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In the Ni-substituted chlorophylls, an ultrafast (b60 fs) deactivation channel is created, which is not present
in Ni-porphyrins. This observation prompted us to investigate in detail the mechanism of excitation-to-heat
conversion in Ni-substituted chlorophylls, experimentally, using time-resolved laser-induced optoacoustic
spectroscopy, and theoretically, using group theory approach. The Ni-substituted chlorophylls show excep-
tional photostability and the optoacoustic measurements confirm the prompt and very efficient (100%)
excitation-into-heat conversion in these complexes. Considering their excellent spectral properties and the
loss-free excitation-into-heat conversion they are likely to become a new class of versatile photocalorimetric
references. The curious features of the Ni-substituted chlorophylls originate from the symmetry of a ligand
field created in the central cavity. The central N\Ni2+ bonds, formed via the donation of two electrons
from each of the sp2 orbitals of two central nitrogens to an empty s−dx2−y2 hybrid centered on Ni2+, have
a considerable covalent character. The extreme rate of excited state relaxation is then not due to a ladder
of the metal centered d-states, often invoked in metalloporphyrins, but seems to result from a peculiar topol-
ogy of the potential energy surface (a saddle-shaped crossing) due to the covalent character of the N\Ni2+

bonds. This is confirmed by a strong 0→0 character of electronic transitions in these complexes indicating a
similarity of their equilibrium geometries in the ground (S0) and the excited states (both QX and QY). The
excitation energy is very efficiently converted into molecular vibrations and dissipated as heat, involving
the central Ni2+. These Ni-substituted pigments pose a fine exemplification of symmetry control over prop-
erties of excited states of transition metal complexes.

© 2012 Published by Elsevier B.V.
1. Introduction

Metal ions and their chelates play pivotal roles as active centers in
many biological and man-made systems. Metalloporphyrins and
chlorophylls (Chls) are prominent examples of such complexes in
which the centrally chelated but coordinately unsaturated metal
ions largely determine their functioning as well as their interactions.
The catalytic activity of the former class of complexes is determined
by the presence of the transition metal ions in the central cavity
while in the photosynthetic pigments Chls, the central Mg2+ ion, a
non-transition metal, serves mainly as a coordination center. The
central Mg2+ only weakly perturbs the π-electron system and
photophysical features of the chromophore, essential for photosyn-
thesis [1–4]. The significance of the electronic inertness of Mg2+
. Dudkowiak),

sevier B.V.
becomes evident after its substitution with divalent transition metal
ions, which give rise to entirely new photophysical characteristics of
metallosubstituted Chls. Thus, due to the interactions between the
delocalized π-electron system of the chelator (Chl macrocycle) and
electrons on the unfilled d subshell, the redox activity as well as the
coordination of axial ligands may be enhanced while the excited
state lifetimes and photochemical activity are drastically reduced
[3,5–10]. Yet, heavier metal ions may bring about the enhancement
of intersystem crossing (ISC) in the complex due to an internal heavy
atom effect [3,11–14]. Such new features, contributed e.g. by Pd2+

and Ni2+ as the central metal ions, can be exploited for practical appli-
cations of metallosubstituted pigments [15,16]. Thus, Pd-derivatives of
bacteriochlorophyll a (BChla) show exceptional qualities as photosensi-
tizers for photodynamic therapy and are currently undergoing clinical
trials against prostate cancer [17,18]. In another derivative, the
Ni-substituted BChla (Ni-BChla), an ultrafast relaxation of the excited
state occurs within several tens of femtoseconds, being among the
fastest processes of this type [6,8,19,20]. By analogy to Ni-substituted
porphyrins, the ultrafast relaxation in Ni-BChla has been attributed to
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the existence of a ladder of the π-electron and metal-centered excited
states, lying below the lowest excited singlet state and creating an
efficient path for the conversion of the excitation energy into heat [8]. In-
triguingly, however, such an ultrafast (tens of femtosecond) deexcitation
path has never been observed in extensively studied Ni-porphyrins
[21–25]. We have applied this unique feature of Ni-BChla to the studies
of intracomplex energy transfer in photosynthetic antenna. The introduc-
tion of the Ni-substituted pigment as the ultrafast excitation trap in the
bacterial LH1 antenna served to estimate the physical size of the complex
and revealed a large delocalization of excitons in this type of photosyn-
thetic antennae [19,20].

