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This paper deals with a quite general nonparametric statistical curve estimation 
setting. Special cases include estimation or probability density functions, regression 
functions, and hazard functions. The class of “fractional delta sequence estimators” 
is defined and treated here. This class includes the familiar kernel, orthogonal series, 
and histogram methods. It is seen that, under some mild assumptions, both the 
average square error and integrated square error provide reasonable (random) 
approximations to the mean integrated square error. This is important for two 
reasons. First, it provides theoretical backing to a practice that has been employed 
in several simulation studies. Second, it provides a vital tool for proving theorems 
about selecting smoothing parameters for several different nonparametric curve 
estimators. 1’1 1986 Academic Press, Inc. 

1. INTRODUCTION 

Let X, X, ,..., X, be a random sample of d-dimensional random vectors 
having density function f(x) and cumulative distribution function F(x). 
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Suppose we are interested in a certain functional g(x), x E [Wd of the dis- 
tribution of X. The problem of estimating the curve g(x) from the random 
sample is called nonparametric curve estimation. 

Some special cases of nonparametric curve estimation are: 

D-density estimation: where g is taken to bef: 

H-hazard function estimation: where g is given by 

f(x) g(x) =-. 
1 -F(x) 

R-Regression estimation: where g is the regression curve of Y on Z’, 

g(x) = g(z) = E[ Y 1 z = z], 

using the notation 

d’=d-1, 

2 = (z”‘,..., z’d”), 

x = (2”) )...) Z(d’), y), 

x= (Z(I))..., Z’“‘, Y). 

(1.1) 

This list of examples is meant to be representative, not exhaustive. See 
Prakasa-Rao [26] for other possibilities. 

Quite a number of different estimators have been proposed for each of 
the curves given above. For comparison of these estimators, several 
measures of accuracy have been considered. A very common measure is the 
mean integrated square error, 

MISE = E 
s 

[i(x) -g(x)]’ w(x) dF(x), 

with some nonnegative weight function w(x) (depending only on z in the 
regression setting). 

While MISE is theoretically pleasing as a distance between 2 and g, it is 
often hard to compute. The literature contains two different ways of over- 
coming this difficulty. The first is to study the asymptotic (as n -+ co) 
behavior of MISE. The second is to consider Monte Carlo (and hence ran- 
dom) appoximations to MISE. In this paper it is seen that, for many 
estimators, these two approaches give quite similar results for large values 
of n. 

Stochastic (i.e., random) distances that have been considered include the 
integrated square error (ISE) given by 

1% = j- Cd(x) -g(x)l’ 4x1 dF(x), 
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and the average square error (ASE) given by 

ASE=n-’ i [&Yi)-g(Xi)]2w(Xi). 
i= 1 

Wegman [48] argued in the setting of density estimation that, for n 
large, ASE should be a good approximation of MISE. 

He then used ASE as a distance measure for a Monte Carlo comparison 
of several density estimators. ASE has also been employed for this purpose 
by Fryer [ll] and Wahba [42]. Breiman, Meisel, and Purcell [S] and 
Raatgever and Duin [27] used a “normalized version” of ASE in their 
Monte Carlo studies. The distance ISE also has been attractive to several 
authors, see, for example, Rust and Tsokos [32], Scott and Factor [33], 
Bean and Tsokos Cl], and Bowman [4]. In the regression setting, Stone 
[36] has used a “leave-one-out” version of ASE and Engle, Granger, Rice, 
and Weiss [9] and Silverman [34] have used ASE to study cross-validated 
estimators. In the hazard function setting, Tanner and Wong [40] have 
compared two estimators by computing the difference of their ASEs. 

