have, 
in principle, a large impact on the slow-roll parameters and the 
number of e-foldings.

Starting from the latter, we have already seen that it puts an 
upper bound on the allowed value of A < 5 × 10−4 by the require-
ment that the number of N left until the exit from inflation is in 
the range 50–60. Its analytic form, for any value of φ in the range 
φ < φi , can be calculated analytically given by
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Fig. 5. The shadowed areas designate the region where slow-roll approximation 
holds. ε < 1 (in blue) allows for large A values while η < 1 (in magenta) requires 
A < .13. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

N(x) = −3

4
ln

[
x (k + x2

end)

xend (k + x2)

]

+ 3(1 − k)

4
√

k

(
arctan

xend√
k

− arctan
x√
k

)
. (16)

In this x stands for the more convenient variable x = exp

(
−

√
3
2 φ

)
through which the region φ = [0, +∞] is mapped to x = [1, 0]. The 
constant k is k ≡ A

1−A . Eq. (16) holds for any A < 1 which is always 
the case when A is small. The value of xend signaling the end of 
the inflation period is determined when at least one or both of 
ε, η become of order unity. In Fig. 5 we display the regions where 
slow-roll conditions hold in the x, A plane. The slow-roll region, 
where both ε, η are less than unity, allows for values A < 0.13. 
For each A the furthest point on the right of the allowed overlap-
ping region marks the end of the inflation point xend . For small A
this is given analytically, to a good approximation, by

xend ≡ e−
√

2
3 φend � √

3/(2 + √
3) (1 − A) � 0.5 (1 − A) . (17)

Note that the above upper bound, A < 0.13, is much larger than 
the bound set by the requirement to have sufficient number of 
e-foldings and therefore for values A < 5 × 10−4 we are well 
within the slow-roll regime.

Concerning the slow roll parameter ε and in order to study its 
sensitivity on the parameter A it facilitates if we write potential of 
Eq. (9) as

V (φ) = V S(φ) f (φ) (18)

where V S is the Starobinsky potential and f (φ) the additional 
factor that dominates for large values of φ and depends on the 
parameter A. Then in a straightforward manner one can show that 
the slow-roll parameter ε , as function of the inflaton field, or the 
field x defined before, is related to the corresponding value found 
for the Starobinsky potential, denoted by εs , by

√
ε = √

εs + 2√
3

1

1 + (A−1 − 1) x
. (19)

One observes that for the same value of the inflation field the ε
parameter in the model studied here is larger than εs by amounts 
Fig. 6. Regions for N, r, ns within the ranges designated at the borders of each re-
gion. The allowed r region by N and ns predicts r in the range 0.003 < r < 0.0053
although the N and ns separately each allows for much higher values.

that are controlled by the parameter A as is evident from Eq. (19). 
This equation is valid provided we are in the slow-roll regime 
which entails to values of φ for which the additional term, ap-
pearing on the right hand side of Eq. (19), is much less than unity,

φ <<

√
3

2
ln(A−1 − 1) . (20)

Therefore slow roll in the Starobinsky model yields slow-roll mo-
tion in the model under consideration in the regime specified by 
the inequality above. Note that since A has to be small the rhs of 
the equation above is very close to φi which signals departure from 
the simple Starobinsky potential. Although small in the regime of 
interest the additional term in (19) may not be small as compared 
to 

√
εs and may significantly augment the value of the epsilon 

parameter tending to increase the ratio r of the tensor to scalar 
perturbations. The precise amount depends on the parameter A
but the analysis has to take into account the remaining cosmologi-
cal data, in particular the number of e-foldings, which specifies the 
pivot scale, and the value of the spectral index ηs as well.

In Fig. 6 we plot contour values for the ratio r the index ηs and 
the number of e-foldings, as functions of the field variable x. On 
the vertical axis are the values of the parameter A. Large values of 
r are allowed by N and ns observational constraints separately (not 
shown in Fig. 6). However the intersection of N and ns restricts the 
allowed region to values of A that are smaller than 4.0 × 10−5

and values of x that are around 0.013 as shown in the figure. 
Within this region the allowed values of r are 0.003 < r < 0.0053. 
Note that the displayed region which is allowed by all data is 
well within the slow-roll regime. Therefore, although the model 
can yield larger values of r, as compared to the simple Starobin-
sky model, which are in agreement with the new data released 
by Planck and BICEP2, nevertheless it rather favors low values that 
cannot saturate the upper bound imposed on r by these experi-
ments.

Concluding this section, the inclusion of quadratic in � terms 
in the superpotential introduces a new parameter in the potential 
that can result, in principle, to larger r values, in comparison with 
the linear (in �) supersymmetric Starobinsky model, but not suf-
ficiently large to approach values of r close to the upper bound 
set by recent data of Planck and BICEP2 if all observational con-
straints are taken into account. The fact that one needs very small 
A values to maintain the good features of the Starobinsky model, 
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at least as far as the Planck satellite data are concerned, indicates 
that non-linear superpotential � terms are only allowed provided 
that they have small couplings.