The excited state dynamics in Ni-BChla have been thoroughly
studied using time-resolved absorption and emission techniques
[6,8,26]. None of these studies, however, explained the discrepancies
between the ultrafast relaxation of excited states of Ni-substituted
porphyrins and Ni-BChla. Given relatively minor structural differ-
ences between porphyrins and Chls, the absence of the femtosecond
deactivation path in Ni-porphyrins is somewhat puzzling. Further-
more, it is not clear why, upon incorporation of Ni-BChla into the
LH1 antenna, the femtosecond relaxation path becomes entirely
dominating [19]. A similarly fast relaxation pathway has been previ-
ously found in Ni-BChla-substituted bacterial photosynthetic reaction
centers [27]. These intriguing questions prompted us to combine the-
oretical and experimental approaches in the analysis of the electronic
structure of Ni-substituted Chls and the physical mechanism of the
extremely fast and efficient excitation-to-heat conversion in these
complexes. We prepared a series of Ni-substituted Chls and their
photophysical properties in various solvents were investigated using
steady state absorption and emission spectroscopies. The solvent
effects on the efficiency and kinetics of the excitation-into-heat conver-
sion in Ni-substituted Chls were studied using time-resolved laser-
induced optoacoustic spectroscopy (LIOAS). In parallel, in order to
gain deeper insights into the mechanism of these processes we have
applied the group theory approach in the analysis of the symmetry
properties of Ni-substituted Chls and their consequences for the pecu-
liar behavior of these complexes.

2. Materials and methods

2.1. Pigment preparation

Chlorophylls a and bwere extracted from frozen spinach leaves using
methanol following a method described by Iriyama [28]. The pigments
were purified first by column chromatography on Sepharose CL-6B
(Sigma, Germany) using 1.5% (Chla) and 10% (Chlb) of 2-propanol in
n-hexane as the eluent [29] and finally by isocratic HPLC in methanol
on a Varian Microsorb 100‐5 C-18 column (250×10.0 mm). BChla was
isolated from the wet cells of Rhodobacter sphaeroides and purified on
diethylaminoethyl (DEAE) Sepharose CL-6B (Sigma, Germany) as previ-
ously described [29] and then by HPLC on a Varian Microsorb 100‐5 Si
column (250×10.0 mm) using a 97:3 (v/v) mixture of hexane and
2-propanol as the eluent [30].

The metal free derivatives, pheophytin a (Phea), pheophytin b
(Pheb) and bacteriopheophytin a (BPhea) were prepared from the re-
spective pure Mg complexes by demetalation in doubly distilled glacial
acetic acid [30]. The acid was removed in a stream of nitrogen and the
solid residue was dried under vacuum and quickly purified by column
chromatography either on DEAE-Sepharose CL-6B (BPhea) or on CM-
Sepharose (Pharmacia, Uppsala, Sweden) (Phea and Pheb) in acetone.
The purified pigments were thoroughly dried under vacuum and stored
under Ar at−30 °C.

2.2. Metalation

The synthesis of Ni-Chla and Ni-Chlb were done via direct
metalation of the respective pheophytins with a 10-fold excess of
Ni(OAc)2 (Alfa-Ventron, Danvers, MA) in doubly distilled glacial
acetic acid for 40 min (Ni-Chla) or 240 min (Ni-Chlb) at 80 °C. Reac-
tion progress was monitored by collecting small aliquots of the reac-
tion mixtures, dissolving them in methanol and measuring their
absorption spectra, and by TLC on cellulose (Whatman, UK). After re-
moving the solvent in a stream of nitrogen, the product was isolated
by column chromatography on CM-Sepharose CL-6B, using 10%
MeOH in acetone (v/v) as the eluent. The final purification was
done by isocratic HPLC on a reversed‐phase silica gel (Varian
Microsorb 100‐5 C-18, 250×10.0 mm) using methanol as the eluent.
The purified pigments were thoroughly dried under vacuum and
stored under Ar at −30 °C.