The use of ASE and ISE as measures of accuracy was criticized by Steele 
[35], who gave an example in which, asymptotically as n -+ co, ASE 
behaved very differently from ISE (hence, at least one is a poor 
approximation to MISE). In reply to this objection, Hall [13] showed that 
Steele’s example was somewhat artificial by showing that, in the case d= 1, 
if g(x) is a kernel density estimator, then under some reasonable 
assumptions, as n + co, 

ASE = MISE + op( MISE), (1.2) 

ISE = MISE + op( MISE), (1.3) 

and if g(x) is a trigonometric series density estimator (1.3) holds. 
The object of this paper is twofold. First, Hall,‘s results are extended to a 

wider class of estimators and to a variety of nonparametric curve 
estimation settings. This demonstrates that the objections of Steele [35] 
need cause no concern in the case of many commonly considered 
estimators. Second, the results of this paper provide an important tool for 
use in analyzing curve estimators with data-based smoothing parameter 
selection. In particular, asymptotic optimality results can be derived from 
suitable uniform versions of (1.2) and (1.3). Special cases of this may be 
seen, either explicitly or implicitly, in the results of Hall [14], Stone 
[37, 381, Burman [2], and Marron [22, 231 in the density estimation set- 
ting, and in the results of Rice [28], Hardle and Marron [19,20], and 
Burman and Chen [3] in the regression setting. 

Section 2 introduces the class of “fractional delta sequence estimators” 
and makes evident that many of the most widely studied nonparametric 
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estimators are contained in this class. Section 3 contains theorems which 
give sufficient conditions for (1.2) and (1.3) for a subset of these estimators. 
Section 4 contains theorems which extend the results of Sections 3 to all 
fractional delta sequence estimators. Section 5 contains examples for 
illustration of these theorems. The proofs of the theorems are in Section 6. 

2. FRACTIONAL DELTA SEQUENCE ESTIMATORS 

The class of fractional delta sequence estimators is defined to consist of all 
estimators of the form 

(2.1) 

where fiA and S; are measurable functions on II?’ x rW’, which are indexed by 
a “smoothing parameter” A = A(n) E Iw +. The special case &(x, Xi) - 1 gives 
the delta sequence estimators studied by Watson and Leadbetter [47], 
Fiildes and Revesz [lo], and Walter and Blum [44], among others. 

In the setting of density estimation, some well-known estimators of this 
type are: 

D-l. Kernel estimators. Introduced by Rosenblatt [29] and Parzen 
[25], given a “kernel function,” K: Rd + [w, and the smoothing parameter, 
ile R+, define 

6,(x, A-,) = lK(ll’d(~ - Xi)), 

6>(x, Xi) E 1. 
(2.2) 

D-2. Histogram estimators. Write lRd= Uz, A,, were the “bins” A, 
are disjoint with Lebesque measure 1-l (where 1 is the smoothing 
parameter). For I= 1, 2,... let l,(x) denote the indicator of Al. Define 

6,%(x, xi) = fJ nldX) lI(xi), 

/= I  (2.3) 
61(x, Xi) E 1. 

The extension to unequal bin sizes is straightforward, but requires more 
notation. 

D-3. Orthogonal series estimators. Introduced by Cencov [6]. Sup- 
pose {$[(x)} is a sequence of functions which is orthonormal and complete 
with respect to the inner product 

s I(/,@) It/r(x) 4x1 dF(x). (2.4) 
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Given the smoothing parameter 1 E Z +, define 

~A(X, Xi) = c $I(X) $,(Xi) W(Xi), 
I=1 (2.5) 

cqx, Xi) E 1. 

Further examples of delta sequence density estimators may be found in 
Walter and Blum 1441 and Susarla and Walter [39]. Some examples of 
fractional delta sequence estimators in the regression setting are: 

R-l. Kernel estimators. Introduced by Nadaraya [24] and Watson 
[45]. Given a kernel function, K(x’) and a smoothing parameter, 1, using 
the notation (1.1 ), define 

6,(x, Xi) = AK(,I”+ - Z,)) Y, 

61(x, Xi) = AK(Alid’(z - Z,)). 

Note that, g(x) is a weighted average of the Y,. 

R-2. Known-marginal kernel estimators. Studied by Johnston [21]. 
Let fM(z) denote the marginal density of Zi and define 

6,(x, A’,) = AK(A”d’(z - Z,)) Yj 

6;(x, Xi) =f&f(Z)- 

To see the idea behind this estimator, note that when the denominator of 
R-l is properly normalized, it becomes the estimate D-l of the marginal 
density, f,,,,(z). 

