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Immune escape strategies aimed to avoid T-cell recognition,

including the loss of tumor MHC class I expression, are

commonly found in malignant cells. Tumor immune escape has

proven to have a negative effect on the clinical outcome of

cancer immunotherapy, including treatment with antibodies

blocking immune checkpoint molecules. Hence, there is an

urgent need to develop novel approaches to overcome tumor

immune evasion. MHC class I antigen presentation is often

affected in human cancers and the capacity to induce

upregulation of MHC class I cell surface expression is a critical

step in the induction of tumor rejection. This review focuses on

characterization of rejection, escape, and dormant profiles of

tumors and its microenvironment with a special emphasis on

the tumor MHC class I expression. We also discuss possible

approaches to recover MHC class I expression on tumor cells

harboring reversible/‘soft’ or irreversible/‘hard’ genetic lesions.

Such MHC class I recovery approaches might well synergize

with complementary forms of immunotherapy.
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Introduction
Cancer immunotherapy in humans has historically used a

variety of products that boost T lymphocyte responses,

such as IL-2 and IFN-a in melanoma and renal cell

carcinoma and bacterial products as BCG in bladder
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cancer therapy [1–3]. More recently, antigenic tumor

peptides or dendritic cells loaded with shared peptides

have been introduced to the clinic [4,5]. These therapies

created great expectations among clinical oncologist be-

cause they could activate specific anti-tumor T-cell im-

munity. However, the observed tumor regressions were

below expectations [6]. The absence or downregulation

of tumor MHC class I (MHC-I) molecules could be one of

possible explanations for these disappointing results,

since MHC-I expression on cancer cells is required for

detection and destruction by T-cells [7,8]. MHC-I loss or

dowregulation is a major tumor escape mechanism from T

lymphocytes described in human tumors of different

origin [9–12]. The HLA evaluation in human tumor

tissues needs a complex approach since HLA class I

(HLA-I) heavy chains are highly polymorphic and

requires analysis of the expression of six HLA-I alleles

on tumor cell surface which differ among cancer patients

[13]. It is obvious that the information about tumor HLA

expression mostly comes from the analysis of progressing

tumors, which have already developed escape strategies.

In contrast, the tumor rejection profile is difficult to study

since such regressing lesions either disappear in a short

period of time or progress while acquiring the immunoe-

dited escape phenotype [14]. There are also evidences

that some tumor cells can survive in the host in a ‘dormant

state’ for long periods of time without being detected.

These dormant tumor cells ‘awake’ in immune-compro-

mised environments, especially when CD4+ and CD8+

lymphocytes are not present or their numbers are heavily

reduced [15��,16].

The intimate interaction of MHC class I
expression by tumors and the T-cell immune
pressure
One of the major problems facing any type of cancer

treatment is the extensive heterogeneity of primary

tumors, which arises as a result of genetic and epigenetic

alterations at a clonal level [17��,18]. In a mouse model of 3-

methyl-cholantrene-induced fibrosarcoma we observed

that primary tumor clone diversity is characterized by

different expression patterns of MHC-I genes and mole-

cules [19]. This explosion of diversity can be described as a

‘big bang’ because of the large variety of different tumor

cells with different genotypes and phenotypes, and be-

cause it can be detected few weeks after the injection of the

chemical carcinogen. Genetic alterations in any particular

marker creating this heterogeneity is probably a random
www.sciencedirect.com
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process, but the interaction with the host immune system

determines the capacity of a given tumor cell clone to

survive and disseminate. Therefore, a process of ‘selec-

tion’, especially due to T-cell immune pressure on MHC-I

deficient tumor variants, might represent a natural process.

We and other groups have evidence that this strong selec-

tion process mediated by the interaction of MHC-I and
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CD8+ T-cells in primary tumors is taking place during the

early stages of tumor development leading to either tumor

rejection or immune escape via immunoediting [19,20].

Tumors are predominantly MHC-I positive at early stages.