Ni-BChla was prepared by the transmetalation method as de-
scribed previously [7]. First, the precursor Cd-BChla complex was
prepared by refluxing BPhea in dimethylformamide with anhydrous
Cd(OAc)2 and subsequent purification on silica gel. The addition of
NiCl2 to a solution of Cd-BChla in acetone yielded Ni-BChla. The prod-
uct was initially isolated on Silica gel 60 (Merck) and finally by
isocratic HPLC on a reversed‐phase silica gel (Varian Microsorb 100‐
5 C-18, 250×10.0 mm) using methanol as the eluent.

2.3. Photostability study

The pigments were dissolved in 2 ml of absolute ethanol (Merck)
to obtain solutions with absorbance equal to 0.5 at the QY maximum.
The solutions in equilibrium with air were stirred using a magnetic
stirrer and irradiated with red light from a halogen light source
(Schott LCD KL 1500) equipped with fiber optics, a water heat filter
and a cut off filter RG 630 (Schott, λ≥630 nm). The light intensity
used in the experiment was 31.2 mW cm−2, as measured with a
Field MaxII-TO light power meter (Coherent, USA). In all cases, the
irradiation time was 120 min and the temperature of solutions was
stabilized at 293 K, using a thermostated cuvette holder (MTC-R1,
MedSon, Poland) placed inside the sample compartment of a Cary
50 spectrophotometer. The progress of pigment photodegradation
was monitored by recording the absorption spectra of the samples
during irradiation.

2.4. Spectroscopic measurements

The electronic absorption spectra were recorded using Cary 50
and 5000 spectrophotometers (Varian, USA). The emission spectra
were measured on a Hitachi F-4500 fluorometer. The laser-induced
laser-induced optoacoustic spectroscopy (LIOAS) method has been
described in detail elsewhere [31,32]. To measure the heat generated
as a result of light energy absorption, a nitrogen-dye laser (Photon
Technology Int'l, GL-3300/GL-301) as the excitation source and a pie-
zoelectric transducer (1 MHz, V103, Panametric, Inc., USA) as the de-
tection system was applied. The laser pulse energy was monitored by
splitting part of the beam to a pyroelectric energy probe (RjP-735)
connected to an energy meter (Rj-7620). The signal was recorded
on an oscilloscope (GoldStar OS-3060) for a 0–32 μJ energy range
obtained by introducing optical gray filters in the laser beam path.
The absorbances of samples were kept between 0.05 and 0.65. The
measurements were carried out in air or argon atmosphere at room
temperature with the samples placed in a thermostatic compartment
(Flash 100). For each measurement 64 signals were averaged to in-
crease the signal-to-noise ratio. To analyze the LIOAS signals home-
made acquisition and Sound Analysis (1.50D) programs were used.

The parameter α is the fraction of absorbed energy released
promptly as heat and it is related to an effective acoustic transit
time defined as τa′=2R/va (where 2R is the beam diameter (con-
trolled by 1 mm pin hole) and va is the sound velocity in the solvent
used) [33]. The value of α can be obtained by systematic measure-
ments of Hmax as a function of Elas and A for both the sample and
the reference. In our experiments, depending on the solvent used,
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the sound velocity (Table 1) changes from 1.00×103 m/s (in metha-
nol) to 1.30×103 m/s (in acetonitrile), so τa′ varies from 0.8 μs to
1.0 μs. As shown previously, [33,34] the transducer integrates the
heat released in processes faster than roughly τa′/5 (150–200 ns)
and ignores all processes slower than 5τa′. Below τa′/5 the amplitude
wave is proportional to the heat released but if the photoproducts
with a long lifetime are formed they can be detected in the interme-
diate τa′/5≤τ≤5τa′ region.