R-3. Delta sequence estimators. A generalization of R-l, discussed in 
Collomb [7]; define a,(,, Zi) as for any of the density estimators and let 

6,(X, xi) = g,l(z, zi) yi3 

d;(Xy Xi) = T,J,(Z, Zi). 

Note that the regressogram of Tukey [41] is a special case where 8A is 
defined as for D-2. 

In the setting of hazard function estimation, Watson and Leadbetter 
[46] have introduced the following fractional delta sequence estimators: 

H-l. Kernel estimators. Given a kernel function, K(x), and a 
smoothing parameter, I, define 

6,(x, iYi)=tlK(A(~-Xi)), 

6:(X, Xi)= 1 -Ix 
(2.6) 

AK(A(t-Xi)) dt. 
-cc 

683120/l-7 
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H-2. Delta sequence estimators. A straightforward generalization of. 
H-l; define 6,(x, Xi) as in any of the density estimators and let 

6:(X, Xi) = 1 - SX d,(ty Xi) dt. 
--co 

3. APPROXIMATION THEOREMS FOR DELTA SEQUENCE ESTIMATORS 

This section gives sufficient conditions for (1.2) and (1.3) in the special 
case of delta sequence estimators, which are of the form 

(3.1) 

Assume that 1 ranges over a finite set ,4,, whose cardinality is bounded by 

#(A,) Q SW, P>O (3.2) 

(i.e., is increasing at most algebraically fast). For estimators with a con- 
tinuous smoothing parameter, such as the kernel estimators, the result of 
this paper can be easily extended to A,, an interval, by a continuity 
argument (compare Marron [22] and Hardle and Marron [ 191). 

For ease of presentation, it will be assumed that there are constants % 
and E > 0 so that, for each n, and for all L E ,4,, 

V’n”dl<Wn’-“. (3.3) 

The next assumptions are rather technical in nature, but are stated in 
this form because these are the common properties which make all of the 
diverse estimators of Section 2 satisfy (1.2) and (1.3). Implicit in these 
assumptions are conditions on w  and f, e.g., boundedness of f or 
integrability of w  *f: Precise conditions (on w  and j) depend on which 
estimator is being considered. These conditions are given in Section 5, 
where it is seen that quite different methods of verification of these 
assumptions are needed for different estimators. The assumption (3.4) 
represents the most important property of delta sequence estimators. 
Intuition can be gained by considering the.kernel density estimation case 
and performing integration by substitution. 

For k = 1, 2 ,... assume there is a constant ‘& so that for any m = 2 ,..., 2k 
and I> 1, 

1 I.. .I [ fi dA(Xj, xip] i i’ = 1 
x [fil w(x,)k] dF(x,)...dF(x,)l <%“‘khk-“/2, (3.4) 
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where aii’ = O,..., k subject to 

and the restriction that for each i= l,..., m, there is an i’ # i so that either 
air or aifi is nonzero, and where pi = 0, 1 with pi = 1 any time an aiis 2 1 
(with w(x,)jl taken to be 1 when w(xi)=fli=O). 

Assume that the quantity 

satisfies the assumption (3.4), with each pi = 0, and that there is a constant 
% so that 

ff &.(x1, x2) Wx,) d&J 6 v. (3.6) 

Assume there is a constant W so that 

I 
F,(x, x) dF(x) > vi. (3.7) 

Another assumption is that there is a constant 5 >O, so that for 
k = 1, 2,... there is a constant %$ such that 

s B(X)2k w(x) dF(x) <%Tkb(A) IZ(k-‘)(‘-5), (3.8) 

where B(x) denotes the bias and b(l) denotes the integrated squared bias 
of the estimator 2 given by 

B(x) = a?(x)1 -g(x) = j 6,(x, x2) Wx,) -g(x), 
(3.9) 

b(A) = J B(X)2 w(x) dF(x). 

