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An improved analytical model is presented to analyze the delamination buckling of a bi-layer beam-col-
umn with a through-the-width delamination. Both the transverse shear deformation and local delamina-
tion tip deformations are taken into consideration, and two delaminated sub-layers as well as two
substrates in the intact (un-delaminated) regions are modeled as individual Timoshenko beams. A
deformable interface is introduced to establish the continuity condition between the two substrates in
the intact regions. Consequently, a flexible joint is formed at the delamination tip, and it is different from
the conventional rigid joint given in most of studies in the literature, in which the local delamination tip
deformations are completely ignored. In contrast to the local delamination buckling in our previous study
(Qiao et al., 2010), the present model accounts for the global deformations of the intact region in the del-
aminated composite beam-column, thus capable of capturing the buckling mode shape transitions from
the global, to global–local coexistent, and to local buckling for asymmetric delamination as the interface
delamination increases. Good agreement of the present analytical solutions with the full 2-D elastic finite
element analysis demonstrates the local deformation effects around the delamination tip and verifies the
accuracy of the present model. Parametric studies are conducted to investigate the effects of loading
eccentricity, delaminated sub-layer thickness ratio, and interface compliance on the critical buckling load
for the delaminated composite beam-column. Transitions of buckling modes from the global to local
delamination buckling are also disclosed as the thickness of one sub-layer reduces from the thick sub-
layer to a thin film. The developed delamination buckling solution facilitates the design analysis and opti-
mization of laminated composite structures, and it can be used with confidence in buckling analysis of
delaminated composite structures.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to manufacturing defects (e.g., imperfect curing process) or
in-service accidents (e.g., low velocity impact), delamination may
appear in laminated composite materials. Because of the presence
of the delaminated area, the designed buckling strength of lami-
nated structures can be reduced when subjected to compressive
loading. Thus, as a major failure mode, the buckling of delaminated
composite structures has been extensively studied in the literature.

Numerous studies have been attempted to model and analyze
the buckling problem of delaminated beam- or plate-type compos-
ite structures. Including the bending-extension coupling, Chai et al.
(1981) conducted one-dimensional buckling analysis of single del-
aminated composite laminate plates. Later, Chai (1982) developed
one of the first analytical delamination models for homogeneous,
isotropic plates using a thin-film model and extended this ap-
proach to a general bending case which includes the bending of a
thick base laminate. Yin (1988) derived general formulae for
ll rights reserved.

: +1 509 335 7632.
thin-film strips with mid-plane symmetric delamination and eval-
uated the effects of laminated structures on delamination buckling
and its growth. Based on the classical plate theory, Yin and his
coworkers (Yin et al., 1986; Yin, 1998) conducted thermo-mechanical
buckling and post-buckling analyses of multilayered laminates
with an across-the-width delamination and presented the closed
form solution of delamination buckling mode.

Due to low transverse shear modulus relative to the longitudi-
nal Young’s modulus in composite laminates, shear deformation
was shown as a key factor influencing the delamination buckling
behavior. Based on a variational energy approach, Chen (1991) pro-
posed a shear deformation theory to study the delamination of
one-dimensional (1-D) orthotropic homogeneous elastic beams.
Considering large deflection of laminates, Chen (1993) later de-
rived the closed form expressions for the critical buckling load
and post-buckling deflection of asymmetric laminates. According
to the studies (Chen, 1991, 1993), the inclusion of transverse shear
deformation reduces the overestimation of buckling and ultimate
load capacity of delaminated composite plates. In virtue of a
perturbation technique, Kardomateas and Shmueser (1998)
investigated the effect of transverse shear on buckling and post-
buckling of a 1-D orthotropic elastic beam with a through-width
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delamination. They found that the transverse shear effects prompt
a reduction in the critical buckling load and an increase in the en-
ergy release rate.