For the measurements, the pigments were dissolved in different
organic solvents such as acetone, acetonitrile, ethanol, methanol, pyr-
idine and toluene (from POCH, Lublin, Poland or Sigma-Aldrich). The
relevant physical properties of the solvents are listed in Table 1. Fer-
rocene (Sigma-Aldrich) was used as the photocalorimetric reference
(PCR).
3. Results and discussion

3.1. Electronic absorption and emission

The electronic absorption spectra of Chla, Chlb and BChla, of their
Ni-substituted analogs, and solvent effects on the spectra are shown
in Fig. 1. In the spectra of both Ni-substituted Chla and Chlb, when
compared to the parental pigments, the Soret and QY bands become
broader and undergo a blue shift of about 20 nm. In the case of
BChla, the B component of the Soret band is shifted to the blue
while the QY band becomes broader and slightly red shifted, as seen
previously [7]. The energies and intensities of major transitions in
the absorption spectra of the Ni-substituted pigments show a weak
solvent dependence; only in pyridine are larger shifts observed ac-
companied by changes of band intensities (Fig. 1). The intensity of
the vibrational side bands, which usually accompany on the high en-
ergy sides the QY transitions of Chls and also the QX band in BChla
[35,36], seem to be reduced as indicated by the deconvolution analy-
sis (not shown). Again, in pyridine the spectra do not follow this com-
mon pattern and the Soret and QY bands experience larger shifts,
whereas the vibrational side bands regain their intensity. The shifts
of the Soret and QY bands in pyridine are apparently related to the
change in the axial ligation state of the central Ni2+ rather than to
solvation effects; the same changes are observed also in weakly coor-
dinating solvents containing pyridine (or imidazole) at very low con-
centrations, in the range of tens of μM (not shown). The central Ni2+

ion readily accepts two pyridines as axial ligands, as indicated by a
characteristic shift of the QX energy in Ni-BChla (~600 nm, Fig. 1C)
and the strong ligation by pyridine causes the complex to become
paramagnetic [7,37].

The results of the emission measurements are summarized in
Table 1. Similarly to Ni-BChla [6], the Ni-substituted Chla and Chlb
show practically no emission of fluorescence. The lack of fluorescence
emission indicates a strong competition between the radiative and
fast nonradiative channels of excited state relaxation [6,19,27,37].
Table 1
Photophysical parameters of Ni-Chla in a series of organic solvents and the relevant
properties of the solvents (where: η—solvent viscosity; [O2]—oxygen concentration in
air-saturated solvent; va—sound velocity in solvent; ΦF—fluorescence quantum yield
determined using Chla as a reference in methanol (ΦF=0.32); αS—defined in Eq. (2)).

Solvent η [42]
10−3 (Pa·s)

[O2] [43]
10−3 M

va [33]
103 m/s

ΦF

(±0.005)
αS

(±0.05)

Acetonitrile 0.345 1.68 1.30 0.00 1.07
Methanol 0.551 2.12 1.00 0.00 1.06
Ethanol 1.078 2.07 1.01 0.00 1.08
Acetone 0.304 2.40 1.05 0.00 1.05
Pyridine 0.883 – – 0.00 0.98
Toluene 0.590 1.81 1.17 0.00 1.06
3.2. Optoacoustic measurements (LIOAS)

Time-resolved laser-induced optoacoustic spectroscopy was ap-
plied in order to estimate the efficiency of excitation-to-heat conver-
sion in the Ni-substituted Chls, the kind of information not available
from other techniques. The first maximum in the LIOAS signal, Hmax,
is proportional to the heat released to the environment from the
excited sample on a short time scale [33,38]. The amplitude of Hmax

depends on the energy of the laser pulse (Elas) and the absorbance
(A) of the sample in the following way:

Hmax ¼ KαElas 1−10−A
� �

ð1Þ

where K is a constant related to the geometry of the experimental
setup and the thermoelastic properties of the medium, and α is the
fraction of the absorbed energy released as prompt heat. The latter
coefficient reflects the efficiency of the conversion of excitation ener-
gy into heat while the 1–10−A factor describes the fraction of the
incident light absorbed by the sample. To eliminate the unknown K,
a photocalorimetric reference is usually applied, which with a 100%
efficiency (αR=1) converts the absorbed energy into heat within a
time much shorter than the time resolution of the experimental
setup. K can be eliminated when the sample and the PCR are mea-
sured under identical conditions and the plot of Hmax versus the inci-
dent laser energy multiplied by the fraction of energy absorbed yields
a straight line. Since αR and the absorbances of the sample (AS) and
the reference solution (AR) are known, the fraction of the absorbed
energy released by the sample as prompt heat (αS) can be expressed
as:

αS ¼ αR

HS
maxE

R
las 1−10−AR

� �

HR
maxE

S
las 1−10−AS
� � ð2Þ

A series of ferrocene (FC), a widely accepted PCR [39], and Ni-Chla
solutions of the same absorbances at the excitation wavelength were
measured under identical conditions. The measurements were
conducted in a set of solvents in which the solubility of both pigments
is relatively high and they remain in a monomeric state. Thus, in the
entire range of Ni-Chl concentrations, the ratios of the intensities of
the Soret and QY bands did not change and the solutions obeyed the
Beer–Lambert law (not shown).

The functional dependence of Hmax on Elas and (1–10−A) was veri-
fied in two ways, by varying the laser energy and the pigment concen-
tration. The highest energy used in this work (about 32 μJ/pulse) was in
the range commonly used in time-resolved pulsed photoacoustic ex-
periments. The plots of the Hmax amplitude of Ni-Chla in acetone as a
function of Elas are shown in Fig. 2. The linearity of the signal was well
reproduced at several excitation wavelengths (370, 406 and 640 nm)
across the absorption spectrum of the pigment over the entire range
of incident pulse energies. Practically the same results were obtained
in other solvents (not shown), indicating that the Hmax is solvent inde-
pendent and that there is no interference between solvent–solute inter-
actions and the relaxation processes in Ni-Chla.

The values of the αS parameter were determined for the Ni-
derivative in all solvents in the linear response region (Fig. 3), using
the same PCR. In all cases, the value of αS equals 1 within experimen-
tal error (Table 1). The constancy of αS indicates that the thermal
properties of Ni-Chl are independent of the physical properties of
the medium. Some slightly overestimated αS values may be related
to the presence of PCR at high concentration (see below).

The values of αS for Ni-Chla determined in Ar-saturated acetone
(not shown) were similar to those obtained in the air-equilibrated so-
lution (Table 1). No phase shift between the optoacoustic waveforms
from Ni-Chla and FC was observed (not shown) with respect to the
signals recorded in air-saturated solutions. This indicates that neither
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Fig 1. Electronic absorption spectra of chlorophyll a, chlorophyll b and bacteriochlorophyll a and their Ni-substituted derivatives recorded in acetonitrile (panels on the left). In the
right panels, the spectra of the Ni-substituted derivatives recorded in acetone, methanol, dimethylformamide (DMF) and pyridine are shown. All spectra were taken at room tem-
perature and were normalized to the most intensive bands.
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transients, e.g. excited triplet states, with lifetimes longer than the ones
observed in air-saturated solution are formed, nor does triplet–triplet
energy transfer from the excited pigment to molecular oxygen occur.

From the analysis of the LIOAS profiles it follows that the efficiency
of the excited state depopulation is constant in Ni-Chla, irrespective
of oxygen content in the medium. Chls in a monomeric state are
good photosensitizers due to an efficient intersystem crossing
[40,41], even in the absence of heavy atoms, and such moderately
heavy central atoms as Ni and Zn do not significantly enhance
intersystem crossing [3,9]. This suggests that in the Ni-substituted
complexes a loss-free conversion of excitation energy into heat is an
entirely dominating process, which reduces the competitiveness of
intersystem crossing.