6. Discussion – conclusions

In this note we generalize the supergravity Starobinsky models 
allowing for superpotential terms that are not linear in the super-
field � that couples to the chiral Ricci multiplet. We exemplify the 
departure from the linearity by the appearance of quadratic in this 
field terms. The Kähler function is assumed to be of the no-scale 
type. The inclusion of such terms results to introducing additional 
parameters in the theory which however enter into the scalar po-
tential in two combinations. One, M , sets the scale of the inflation-
ary potential and the other, A, deforms the Starobinsky potential 
in a multiplicative way. In the limit A = 0, in which case the 
quadratic terms are absent, one recovers the simple Starobinsky 
model but for A 
= 0 the potential deviates from it increasing ex-
ponentially for large inflaton values. Successful inflation is achieved 
only if the parameter A is smaller than ∼5 × 10−4, for natural ini-
tial values of the inflaton field. This constraint stems mainly from 
the requirement to have sufficient number of e-foldings left to the 
end of inflation. For such small values of A the inflaton starts its 
motion dropping rapidly to the Starobinsky plateau which is rather 
extended due to the smallness of the parameter A. The depen-
dence of the slow-roll parameters ε , and hence of r, on the addi-
tional parameter A is investigated. Although in principle the tensor 
to scalar ratio can be theoretically much larger in comparison with 
the predictions of the Starobinsky model, nevertheless the impo-
sition of the data concerning the spectral index ns in combination 
with the required number of e-foldings suppresses the allowed val-
ues of A even more, by almost an order of magnitude, in regions 
where r cannot exceed r � 0.005. This value is slightly larger than 
the one predicted in the Starobinsky model but in no case can 
saturate the new combined bound released by Planck and BICEP2 
experiments if all data are observed. On the theoretical side, the 
smallness of the parameter A, as a result of the comparison with 
the observational data, indicates that the presence of non-linear in 
� terms within the superpotential is only possible provided that 
these are very small. This fine tuning suggests that the departure 
from the non-linearity is presumably due to quantum effects.

Acknowledgements

This research has been co-financed by the European Union (Eu-
ropean Social Fund – ESF) and Greek National Funds through the 
Operational Program Education and Lifelong Learning of the Na-
tional Strategic Reference Framework (NSRF) – Research Funding 
Program: THALES-Investing in the society of knowledge through the Eu-
ropean Social Fund. A.B.L. would also like to thank CERN Theory 
Division for the hospitality where this work was completed and 
K. Papadodimas for discussions. A.B.L. would also like to thank K. 
Tamvakis for discussions and his critical remarks concerning the 
content of this work.

References

[1] G. Hinshaw, et al., WMAP Collaboration, Astrophys. J. Suppl. 208 (2013) 19, 
arXiv:1212.5226 [astro-ph.CO].

[2] P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 571 (2014) A22, 
arXiv:1303.5082 [astro-ph.CO].

[3] P.A.R. Ade, et al., BICEP2 Collaboration, Phys. Rev. Lett. 112 (2014) 241101, 
arXiv:1403.3985 [astro-ph.CO];
P.A.R. Ade, et al., BICEP2 Collaboration, Astrophys. J. 792 (2014) 62, arXiv:
1403.4302 [astro-ph.CO].

[4] A.A. Starobinsky, Phys. Lett. B 91 (1980) 99;
A.A. Starobinsky, Sov. Astron. Lett. 9 (1983) 302;
V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33 (1981) 532, Pis’ma Zh. Eksp. Teor. 
Fiz. 33 (1981) 549;
A. Vilenkin, Phys. Rev. D 32 (1985) 2511.

[5] A.D. Linde, Phys. Lett. B 129 (1983) 177.
[6] P.A.R. Ade, et al., Planck Collaboration, arXiv:1502.01589 [astro-ph.CO];

P.A.R. Ade, et al., Planck Collaboration, arXiv:1502.02114 [astro-ph.CO].
[7] P.A.R. Ade, et al., BICEP2 and Planck Collaborations, arXiv:1502.00612 [astro-

ph.CO].
[8] A.B. Goncharov, A.D. Linde, Phys. Lett. B 139 (1984) 27.
[9] M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. Lett. 85 (2000) 3572, arXiv:

hep-ph/0004243;
M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. D 63 (2001) 103514, arXiv:
hep-ph/0011104.

[10] R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1011 (2010) 011, arXiv:
1008.3375 [hep-th];
R. Kallosh, A. Linde, T. Rube, Phys. Rev. D 83 (2011) 043507, arXiv:1011.5945 
[hep-th];
R. Kallosh, A. Linde, K.A. Olive, T. Rube, Phys. Rev. D 84 (2011) 083519, arXiv:
1106.6025 [hep-th].