Finally assume that for k = 1,2,... there is a constant %k so that 

I [62(x, x)]‘” w(x) dF(x) 6 %,,A2k. (3.10) 

THEOREM 1. Under the assumptions (3.1 t(3.7), 

lim sup ISE(1) - MISE(2) = o 
MISE(1) 

a.s. 
n-cc At-A. 

683,20!1-7% 
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THEOREM 2. Under the assumptions (3.1)-(3.10), and w bounded, 

lim sup 
ASE(I) - MISEQ.) = o 

MISEQ) 
a.s. 

n-m J.-En, 

Remark 1. We believe that the proofs of these approximations can be 
extended to the case of A, a vector, or even a matrix, but additional messy 
notation and tedious work are required for this. 

Remark 2. In this case of kernel density estimation, under stronger 
conditions than those given here, the strong law of large numbers in 
Theorem 1 has been extended to a central limit theorem by Hall [ 151. 

Remark 3. The supremum over L is essential for analyzing curve 
estimators with a data-dependent smoothing parameter. Such estimators 
are of the form 

2dx) = n-l i ~L.(X, xi), 

i=l 

where L = L(XI ,..., X,). Note that as long as LE n as., we immediately 
have, under the above assumptions, 

lim HE(L) - MISW) ~ o 
MISE( L) n-toz 

a.s. 

and similarly for ASE. 

4. APPROXIMATION THEOREMS FOR FRACTIONAL 
DELTA SEQUENCE ESTIMATORS 

This section extends Theorems 1 and 2 to include fractional delta 
sequence estimators. Since these estimators have denominators containing 
random variables, they are technically more difficult to work with. In fact, 
for the estimator R-l, if the kernel function, K, is allowed to take on 
negative values, then the moments of $(x) may not exist (see Rosenblatt 
[30] and Hirdle and Marron [ 183) so MISE is not a reasonable distance. 
These difficulties are overcome using the same method as that employed in 
Chapter 6 of Cochran [8] for the study of ratio estimators. Assume there is 
a function D(x) and a set S c [Wd so that, uniformly over x E S, A E /1,, 

n-l 1 S;(x, Xi) + D(x) a.s. (4.1) 
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and assume that 

inf D(x) > 0. 
A-ES 

(4.2) 

Then, uniformly over x E S, 1 E A,, 

g(x) -g(x) = n-’ 1 

[ 

‘Atx9 xi) - 6;(x7 xi) dx) 

D(x) 1 
+ I’Cx)-nl Ci 6l(x, xi)] n-l xi [6,4(x, xi)-6;(xy Xi) g(X)] 

D(x)n-'Ci6;(x,Xi) 

=n -1~6:(x,xi)+o(n-'~6:(x,xi)), 
I I 

where 

6,*(X, Xi) = [6,1(x, Xi) - d;(X, Xi) g(X)llD(X). (4.3) 

Thus, for w(x) supported inside S, it makes sense to replace MISE by 

MISE* = E 1 [n-' i 6,*(X, Xi)]' W(X) d?(x). (4.4) 
i=l 

Similarly, ISE and ASE may be replaced with 

BE* =I [n-l ic, 6,*(X, X,)12 W(X) &(x) 

ASE*=n-’ i 
[ 

,-l i 6:(X,, Xi) 
j=l i=l 1 

2 

w(xj). 

(4.5) 

Before the theorems are stated, note that MISE* may be considered to 
be an assessment of how accurately the delta sequence estimator g*(x), 
defined by 

g*(x) = n-l f 6n*(x, Xj), 
i=l 

estimates the function g*(x), defined by 

g*(x) = 0. 

Similarly ISE* and ASE* are the ISE and ASE for this new estimation 
problem. This observation allows immediate application of Theorems 1 
and 2. 
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THEOREM 3. If Sj’ satisfies the assumptions (3.1) - (3.7) then 

lim sup 
BE*(I) - MISE*(I) = 0 

MISE*(A) 
a.s. 

n-m IS/l” 

COROLLARY. If, in addition, (4.1) holds, then 

lim sup 
BE(I) - MISE*Q) = 0 

MISE*(I) 
a.2 

n-02 ien. 