3.3. Ni-substituted chlorophylls as a novel photocalorimetric reference

As mentioned, the reliability of the LIOAS technique rests on the
availability of an appropriate PCR, a photochemically stable substance
which upon excitation releases heat within a time shorter than the
time resolution of the experimental set-up. Also, a calibration of the
setup is required to determine the quantitative relationships between
its response and the heat released [33,38]. A good PCR is expected to
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have an absorption spectrum well overlapping that of the pigment
being examined, and it cannot show any radiative relaxation of the
excited state, thereby delivering all absorbed energy to the environ-
ment promptly as heat. The PCR and the sample should be measured
under identical conditions, including the geometrical parameters of
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the experimental setup, the absorbance at the excitation wavelengths,
etc. And, in particular, they have to be measured in the same medium
because the signal is related to the time evolution of the pressure
changes (wave) in a liquid sample, whose intensity depends on the sol-
vent thermoelastic properties. Hence, there is a need for more versatile
and solvent-insensitive PCRs. However,most of the references currently
in use are inorganic salts ormetalloorganics of lowmolar absorption co-
efficients and limited solubility, often being toxic and usable only over a
narrow spectral range [33]. For instance, FC is widely accepted as a PCR
for measurements in organic solvents [39] but its use is limited to the
spectral regions covered by its absorption bands. Moreover, its molar
absorption coefficient is fairly low (3.1×101 M−1 cm−1 at 355 nm in
acetonitrile [39]) and in order to obtain solutions with an absorbance
near 0.1, it has to be used at considerably high concentrations, in the
range of 10−3 M. Solutes at such concentrations can significantly affect
the thermoelastic parameters of the solutions. In this respect,
Ni-substituted Chls seem to be a much better choice. Thanks to their
very high extinction coefficients, in the range of 7×104 M−1 cm−1,
they can be applied at very low concentrations (~10−6 M), far below
the threshold which would affect the thermoelastic properties of the
medium or where pigment–pigment interactions would be induced
that would influence thermal deactivation processes. The limits of the
use of Ni-Chla as a PCR are indicated as non-linearities in the plots in
Fig. 3, which only appear for the Elas and (1–10−A) product as high as
15.0.

In terms of chemical and photochemical stability Ni-substituted Chls
are also advantageous. The absorption spectrum (and absorbance) of an
acetone solution of Ni-Chla changed by 7% over threemonths storage at
4 °C in the dark in the presence of oxygen. The effect of the central Ni2+

on the photostability was assessed in a comparative study on Chla, Chlb
and BChla, and their Ni-substituted analogs. Pigments in ethanol were
irradiated with red light (λ≥630 nm) for several hours at room tem-
perature, in equilibrium with air, and their decay was monitored by
recording the absorption spectra. Irradiation causes a quick bleaching
of the Mg complexes while the Ni complexes show almost no
photodegradation (Fig. 4). This confirms the excellent photostability
of these complexes.

In conclusion, Ni-substituted Chls can be used as a very photostable
and reliable PCR in a range of organic solvents, applicable at very low
concentrations. Furthermore, since the major absorption transitions in
Ni-Chls cover the range from 300 to 470 nm (Soret) and 620 to
790 nm (QY), in terms of the excitation wavelength their applicability
to the photoacoustic methodology extends far beyond any other PCRs.
These features render Ni-substituted Chls superior to most PCRs cur-
rently in use.