The specific antitumor CD8+ T-cells attack is progressive-

ly killing MHC-I positive cells and selecting MHC nega-

tive ones (Figure 1). The MHC-I heterogeneity can be

observed in many tumors at these early stages. Finally, the
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T cell immunoediting leaves tumors homogeneously defi-

cient or completely negative for MHC-I expression

[20,21]. A clinical example of T-cell mediated immuno-

selection of MHC-I negative tumor cells came from the

study of melanoma lesions derived from a single patient

during the course of cancer progression. A point mutation

present in the codon 67 of the beta 2-microglobulin gene in

HLA-I negative melanoma cells from the heterogeneous

primary tumor was found 10 months later in an uniformly

HLA-I-negative metastatic lesion, strongly suggesting an

active T-cell immunoselection of MHC-I negative mela-

noma cells [21].

In a mouse cancer model, a very clear example of T cell

mediated immunoselection came from the assessment of

H-2 expression in metastatic lung colonies obtained from

an H-2 negative tumor cell clone growing in immuno-

competent and in immunodeficient mice [22,23]. Lung

metastatic colonies growing in immunocompetent synge-

neic mice were H-2 negative. In contrast, colonies grow-

ing in immunodeficient mice lacking T-cells were H-2

positive. The mechanism responsible for the H-2 down-

regulation in this tumor clone was reversible (‘soft’) since

the expression of H-2 antigens could be recovered by

IFN-g [22,23]. We also observed that MHC-I positive

tumor clones are highly immunogenic, while MHC-I

negative variants have low immunogenicity. Neverthe-

less, when the number of locally injected tumor cells from

MHC-I positive clone is considerably large, they generate

local tumors and develop a high number of distant me-

tastases, because are able to overcome T-cell responses

and induce immunosuppression [22]. Importantly, MHC-

I positive lung metastases in this model could be

completely eradicated by immunotherapy [24]. In con-

trast, MHC-I negative tumor clones have none or low

metastatic capacity. They generate dormant micrometas-

tases with increased MHC-I expression, which are capa-

ble of inducing T-cell immune response (Figure 1) [15��].

Tumor rejection profile
There are only few reports describing the MHC-I ex-

pression patterns in tumors undergoing rejection in

humans. This rejection can sometimes be induced using

different protocols of immunotherapy, including treat-

ment with IL-2, BCG, IFN-a, autologous tumor vaccine,

peptide vaccination or transfer of autologous anti-tumor

CD8+ T-cells, and is associated with the expression of

high levels of HLA-I molecules in tumor cells [20]. It is

difficult to obtain regressing malignant lesions, since

there are no clinical indications for surgical removal or

biopsy. In this situation, we rely only on the evaluation of

systemic CD8+ T-cell responses and intratumoral infil-

tration [25]. Nevertheless, we had an opportunity to

carefully analyze regressing and progressing subcutane-

ous melanoma lesions in two ‘mixed responder’ patients

after autologous vaccination [14,20]. We observed a mas-

sive intratumoral infiltration of CD4+ and CD8+
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lymphocytes (TILs) within the regressing melanoma

lesions with a positive correlation of high MHC-I levels.

In contrast, the lack of tumor HLA-I expression in

progressing lesions correlated with absence of TILs with

mostly peritumoral infiltration patterns [14,20]. These

two opposite patterns in distinct lesions of the same

patient reflect different phenotypes of tumor microenvi-

ronment, namely tumor rejection and tumor escape

(Figure 1). Tumor regression was also associated with

increased transcriptional upregulation of HLA and inter-

feron stimulation pathway genes pointing to an enhanced

antigen presentation capability of tumor cells [14]. This

histological and molecular signature of tumor rejection

mediated by CD8+ T-cells seems to be similar to that

found in allograft rejection and graft versus host disease

suggesting an existence of an immunological circuitry of

rejection [26].