[11] L. Alvarez-Gaume, C. Gomez, R. Jimenez, Phys. Lett. B 690 (2010) 68, arXiv:
1001.0010 [hep-th];
L. Alvarez-Gaume, C. Gomez, R. Jimenez, J. Cosmol. Astropart. Phys. 1103 (2011) 
027, arXiv:1101.4948 [hep-th].

[12] J. Ellis, D.V. Nanopoulos, K.A. Olive, Phys. Rev. Lett. 111 (2013) 111301, arXiv:
1305.1247 [hep-th];
J. Ellis, D.V. Nanopoulos, K.A. Olive, Phys. Rev. Lett. 111 (12) (2013) 129902 
(Erratum).

[13] J. Ellis, D.V. Nanopoulos, K.A. Olive, J. Cosmol. Astropart. Phys. 1310 (2013) 009, 
arXiv:1307.3537.

[14] R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1306 (2013) 028, arXiv:
1306.3214 [hep-th].

[15] W. Buchmuller, V. Domcke, K. Kamada, Phys. Lett. B 726 (2013) 467, arXiv:
1306.3471 [hep-th].

[16] F. Farakos, A. Kehagias, A. Riotto, Nucl. Phys. B 876 (2013) 187, arXiv:1307.1137.
[17] J. Ellis, D.V. Nanopoulos, K.A. Olive, Phys. Rev. D 89 (4) (2014) 043502, arXiv:

1310.4770 [hep-ph].
[18] S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Phys. Rev. D 88 (8) (2013) 085038, 

arXiv:1307.7696 [hep-th];
S. Ferrara, R. Kallosh, A. Linde, M. Porrati, J. Cosmol. Astropart. Phys. 1311 
(2013) 046, arXiv:1309.1085.

[19] S. Ferrara, R. Kallosh, A. Van Proeyen, J. High Energy Phys. 1311 (2013) 134, 
arXiv:1309.4052 [hep-th].

[20] J. Alexandre, N. Houston, N.E. Mavromatos, Phys. Rev. D 89 (2) (2014) 027703, 
arXiv:1312.5197 [gr-qc].

[21] J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 732 (2014) 380, arXiv:
1402.5075 [hep-th].

[22] S. Cecotti, R. Kallosh, J. High Energy Phys. 1405 (2014) 114, arXiv:1403.2932 
[hep-th].

[23] I. Antoniadis, E. Dudas, S. Ferrara, A. Sagnotti, Phys. Lett. B 733 (2014) 32, 
arXiv:1403.3269 [hep-th].

[24] C. Pallis, J. Cosmol. Astropart. Phys. 1404 (2014) 024, arXiv:1312.3623 [hep-ph].
[25] K. Hamaguchi, T. Moroi, T. Terada, Phys. Lett. B 733 (2014) 305, arXiv:

1403.7521 [hep-ph].
[26] K. Kamada, J. Yokoyama, arXiv:1405.6732 [hep-th].
[27] C. Kounnas, D. Lüst, N. Toumbas, arXiv:1409.7076 [hep-th].
[28] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive, J. Cosmol. Astropart. Phys. 

1408 (2014) 044, arXiv:1405.0271 [hep-ph].
[29] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive, J. Cosmol. Astropart. Phys. 

1405 (2014) 037, arXiv:1403.7518 [hep-ph].
[30] S. Ferrara, A. Kehagias, A. Riotto, Fortschr. Phys. 62 (2014) 573, arXiv:1403.5531 

[hep-th];
S. Ferrara, A. Kehagias, arXiv:1407.5187 [hep-th];
S. Ferrara, A. Kehagias, A. Riotto, arXiv:1405.2353 [hep-th].

[31] R. Kallosh, A. Linde, B. Vercnocke, W. Chemissany, J. Cosmol. Astropart. Phys. 
1407 (2014) 053, arXiv:1403.7189 [hep-th].

[32] S.V. Ketov, T. Terada, Phys. Lett. B 736 (2014) 272, arXiv:1406.0252 [hep-th].
[33] S. Ferrara, R. Kallosh, A. Linde, arXiv:1408.4096 [hep-th].
[34] S.V. Ketov, T. Terada, arXiv:1408.6524 [hep-th].
[35] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive, arXiv:1409.8197 [hep-ph];

T. Li, Z. Li, D.V. Nanopoulos, arXiv:1409.3267 [hep-th].
[36] E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally vanishing cos-

mological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61;
J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos, K. Tamvakis, No-scale supersymmetric 
standard model, Phys. Lett. B 134 (1984) 429;
A.B. Lahanas, D.V. Nanopoulos, Phys. Rep. 145 (1987) 1.