3.4. Mechanism of excited state relaxation in Ni-BChla

There are several mechanisms which cause a shortening of excited
state lifetimes of porphyrins. For instance, the distortions reduce the
1(π,π*) state lifetime from several tens of nanoseconds to around 1 ns,
accompanied by an increase in the efficiency of the non-radiative re-
laxation [44]. Also, the conformational/vibrational relaxation in
dodecaphenylporphyrin was shown to occur in ~10 ps time scale
[45] and in free base porphycenes and substituted porphyrins [46]
while an even shorter lifetime of the 1(π,π*) state, ~1 ps, was ob-
served in distorted Ni-dodecaphenylporphyrin, followed by a slower
relaxation of the (d,d*) state [21]. Yet, the dynamics of the excited
state relaxation in Ni-BChla, reaching 100–150 fs in solution [8] and
even below 60 fs in LH1 antenna [19], is one order of magnitude
faster, in the range of tens of femtoseconds, which is as fast as the
intra-state vibrational redistribution in porphyrins [46]. Such an ex-
treme rate of ground state recovery implies that another, exceptional-
ly efficient, mechanism of excitation-to-heat conversion is active in
Ni-(B)Chls, dominating all other possible routes of excited state relax-
ation. Its time scale excludes any significant contribution of ISC to this
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process [3], as confirmed by the LIOAS measurements. Any plausible
mechanism for excited state deactivation in Ni-substituted (B)Chls
has to consider the interactions between the central Ni2+ ion and
the chelating macrocycle. In contrast to simple porphyrins (D4h sym-
metry), the ligand field in the central pocket of (B)Chls (effective C2h
symmetry, Fig. 5) is created by nonequivalent nitrogen atoms [47]. In
the C2h point group, the σ-bonds can be formed only by orbitals of bu
and ag symmetry whereas the π-bonds only by orbitals of au symmetry
[48]. The valence orbitals of the central nitrogens belong to both subsys-
tems; pz belongs to the π-systemwhile the hybrid orbitals sp2 belong to
the σ-system. Two of these hybrids are involved in σ-bonding to carbon
atoms and one hybrid protrudes into the metal binding pocket. In the
same point group, the valence orbitals of the Ni2+ ion belong to the
following irreducible representations, ag (s; dx2−y2 ;dz2dxy), bg (dxz,dyz),
au (pz) and bu (px, py). The s;dz2 ; dxy; and dx2−y2 orbitals comprise the
basis for four effective linear combinations:

χi ¼ c1i 4sð Þ þ c2i 3dxy
� �

þ c3i 3dz2
� �þ c4i 3dx2−y2

� �
ð3Þ

where i=1, 2, 3 and 4.
Similarly to Ni-porphyrins [49], the 4s and one of the 3d orbitals of
the Ni2+ ion form two χ� ¼ 1ffiffi

2
p 3dx2�y2 � 4s

� �
hybrids which accom-

modate four electrons from the central nitrogens (see Fig. 6).
The central metal–N bonds can then be described as ϕ±=

sp2(N)+χ±,with higher electron density on theχ+hybrid. The system
of these two (oscillating) bonds may be viewed as a three-center-bond
N21-Ni2+-N23 (the IUPAC numbering system) of a considerably cova-
lent character. At the same time, as in Ni-porphyrins [48,49], one
would expect an unfavorable interaction (repelling) to occur between
the lone pair electrons (sp2) on the N22 and N24 atoms and electrons lo-
calized on thedxyorbital, in linewith the fact that often inNi-porphyrins
the central ion is slightly shifted above the complex plane [21,23]. In the
C2 group (Ni-BChla), also the pz(Ni) orbital may contribute to the linear
combination χi. The resultant exceptionally strong chelation of Ni2+ in
the central pocket of (B)Chls is in line with a very high, as compared to
theMg complexes, chemical stability of theNi-substituted tetrapyrroles
[7,10,48,49].

The changes in the absorption spectra of the Ni-substituted
pigments indicate changes in the molecular vibrations due to the en-
hanced covalent character of the metal ion–N bonding. As shown in
Fig. 1, the vibrational sidebands of both the QX and QY transitions,
characteristic of Mg complexes [2,36,50], in particular in Ni-BChla,
lose their intensity and both transitions seem to have a strong 0→0
character. Intriguingly, the sidebands reappear in the spectrum of
Ni-BChla in pyridine (Fig. 1C), in line with the notion that the N\Ni
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bonding to the in-plane located hexacoordinated central Ni2+ ion
must be weakened due to an unfavorable orbital overlap, as discussed
above.

In Ni-porphyrins, the rapid excited state relaxation is known to
occur via internal conversion (IC) followed by vibrational relaxation
of the metal centered excited d-states [22–25,51,52]. However, the
ladder of d substates in Ni-(B)Chls is not really feasible because for-
mally there are no vacant d levels (see Fig. 6). Furthermore, a strong
0→0 character of electronic transitions in these complexes (Fig. 1)
implies that their equilibrium geometries in the ground (S0) and the
excited states (both QX and QY) are similar and that transitions to
other oscillating states (0→1, 0→2, etc.) have lower probability.