THEOREM 4. Zf 8: satisfies the assumptions (3.1b(3.10) and w is boun- 
ded, then 

lim sup 
ASE*(iZ) - MISE*(i) = o 

MISE*(I) 
a.s. 

n-m AEn” 

COROLLARY. Zf, in addition, (4.1) holds, then 

lim sup 
ASE(I) - MISE*(J) = o 

MISE*(L) 
a.s. 

n-r* 14A” 

To see how Theorem 1 and 2 are intimately related to Theorems 3 and 4, 
note that in the special case where g(x) is a delta sequence estimator (i.e., 
6;(x, Xi) = l), conditions (4.1) and (4.2) hold trivially and the quantities 
MISE*, ISE*, and ASE* are the same as their unasterisked counterparts. 
Thus Theorems 1 and 2 are special cases of Theorems 3 and 4. On the 
other hand, using the viewpoint given above, Theorems 3 and 4 are con- 
sequences of Theorems 1 and 2. 

5. EXAMPLES 

In this section it is seen how the fractional delta sequence estimators of 
Section 2 satisfy the conditions of Sections 3 and 4. 

D-l. Kernel estimators. Conditions (3.4)(3.7) follow easily from 
integration by substitution and the assumptions that f, w .f, and K are 
bounded with f K(x) dx = 1 andf, w  not mutually singular. Condition (3.8) 
is also easily satisfied with < = 1. Condition (3.10) requires the additional 
assumption that w  .f be integrable. Thus the results of Marron [23] and 
Theorems 1 and 2 of Hall [ 131 are special cases of the results of this paper. 

D-2. Histogram estimators. Note that 

sup BJx1, x2) = 2, sup 
5 

6,(x,, x2) dxl = 1. 
x,.x2 x2 
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Hence, (3.4), (3.8), and (3.10) follow easily when it is assumed that f and 
w  of are bounded and integrable. Next observe that 

aAx,> x2) = 2 Al, 1,(x,) (1 j 
I= I 4 

4x1 w)), 

and so (3.4) with dA replaced by sl, (3.6), and (3.7) are satisfied under the 
above assumptions, together with (for (3.7)) the assumption that f and w  
are not mutually singular. 

D-3. Orthogonal series estimators. The assumptions needed to verify 
(3.4) are summarized in 

LEMMA 1. If, for k = 1, 2 ,... there is a constant Wk so that for 
1 , ,..., lk = 1, 2 ,... and for r = l,..., k, 

then (3.4) holds. 

The proof of this lemma is in Section 7. Note that (5.1) is easily satisfied 
for either the familiar trigonometric or Hermite series. Next observe that 

jj 61(x,, -4' w(x1) dF(x,) W-d= j i IcI,(xd2 w(xd* W-q), I= 1 
so (3.7) is easily satisfied. Condition (3.5) follows from 

&(x1 3 x2)=62(x1, x2) w(x,), (5.2) 

and the assumption that w  is bounded. Condition (3.6) follows from (5.2) 
together with the Schwartz inequality. Verifidation of (3.8) follows easily 
from 

sup cSn(x,, x2)dF(xz)-f(xl) 2 w(x,)<%‘L(*~~), 
-XI D 1 

which is easy to check in the Hermite series case, but, using the com- 
putations of Hall [ 123, requires the additional assumption off * bounded 
in the case of trigonometric series. Condition (3.10) is obvious under the 
above assumptions for either the trigonometric or Hermite series. 
Theorem 3 of Hall [ 131 is a special case of this. 

R-l, Kernel estimators. Conditions (3.4)-( 3.10) are easily verified 
under the same assumptions as D-l, above, together with the assumption 
that for k = 1,2,... there is a constant $ so that, for z in the support of w, 
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The verification of (4.1) is easy, in view of Lemma 1 of Hardle and Marron 
[ 193, under the additional assumption that fM is Holder continuous. 

R-2. Known marginal kernel estimators. This case is similar to R-l 
except that (4.1) is not required (but (4.2) is still important). R-l and R-2 
contain the results of Hardle [ 17) and Hall [ 161 as special cases. 