[37] R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1307 (2013) 002, arXiv:
1306.5220 [hep-th];
R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1310 (2013) 033, arXiv:
1307.7938;

http://refhub.elsevier.com/S0370-2693(15)00197-5/bib574D4150s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib574D4150s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib504C414E434Bs1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib504C414E434Bs1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4249434550s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4249434550s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4249434550s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4249434550s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53544152s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53544152s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53544152s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53544152s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53544152s4
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4C696E64653A313938336764s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib504C414E434B32s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib504C414E434B32s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4164653A32303135747661s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4164653A32303135747661s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib476F6E636861726F763A313938336D77s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib59414E41s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib59414E41s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib59414E41s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib59414E41s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib53554752416368616F73s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib414C564152455As1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib414C564152455As1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib414C564152455As2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib414C564152455As2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737531s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737531s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737531s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737531s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737532s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737532s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737533s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737533s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737534s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737534s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737535s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737536s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737536s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455252415241s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455252415241s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455252415241s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455252415241s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455250524Fs1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455250524Fs1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4D4156524F31s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4D4156524F31s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4D4156524F32s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4D4156524F32s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4B414C33s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4B414C33s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737538s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737538s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737537s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753636s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753636s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib737539s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753130s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753131s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753131s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753132s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753132s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4645525241524132s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4645525241524132s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4645525241524132s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4645525241524132s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753133s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib73753133s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4B45544F563261s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib46455233s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4B45544F563262s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4E414E4F50s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4E414E4F50s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6C6168616E6173s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6C6168616E6173s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6C6168616E6173s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6C6168616E6173s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6C6168616E6173s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s2


G.A. Diamandis et al. / Physics Letters B 744 (2015) 74–81 81
R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1312 (2013) 006, arXiv:
1309.2015 [hep-th];
R. Kallosh, A. Linde, D. Roest, Phys. Rev. Lett. 112 (1) (2014) 011303, arXiv:
1310.3950 [hep-th];
R. Kallosh, A. Linde, D. Roest, J. High Energy Phys. 1311 (2013) 198, arXiv:
1311.0472 [hep-th];
R. Kallosh, A. Linde, D. Roest, J. High Energy Phys. 1408 (2014) 052, arXiv:
1405.3646 [hep-th];
R. Kallosh, A. Linde, D. Roest, J. High Energy Phys. 1409 (2014) 062, arXiv:
1407.4471 [hep-th].

[38] A. Kehagias, A.M. Dizgah, A. Riotto, Phys. Rev. D 89 (4) (2014) 043527, arXiv:
1312.1155 [hep-th].

[39] S. Theisen, Nucl. Phys. B 263 (1986) 687;
S. Theisen, Nucl. Phys. B 269 (1986) 744.
[40] S. Cecotti, Phys. Lett. B 190 (1987) 86.
[41] S. Cecotti, S. Ferrara, M. Porrati, S. Sabharwal, Nucl. Phys. B 306 (1988) 160.
[42] A. Hindawi, B.A. Ovrut, D. Waldram, Nucl. Phys. B 476 (1996) 175, arXiv:

hep-th/9511223.
[43] I. Dalianis, F. Farakos, A. Kehagias, A. Riotto, R. von Unge, J. High Energy Phys. 

1501 (2015) 043, arXiv:1409.8299 [hep-th].
[44] B. Whitt, Phys. Lett. B 145 (1984) 176;

K.S. Stelle, Phys. Rev. D 16 (1977) 953;
K.S. Stelle, Gen. Relativ. Gravit. 9 (1978) 353.

[45] D.J. Gross, J.H. Sloan, Nucl. Phys. B 291 (1987) 41.
[46] J. Wess, J. Bagger, Supersymmetry and Supergravity, Princeton University Press, 

Princeton, New Jersey, 1992.
[47] A.D. Linde, Lect. Notes Phys. 738 (2008) 1, arXiv:0705.0164 [hep-th].

http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s4
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s4
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s5
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s5
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s6
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s6
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s7
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib415454524143544F5253s7
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib41545432s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib41545432s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib5468656973656Es1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib5468656973656Es2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib6365636F747469s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib43454332s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib48494E44s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib48494E44s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib44414C4941s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib44414C4941s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib7768697474s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib7768697474s2
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib7768697474s3
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib47726F7373s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib626167676572s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib626167676572s1
http://refhub.elsevier.com/S0370-2693(15)00197-5/bib4C696E64653A323030376672s1

	Inﬂation in R2 supergravity with non-minimal superpotentials
	1 Introduction
	2 Reviewing the R2 supergravity model
	3 No-scale supergravity with Λ2 terms
	4 Numerical treatment of the cosmological equations
	5 Slow-roll inﬂation
	6 Discussion - conclusions
	Acknowledgements
	References