In light of the above, we propose that the oscillation of the central
Ni2+ facilitate the prompt conversion of excitation energy into the
kinetic/potential energy of the central Ni, creating a very rapid route
for the relaxation. In the excited states electron density grows on
the pairs of diagonally located N atoms [53] and thus the central ion
is pulled down into the macrocycle plane (change of symmetry
C2→C2h). This, in turn, destabilizes the Ni2+\N bonds (see above)
and the excitation energy is converted to the potential energy of a
dumped-oscillating ion. The proposed relaxation pathway would in-
volve the transmission of vibrations to the strongly chelating central
nitrogens as well. In the presence of axial ligand(s), such a pathway
may become even more efficient, as the excess energy can be dissi-
pated to the surrounding via vibrations of the ligand(s) [8,22,54].
Seemingly, the mass of the central ion is the major factor which de-
termines the rate of energy dissipation because a similarly fast and ef-
ficient conversion of excitation energy into heat has been observed in
the complexes of Co and Fe [55–57]. Apparently, if the central ion
were heavier (e.g. Pd, Pt) it would be more difficult to tilt it from
equilibrium position and the excitation energy could not be dissipat-
ed as quickly. This is in line with indeed longer excited state lifetimes
in the Pd- and Pt-substituted complexes [6,37,51,58].

From another point of view, the extremely fast relaxation of the
excited state in Ni-BChla may result from a peculiar topology of the
potential energy surface resulting from the strong bonding between
the Ni2+ ion and the central nitrogens. If there are two electronic
states of very similar energies (i.e. being pseudo-degenerated) locat-
ed in the range of excitation energy, then due to vibronic interactions
a saddle-shaped area can be formed on the potential energy surface.
This corresponds to a crossing of the potential energy surfaces of a
minimum of one normal vibration with a maximum of another one.
The excitation localized in the potential having minimum “falls
down” due to IC to the bottom of the potential where the structure
of surface has maximum for the other potential in the other vibration,
causing the excitation to disappear instantaneously.

In the LH1 antenna, the Ni-substituted pigment is strongly
excitonically-coupled to other molecules that form the B880 compli-
ment in the antenna [19]. Due to excitonic interactions, the S1 state
energy of the pigments forming LH1 (λmax=875 nm) is lowered
from 12,820 cm−1 (free pigment) to 11,430 cm−1. Apparently,
this low energy transition in Ni-BChla is very effectively coupled to
the rapid deactivation channel in this molecule whereas slower
deexcitation pathways present in free Ni-BChla cannot be populated.
Very likely, this is due to a fixed geometry (and symmetry) of the
Ni-BChla molecules bound to the protein matrix. For the pigment in
solution the situation is dynamic and several deactivation pathways
can be active, depending on the momentary symmetry of the com-
plex [8].

The results of the present analysis of the properties of Ni-
substituted Chls can be summarized as follows. The excited state
characteristics of complexes of transition metal ions with macrocyclic
tetrapyrroles are strongly determined by local symmetry of the chela-
tor. In the ligand field of the D4h symmetry (unsubstituted porphy-
rins) the wavefunctions of the π-electron system and the central
metal electrons are well separated whereas in the C2h/C2 symmetry
(chlorophylls and bacteriochlorophylls) the respective electron
systems strongly interact. It implies that in this type of complexes
the local symmetry is decisive and must always be precisely deter-
mined. Consequently, any generalizations based on the systems of
higher symmetries have to be applied very cautiously to the ones of
lower symmetry. This is very well manifested in peculiar features of
Ni-substituted (B)Chls, in particular in their extremely short lived
excited states and 100% efficient excitation-to-heat-conversion,
which can be explained by the formation of a strong three-center
bond between Ni2+ ion and nitrogens in the central binding pocket
of Chls. These characteristics render the Ni-substituted Chls a new
class of excellent photocalorimetric references.
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