H-l. Kernel estimators. Conditions (3.4k(3.10) are easily checked 
when it is assumed that 

f 
K(x) dx = 1, 

and K, f, and w-f are bounded, together with the assumption that 1 -F is 
bounded above 0 on the support of w. 

6. PROOFS OF THEOREMS 1 AND 2 

Note that, by (3.2) and the Chebyshev inequality, for E > 0, k = 1,2,..., 

Thus, by the Borel-Cantelli lemma, the proof of Theorem 1 will be com- 
plete when it is seen that there is a constant y > 0, so that for k = 1, 2,..., 
there are constants GF?~ so that 

ISE(I)- MISE(I) 1 2k 
MISE( A) 

< wkneyk. (6.1) 

Theorem 2 will be established by the same technique when it is shown that 

ASE(I)- MISEQ.) 1 2k 
MISE(il) 

< %?kneyk. 
The distance ISE can be decomposed as 

ISE = R(11) + 2S(A) + b(l), 

where b(l) is defined in (3.9) and 

W)=~/~ ( 6~ XI> ~2) ~A(XI> ~3) 4x1) dF(x,) 

x Wn - F)(x2) W’n - Fb3h 

S(1)=f~S,(x,,x,)~(x,)w(x,)dF(x,)d(F,-F)(x,). 

(6.2) 
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The first term may be further split into 

R(I) = Rl(A) + R2(A) + h(A), 

where, using the notation (3.5), 

R@)=n-’ J &(X2? x2) Wx*). 

To finish the proof of (6.1) it is enough to show that 

R@)+W)-- MISE(l) 
MISE(IZ) 1 Z&G@ n-yk k 3 

and for “term” denoting R,, Rz, or S, 

(6.3) 

(6.4) 

Write 

ASE = ISE + r(n). 

As above, T(1) admits the decomposition 

T=T,+T,+T,+2T,+2T,+T, 

+ T,+2U1+2U2+2U3+ F’, 

where 

Tl(l)=JJi.x,+ 274 3# 
62(x1, x2) ~AXl, x3) 4x1) wn-mxl) 

x x x Ii 

x W” -mG W” - m%), 

w)=n+ JJfx,.,, BAblT x212 4x1) wn- mxl) 4~,-w%), 
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T,(2)=n-2 i 6n(x, 4’ w(x) w, -F)(x), 

T,(l) = n-* [ 61(x, x)’ w(x) L@(x), 

ul(A)=ll{x,,.2) ~,(XlY x2) Be,) wh) mn- F)(Xl) 4~n-~Kx,)? r 

U,(I)=n+g Xl> Xl) WI) 4x1) wn-mxl), 

Thus, (6.2) will be established when (6.4) is verified for each of the above 
terms as well. 

To check (6.3), note that by the familiar variance-bias squared decom- 
position (see, e.g., Rosenblatt [31]), using the notation (3.9), 

MISE = R3(A) - r(A) + 6(A), 

where, using the notation (3.5), 

The inequality (6.3) follows from this and from (3.3), (3.6), and (3.7). 
The verification of (6.4) will now be done term by term, starting with 

those which do not involve d(F, - F): 

Term T,. Using (3. lo), 

K2 j 6,(x, x)’ w(x) dF(x) 
MISE(il) 
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Term U3. As above, using the Schwartz inequality, 

n-l j 611x1, x1) &I) +4x1) @Xl) 2k 
MISE(I) 1 

d [ n-q 62(x,, x1)2 W(XI) dF(x,)-p2 f!@p2 2k 
MISE(A) 1 

< +fk 
n-'~.b(;1)'/2 2k 

(n-‘l)“2 b(1p2 1 <qk(n-‘A)k 6 %$npk”. 
The remaining terms all have at least one d(F,, - F), and so have mean 0. 

Thus to check (6.4), by the cumulant expansion of the 2kth moment, it is 
enough to check that, for k = 2, 3,..., there is a constant %?k so that 

where cum,( .) denotes the kth order cumulant, for which each argument is 
the same. 