High degree of tumor infiltration with T-cells is consid-

ered to be a good prognostic factor [27] and has been

included into a new tumor immunological grading system

called ‘immunoscore’ [28]. We have previously observed

in various types of cancers that the HLA-I negative

tumors lack TILs. In contrast, HLA-I positive tumors

are characterized by high degree of intratumoral infiltra-

tion with CD8+ T cells [14,20]. The status of intratumoral

infiltration, perhaps, reflects the stage of cancer immune

escape during natural cancer progression. At early stages

there are more HLA-positive tumor cells and many TILs,

while at more advanced stages tumor contains more

HLA-negative escape variants and T-cells are restrained

in the peritumoral area (Figure 1).

Tumor HLA-I expression patterns have been discussed at

the 12th International Histocompatibility Workshop (Paris,

France, June 9–12, 1996). Tumors sections were classified

as HLA-I negative (<25% tumor cells stained), heteroge-

neous (between 25% and 75% tumor cells labeled) and

positive (>75% tumor cells stained) [13,29]. It would be

interesting to determine whether the lack of HLA-I is the

cause of poor T-cell recruitment into the tumor or, the other

way around, the local infiltrating T cells mediate high

HLA-I expression by producing IFN-g. A recent report

indicated that the latter option could be valid, at least in

sarcomas [30]. In this context, the broadened melanoma-

reactive CD8+ T cell responses reported after anti-CTLA-4

therapy in melanoma [31�,32,33��] could be associated with

the upregulation of MHC expression and could lead to the

presentation of a variety of previously hidden tumor spe-

cific peptides, which subsequently activate a pre-existing

T-cell pool. Similar events were previously reported in

clinical trials using peptide-based immunotherapy and

were defined as ‘epitope spreading’ [25,34].

Tumor escape profile
It is well established that tumor immune escape is asso-

ciated with MHC-I downregulation, as seen in different
www.sciencedirect.com
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human and experimental tumors and reviewed in many

previous reports [8,10,12,35]. Tumors with this profile can

be derived from established progressed tumors after they

had escaped T-cell mediated immunosurveillance [11]. A

tumor derived from an HLA-I positive epithelium can

lose totally or partially the expression of class I molecules

[9]. The total percentage of various types of HLA-I loss,

including total loss, haplotype loss, or allelic loss, ranges

from 65 to 90%, depending on the type of cancer

[9,35,36].

Another evidence of tumor escape and the resistance to T

cell immunity caused by MHC-I down-regulation has

been corroborated by a cancer in a small mammal, the

Tasmanian Devil. A facial tumor in the Tasmanian Devil

silenced the genes for antigen presentation at the epige-

netic level and thereby created an infectious cancer that is

transmissible to histo-incompatible companions

[37,38�,39]. This curious case of a transmissible tumor

clearly emphasizes the relevance of MHC loss for im-

mune escape of tumors. The clear impression in the field

is that most MHC-I defects in human cancers belong to

the category of ‘soft’-wired lesions [40��,41–43]. Conse-

quently, this type of immuno-editing can be counteracted

by clever therapeutic targeting, such as activation of the

interferon signaling pathway in cancers or intervention

with HDAC inhibitors [44].

Tumor dormancy profile
Clinical and experimental evidence indicate that the

immune system can maintain cancer cells in a dormant

state [15��,16]. Metastatic tumor cells can remain in a

state of equilibrium with the immune system for long

periods of time during which metastatic colonies do not

progress and the cellular immune response does not

reject the tumor. It resembles the symbiotic co-exis-

tence we see in different species when each partner

benefits from another in a particular ‘status quo’ of no

aggression. Despite clinical reports suggesting that im-

munosuppression is associated in humans with clinical

appearance of metastatic colonies [45], the profile of the

dormant microenvironment is not precisely known. We

have developed a mouse tumor model (GR9) in which

several metastatic tumor nodules were kept in a per-

manent state of immune-mediated dormancy in an

immunocompetent host [15��]. Interestingly, when

the mice were depleted of CD8-T lymphocytes the

colonies started to growth resulting in overt metastases.