When the delaminated beam-column is buckled, the potential
interlayer slip exists between the intact substrates, leading to par-
tial composite interaction and different longitudinal boundary con-
ditions (Cas et al., 2007; Schnabl et al., 2007; Girhammar and Pan,
2007). Many analytical, numerical and experimental studies have
been conducted in the literature to investigate the effect of this
interlayer slip-induced partial composite interaction on the buck-
ling behavior of delaminated beam-columns (Adam et al., 1997;
Planinc et al., 2008; Kryzanowski et al., 2009; Battini et al., 2009;
Schnabl and Planinc, 2010, 2011), and it was found that the devel-
oped interlayer slip in the delaminated layered structures has a
significant effect on its critical buckling load. It should be men-
tioned that a linear bond slip constitutive law was often employed
in most of the above mentioned studies to model the interlayer slip
behavior. In reality, however, the interlayer slip between the dela-
minated sub-layers is a highly nonlinear failure behavior during
slipping stage, which makes it unsuitable to attain the critical
buckling load for a delaminated composite structure through
eigenvalue-based analysis.

Because of the existence of delamination as well as the interface
between the two substrates, elastic joints at delamination tips are
formed, and a hybrid bi-layer composite beam-column with a
through-the-width interface delamination can be divided into a to-
tal of six different sub-regions as shown in Fig. 1. However, most of
existing studies in the literature (Moradi and Taheri, 1999; MSRao
and Shu, 2004; Shu and MSRao, 2004; Kryzanowski et al., 2008)
treated the intact region as a single composite beam. Consequently,
the elastic deformations of the joint, such as differential axial
extension and normal peeling of the two sub-layers are fully ignored,
and the rotations of delaminated sub-layers and un-delaminated
substrates around the delamination tips were artificially restricted
to be identical, leading to a unrealistic rigid joint at the delamina-
tion tips, which is obviously contradictive with the real situation
after the delaminated sub-layers buckle. It is well known that
due to material mismatch of hybrid bi-layer beam-column, high
stress concentration exists along the interface, especially at regions
near the delamination tips, which makes the delamination tip
deformations much more pronounced. As demonstrated in the
studies (Qiao and Wang, 2004; Andrews and Massabo, 2007; Qiao
and Chen, 2008, 2009, 2011; Wang and Zhang, 2009; Chen and
Qiao, 2010), the delamination (crack) tip deformations play a cru-
cial role affecting the interface stress distribution and energy re-
lease rate of delamination in layered structures. However, only
few studies in the literature have taken the effect of delamination
tip deformations into account while studying the buckling of dela-
minated composite structures. Recently, the authors (Qiao et al.,
2010) investigated the effect of the delamination tip deformation
on the sub-layer local delamination buckling in the bi-layer beams.
The results revealed that with the inclusion of delamination tip
deformations, the critical sub-layer local delamination buckling
load decreases, and it is much closer to the numerical finite ele-
ment results when compared with the overestimated delamination
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Fig. 1. A bi-layer composite beam-colum
buckling load by the rigid joint model where the delamination tip
deformations are fully neglected. However, the study in Qiao et al.
(2010) neglected the global deformation of the intact sub-regions
of the delaminated composite columns, which makes it only capa-
ble of predicting the sub-layer local delamination buckling under
pure compression while fails to capture the global buckling of
the whole bi-layer composite column. In most actual cases, how-
ever, the columns or beams are often under combined axial com-
pression force and bending (e.g., via the eccentricity of axial
compression force from the neutral axis), leading to composite
laminated beam-columns.

To release the limitation in the previous study (Qiao et al., 2010)
and improve the delamination buckling analysis of delaminated bi-
layer beam-columns, the present model will account for both the
global deformations of the intact substrates and local delamination
tip deformations of the delaminated beam-columns. The objectives
of this study are thus twofold: (1) to derive the closed-form analyt-
ical solution for the critical buckling load of an interface deform-
able delaminated composite beam-column with consideration of
transverse shear, delamination tip deformation, and initial geome-
try imperfection (load eccentricity), and (2) to evaluate the effects
of delaminated sub-layer thickness ratio, loading eccentricity, and
delamination tip deformation on the critical buckling load.