To verify (6.5) in the case of those terms having only one d(F,, - F), note 
that they may be written 

n-l i W(Xi). 
i=l 

Thus, using the independence property and linearity of cumulants, it is 
enough to show that 

Term R,. Note that here 

W(X,) = n-’ 6,3(x, > X2J2 w(x, 1 ax, 1 

- 
I 

~#I, x2J2 w(x1) Wx,) @x2) 1 . 

So by the binomial theorem and repeated application of (3.4), 

n-‘+’ MISEmk lE[W(X2)]kl ~~knn2k+1(n-1;1)-k12k-(k+“/2~~~n-k/4. 

Term T3. Similar to R,. 

Term T,. Similar to R,. 
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Term T,. Note that here 

W&)=n-* 
[ 

si(x,,x,)*W(XI)-5SI(XI)X1)Zw(nl,dF(x,) . 1 
So by (3.10) 

n -‘+I MIsEek IE[ w(xl)]“l <%?kn-3k+‘(n-1~)-k i2k<%~npk’2. 

Term V. Note that here 

W(X,) = B(x,)* w(X,) - b(1). 

Thus, by (3.8), 

nek+’ MISEpk IE[ W(X,)]kl <(iRkn-k+’ b(A)k[b(l)] -k 
( 

k 

+ 1 [b(l) ACi- I)(1 -E) ] b(n)k-i[(n-‘n)i-‘b(n)k-j+l]-l 

j=l 

Term U2. Note that here 

WXd=n-’ WL JAI WJ W,)-1 Ux,, x,) WA WI) dF(x,) 1 . 

By (3.8), (3.10), and the Schwartz inequality, for j= 1, 2 ,..., there is %$ so 
that 

w 10 
< 62(x,, x,)V w(xl)-l dl;(x,) 1 [i W,)“w(x,) dF(x,) 1 
< qfjA(3j- 1)/2b(~)1/*. 

Hence, 
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Term S. Note that here 

wf2) = j a,( Xl, Jf*t &Xl) 4x1) @Xl) 

- 6&l, x2) Wl) W(Xl) @(Xl) dF(x2). 
It follows from the Schwartz inequality that, 

ir[r 
~~(xl,x,)~(xl)w(xl)dF(xl) JdF(x*) 1 I j/2 < i[i 6Ax1, x2)* W(Xl) dF(Xl) 1 b(A)J2 #(x2). (6.6) 

So, by (3.4), for j even, there is a constant %$ such that (6.6) is bounded by 

g,b(d)j/Z A’- (iI2 + I)/2 = gjk;3j/4- 1/2b(l)i/2. 
J 

And by the moment inequality, for j odd, there is a constant %$ such that 
(6.6) is bounded by 

&W2 [j (j” 
(j + 1112 

1 
j/U + 1) 

~,?(Xl, x2Y W(Xl) dF(Xl) d&J 

< gjb(l)j/2 ~%b-j/2(j+ 1). 

Thus, for k = 3, 4,... 

More precise computations are required in the case k = 2. By (3.5), 

E(wX2)2)GE j&t 
[ 

2 

xl, x2) Wx,) Wl) dl;(xl) 1 
= ~&I 9 ~2) 6,(x;, ~2) W-d 

x Hx;) w(x;) dF(x;) 1 W,) 4x,) dF(x,) 

< 6,(x,, ~2) 6,(x; 7 ~2) dF(xd 

1 
2 

x Wx;) 44) dF(x;) 4x1) @‘(xl) 
> 

l/2 
b(A)“2 
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Thus, 

It remains to verify (6.5) for the terms containing two or three 
d(F, - F)‘s. The terms containing 2 may all be written in the form 

II-’ f W(Xi, X?), 
i i’ = 
; f i’ 

1 

where 

EW(X,, X;,) = 0, i # i’. 

So, using the linearity property of cumulants, (6.5) will be established in 
this case when it is seen that there is a constant y > 0, so that for k = 2, 3,..., 
there are constants ‘& such that 

where, by a moment expansion of cumk, it may be assumed that each of 
i,, ii ,..., ik, i; appears at least twice. In each case, it will be convenient to let 
m denote the number of i,, ii,..., ik, ib that are unique. Note that, for 
m = 2, 3,..., k, the number of cumk with m distinct indices is bounded by 
%?knm. 