Moreover, the same tumor clone produced overt pul-

monary metastases in nude mice. Tumor cells capable of

generating these dormant metastatic colonies are very

exceptional; they were completely negative for MHC-I,

but the dormant micrometastases  recovered MHC-I

surface expression (Figure 1) [15��]. These results

suggested that MHC-I surface expression and CD8+

T lymphocytes play an important role in immune-

mediated dormancy [46] (Figure 1).
www.sciencedirect.com 
Antitumor strategies could be directed to harness the

immune response to maintain cancer cells in a permanent

dormant state or to favor a complete tumor rejection. In

the GR9 mouse tumor model, immunotherapy turned a

highly metastatic tumor clone into dormant micrometas-

tases ([24] and Garcia Lora et al., unpublished observa-

tions). Upregulating MHC-I expression on tumor cells by

cytokines, by increasing FHIT gene expression [47], by

blockade of the immune-checkpoint inhibitors, by sup-

pression of T regulatory cells or myeloid suppressor cells

could lead to activation of anti-tumor T lymphocyte

responses [44]. An attractive strategy for the restoration

of MHC-I expression is by epigenetic modifiers, like

inhibitors of DNA methyltransferase (DNMT) or histone

deacetylase (HDAC). In several recent papers, such reg-

ulation at the epigenetic level was shown to be able to

synergize with immunotherapy for the eradication of

mouse tumor models [48,49,50�]. Interestingly, IFN-g-

induced restoration of ‘soft’ lesions of MHC-I, one of the

most powerful inducers of this gene, was shown to partly

mediate its effect by inducing demethylation of antigen-

processing machinery related genes, including the TAP

genes and LMP-2 [51].

How to deal with ‘hard’ lesions? Gene therapy
and alternative lymphocytes
Targeting the tumor escape phenotype is one of the major

tasks of the present and future cancer therapies [44]. In

the examples referred to above, the molecular mechanism

responsible for the HLA-I downregulation is reversible or

‘soft’ [40,52]. In contrast, when the genes of HLA or beta

2-microglobulin are corrupted due to mutations or dele-

tions resulting in loss of heterozygosity (LOH) at chro-

mosomes 6 or 15, the HLA-I loss is irreversible due to

these ‘hard’ lesions [53–55]. In this case, tumor cells

cannot recover the antigen presentation capacity and

the tumor microenvironment retains tumor escape phe-

notype favoring cancer progression. ‘Hard’ HLA-I aber-

rations in tumors (LOH in chromosomes 6 or 15 and beta

2-microglobulin mutations) are in the range of 30–40% of

human cancers [55,56]. In order to restore HLA-I expres-

sion in human tumors with ‘hard’ lesions we have made a

recombinant adenovirus carrying beta 2-microglobulin

gene and demonstrated a recovery of HLA-I expression

on tumor cells deficient in beta 2-microglobulin. This

HLA reconstitution also recovered tumor cell destruction

by peptide specific CD8+ T-cells in HLA-restricted man-

ner [57–59].

Natural killer (NK) cells provide a natural barrier against

MHC-I negative tumors and are, therefore, interesting

immune effectors to exploit in the treatment of immune-

escaped tumors with ‘hard’ lesions. However, there is no

clear evidence suggesting that NK cells selectively infil-

trate MHC-I negative tumor tissues. Tumor-infiltrating

NK cells might harbor an anergic phenotype in MHC-I

low tumors, in contrast to MHC-I-positive tumors [60].
Current Opinion in Immunology 2016, 39:44–51
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This anergic state was reversed with IL-12/IL-18 treat-

ment and was even further enhanced by an improved

form of IL-2, leading to NK-dependent tumor control.

Another group showed that transfer of in vitro pre-acti-

vated NK cells, in combination with body irradiation, was

effective in eradication of tumors with ‘hard’ genetic

lesion in the MHC-I pathway [61]. Interestingly, addition

of HDAC inhibitors can increase the susceptibility of

cancer cells for NK cells by upregulation of the NKG2D-

activating ligand MICA [62,63]. In addition to upregula-

tion of its ligands, the NKG2D receptor was also upre-

gulated, which led to a further enhanced cytotoxicity of

tumor cells [62]. However, caution is needed, as tumor

cells treated with HDAC inhibitors might reduce their

levels of other activating ligands, as shown for B7-H6,

which stimulates NK cells via the NKp30 receptor [64].