2. Problem definition

Consider a delaminated bi-layer composite beam-column under
general compression as shown in Fig. 1, where a delamination with
a length of 2a lies along the interface of the top sub-layer ‘‘1’’ and
bottom sub-layer ‘‘2’’ with thickness of h1 and h2, respectively. The
two sub-layers in the composite beam-column span three regions
of left intact, central delaminated, right intact portions with
lengths of L1, 2a, and L2, respectively, and they are made of homog-
enous, orthotropic materials, with the orthotropy axes along the
coordinate system. The interface delamination is located at L1

and L2 from the left and right ends of the beam-column, respec-
tively. It is assumed that (1) the lengths of the intact regions L1

and L2 are relatively large compared to the thickness of the whole
composite beam so that the Saint–Venant’s principle is satisfied,
and (2) the lengths of delaminated and intact portions of the
beam-column are relatively large compared to the sub-layer thick-
ness so that a beam theory can be used to model the behavior of
the top and bottom sub-layers.

To simplify the analysis, it is further assumed that a single sym-
metric interface delamination is present at the center of the com-
posite beam-column (i.e., L1 = L2). Thus, only half of the specimen is
modeled using a shear-release at the symmetric plane as shown in
Fig. 2(a). It is assumed that the compression force P is applied at a
distance e away from the neutral axis of the composite bi-layer
beam-column (Fig. 2(b)). When e = 0, the considered beam-column
is under pure compression. In this study, both the delaminated
sub-layers and intact substrates are modeled as the layer-wise
Timoshenko beams, and the flexible joint model (Qiao and Wang,
2004) is adopted to establish the continuity conditions among
the delaminated and intact substrates at the delamination tip. As
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Fig. 2. A bi-layer composite beam-column with an interface delamination: (a) simplified symmetric model, and (b) beam cross section.
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a result, the unrealistic restrictions in the rigid joint as stated pre-
viously is released and both the delaminated and intact sub-layers
have their own individual deformations and rotations.

3. Buckling analysis by flexible joint model

As aforementioned, in most studies in the literature, the delami-
nation tips are modeled as the rigid joints. However, as revealed by
the recent study (Qiao et al., 2010), this kind of rigid joint model pre-
dicts an upper bound of the delamination buckling load. To release
the rigid joint restrictions, the flexible joint model (Qiao and Wang,
2004) is introduced in this study to investigate the effect of the
delamination tip deformations on buckling behavior of a delaminat-
ed bi-layer beam-column under general compression.

3.1. Flexible joint model and delamination tip deformations

For the convenience of buckling analysis of delaminated compos-
ite beam-columns, the flexible joint model (Qiao and Wang, 2004) is
briefly introduced. The deformation field at delamination tip is
emphasized, and it is later used to derive the solution for the buck-
ling load of the delaminated composite beam-column.

A typical infinitesimal isolated body of the bi-layer beam is
shown in Fig. 3(a), and the following equilibrium equations are
established:

dN1ðxÞ
dx

¼ bsðxÞ; dN2ðxÞ
dx

¼ �bsðxÞ; ð1aÞ

dQ1ðxÞ
dx

¼ brðxÞ; dQ2ðxÞ
dx

¼ �brðxÞ; ð1bÞ
1
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Fig. 3. Configuration of a bi-layer beam: (a) infinitesimal isolated body, and
dM1ðxÞ
dx

¼ Q 1ðxÞ � bsðxÞ h1

2
;