Term T,. Note that here 

W(Xi,Xi,)=n-’ 
i 

6J,(xj, xi.)2 w(xi)- j &.(Xi, x*)2 w(xi) dF(x2) 

- 
s 

bA(xl, xi’)2 w(xl) dF(xl) 

+ jj ~&I, x2J2 4x1) Wx,) Wx*)l. 
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So, by (3.4) 

109 

npZk MIsEvk 1 cumk( w(xi,, xii),..., w(x@ xii)) 

6 .-2k(n-9-kn-k%?k f ” n~j2k-~12~~~n-W2~ 
m=2 

Term T,. Similar to T,. 

Term R 1. Here 

Thus, 

npZk MISEhk 1 cum,( W(Xi,, Xii),..., W(X,, Xik)) 

< n-2k(n-1~)-k%?k i ,.,mlk - 42 Q q&n - Ekl2. 
m=2 

Term U, . Here 

- s dA(X,, xi’) W,) W(XI) @(Xl) 
+ lj- &A Xl, x2) WI) W(Xl) Wx,) mx21. 

This term is handled by means quite similar to those used on Term T2 
above, except that (3.4) is augmented by the Schwartz inequality and (3.8). 
The result is, for k = 2, 3 ,..., 

neZk MIsEpk 1 cumk( w(xj,, xii),..., w(x&, x&)) 

< ,-2k((,-ll)k-l/2 b(ql/2)-1 wk i nm$2k-m)/2,q~)1/2 A(k-l)(l--E)D 

m=2 

< $$Ln-“2k/4. 
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It remains to verify (6.5) for 

Term T,, This term may be handled by methods similar to those 
used on term T2. 

This completes the proof of Theorems 1 and 2. 

7. PROOF OF LEMMA 1 

Using the definition of dl(x, y), write 

=I,$;- i /~-~~~,,i~,~~~~~~~~~~~[nWB]~~~xl~~~~dF(x,)~. (7.1) 
I Ik = 1 

The multiple integral on the right-hand side may now be factored to give 
an expression of the form 

I [I y-T 
dF(x,) ... j 1 [ W&n)1 . (7.2) 

Consider the set of ai, which have i# i’ and are positive. Find a subset, 
A, which has the property that each of l,..., m appears at least once as an i 
or i’, and suppose that this subset is minimal in the sense that if any ai, is 
removed, then l,..., m no longer all appear as the index of an a. 

Group l,..., m into two subsets, I and Z’, by the following rules: 

(1) Any of l,..., m that appear twice (or more) as an index of an a in 
A goes into I. 

(2) If i is in 1, and olic (or aiTi) is in A, put i’ into Z’. 

(3) For the remaining aii’ in A, put i in I and i’ in I’. 

The above rules partition {l,..., m} into I and Z’. 
Observe that for each clic in A, there is an I so that @[(xi) $,(x2) appears 

in the integrand on the right side of (7.1). Suppose, without loss of 
generality, that Ii ,..., I, each correspond in this manner to a different 
element of A, where L denotes the cardinality of A. Also assume, without 
loss of generality, that I i ,..., I, correspond to those a in A which have an 
index appearing more than once in A. 

By the Schwartz inequality, (7.2) may be written as 

’ 



RANDOM APPROXIMATIONS 111 

Suppose, without loss of generality, that I’ = {i,..., L}. Then, 

where the last inequality follows from (5.1) and the Bessel inequality, 
because j [ ] @(Xi) is the Z,th Fourier coefficient of a function whose 
norm is bounded in (5.1). Similar techniques give 

It follows from the above that there is a constant Vk so that (7.1) is 
bounded by 

To put this in more useful terms, note that 

and so 
2L-barn-1 

-L+b/2-t< -m/2. 

It follows that (7.1) is bounded by 

This completes the proof of Lemma 1. 
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