Some years ago, our group identified a novel group of

CD8+ T cells which specifically recognize cells with low

MHC-I expression due to a defect in the peptide trans-

porter TAP [65��,66]. These T cells recognize an alter-

native peptide repertoire on immunoescaped tumor cells.

We named these peptides TEIPP, for ‘T cell epitopes

associated with impaired peptide processing’ and they

emerge in the residual MHC-I molecules as a result of

alternative antigen processing pathways [67,68]. We

showed that the prototypic TEIPP epitope, derived from

the housekeeping protein Trh4, is processed by signal

peptide peptidase and is, therefore, processed indepen-

dently of TAP or the proteasome [69]. In a novel TCR

transgenic mouse model based on the Trh4-specific CD8+

T cell clone, we observed an efficient thymic selection of

these T cells, indicating that the TEIPP T cell repertoire

is not affected by central tolerance [70��]. In addition, the

TEIPP T cells were effective in tumor control of the

TAP-deficient RMA-S tumor. We anticipate that this

CD8+ T cell subset can be exploited for treatment of

immune-escaped tumors.

Conclusions
We have defined the following three major tumor phe-

notypes relevant for tumor-host interactions and anti-

tumor immunity: rejection, escape and dormancy. We

highlighted the key role of tumor MHC expression that

influences the degree and composition the immune

cellular infiltration. This type of cellular immune re-

sponse markedly determines the prognosis and clinical

outcome in different types of malignancies. There is

accumulating evidence suggesting that the efficacy of

traditional (IL2, BCG, peptides, etc.) and newly devel-

oped immunotherapy (‘immune checkpoint’ blocking

antibodies) depends on the expression levels of MHC-

I on tumors cells [49]. ‘Soft’ MHC-I molecular lesions can

be recovered by a variety of interventions that modify

tumor microenvironment in such a way that Th1 type

cytokines are released. ‘Hard’ MHC molecular lesions

can only be corrected by transferring the appropriate wild
Current Opinion in Immunology 2016, 39:44–51 
type MHC-I or beta 2-microglobulin gene, or by the

application of natural killer cells and TEIPP-specific T

cells. Hence, identification of molecular aberrations re-

sponsible for altered tumor MHC-I expression, as well as

monitoring the evolution of this expression during the

course of treatment becomes essential for the success

of T-cell mediated cancer immunotherapy and for the

development of novel complementary approaches

for MHC-I upregulation. We are undoubtedly oversim-

plifying the enormous complexity of the tumor microen-

vironment but future findings of key molecules and/or

cells capable of overriding the immune escape routes

used by tumor cells will certainly help in inducing dura-

ble tumor rejection. Among them, MHC re-expression is

a major target for future studies.
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Epigenetic regulations in the IFNg signalling pathway: IFN-g-
mediated MHC class I upregulation on tumor cells is
associated with DNA demethylation of antigen-presenting
machinery genes. Oncotarget 2014, 5:6923-6935.

52. Aptsiauri N, Garcia-Lora A, Garrido F: ‘Hard’ and ‘soft’ loss of
MHC class I expression in cancer cells. In Tumor Immunology
and Immunotherapy. Edited by Rees RC. Oxford University Press;
2014:63-78.

53. Maleno I, Cabrera CM, Cabrera T, Paco L, Lopez-Nevot MA,
Collado A, Ferron A, Garrido F: Distribution of HLA class I altered
Current Opinion in Immunology 2016, 39:44–51 
phenotypes in colorectal carcinomas: high frequency of HLA
haplotype loss associated with loss of heterozygosity in
chromosome region 6p21. Immunogenetics 2004, 56:244-253.

54. Kloor M, Michel S, von Knebel Doeberitz M: Immune evasion of
microsatellite unstable colorectal cancers. Int J Cancer 2010,
127:1001-1010.

55. Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F:
Implication of the b2-microglobulin gene in the generation of
tumor escape phenotypes. Cancer Immunol Immunother 2012,
61:1359-1371.

56. Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-
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