dM2ðxÞ
dx

¼ Q 2ðxÞ � bsðxÞh2

2
; ð1cÞ

N1ðxÞ þ N2ðxÞ ¼ N10 þ N20 ¼ NTðxÞ; ð1dÞ

Q1ðxÞ þ Q 2ðxÞ ¼ Q 10 þ Q 20 ¼ Q TðxÞ; ð1eÞ

M1ðxÞ þM2ðxÞ þ N1ðxÞ
h1 þ h2

2

¼ M10 þM20 þ N10
h1 þ h2

2
þ QTðxÞ ¼ MTðxÞ; ð1fÞ

where Ni(x), Qi(x), and Mi(x) are the internal axial forces, transverse
shear forces, and bending moments in the intact substrates i
(i = 1, 2), respectively; Ni0, Qi0, and Mi0 are the axial, transverse
shear forces, and bending moments in the delaminated sub-layers
j (j = 3, 4), NT, QT, and MT are the total applied axial and transverse
shear forces and bending moment, respectively, expressed by the
right equality (see Fig. 3(a)). For convenience, it is defined that all
the resulting applied forces act on the neutral axis of sub-layer 2.
In this way, M2 only relates to N1 and M1; b is the width of compos-
ite beam. h1 and h2 are the thickness of sub-layers 1 and 2, respec-
tively; r(x) and s(x) are the interface normal and shear stresses,
respectively.

According to Timoshenko beam theory, the forces and displace-
ments of each sub-layer can be related as:

NiðxÞ ¼ Ai
duiðxÞ

dx
; ð2aÞ

MiðxÞ ¼ Di
d/iðxÞ

dx
; ð2bÞ
τ1
τ2

σ1

σ2

σ
τ

τ

(b)
(b) displacement continuity along the interface in flexible joint model.
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Q iðxÞ ¼ Bi
dwi

dx
þ /i

� �
; ð2cÞ

where ui(x), wi(x) and /iðxÞ are the longitudinal displacement, trans-
verse displacement, and rotation of sub-layers i (i = 1, 2), respec-
tively; Ai, Bi, and Di are the axial, transverse shear and bending
stiffness of beams i (i = 1, 2), respectively, and Ai = Eibhi, Bi = 5Gib-
hi/6, and Di = EiIi (where Ei, Gi and Ii are the Young’s modulus, trans-
verse shear modulus, and the moment of inertia of sub-layer i
(i = 1, 2), respectively).

In the flexible joint model, the deformation induced by the
interface stresses along the interface is accounted for by introduc-
ing two interface compliance coefficients. As a result, the differen-
tial displacements and rotation of each substrate at the
delamination tip are allowed (see Fig. 4(c)), which is closer to the
real deformation state of the buckled delaminated bi-layer beam-
column in contrast to the unrealistic rigid restriction of the defor-
mation state in the conventional rigid joint model (see Fig. 4(a)).
The continuity conditions of deformation along the interface are
expressed as (Fig. 3(b))

w1ðxÞ � Cn1rðxÞ ¼ w2ðxÞ þ Cn2rðxÞ; ð3Þ
u1ðxÞ �
h1

2
/1ðxÞ � Cs1sðxÞ ¼ u2ðxÞ þ

h2

2
/2ðxÞ þ Cs2sðxÞ; ð4Þ

where Cni and Csi are the interface compliance coefficients of sub-
layer i under the interface normal and shear stresses, respectively,
and they account for the contribution of interface stresses to the
displacement components at the bonded interface. Estimations of
these two interface compliances (Wang and Qiao, 2004a) are given
as follows:

Csi ¼
hi

15GðiÞ13

; Cni ¼
hi

10EðiÞ33

; ð5Þ

where EðiÞ33;G
ðiÞ
13ði ¼ 1;2Þ are the through-thickness Young’s modulus

and transverse shear modulus of sub-layer i, respectively. It is noted
that the shear deformable bi-layer beam theory (Wang and Qiao,
2004b) can be retrieved by ignoring the two interface compliance
coefficients (i.e., Cni = Csi = 0), leading to a ‘‘semi-rigid’’ joint at the
delamination tip. In this case, only the partial delamination tip
deformation (i.e., the differential rotations of delaminated sub-
layers and un-delaminated substrates) is accounted for (see Fig. 4(b)).

Combining the equilibrium equations (Eq. (1)), the constitutive
equations (Eq. (2)), and the continuity equations (Eqs. (3) and (4)),
φ

φ

φ

(a) (b)
Fig. 4. Delamination tip deformations in different joint models: (a) the con
the governing equation of the intact bi-layer beam system can be
established as

a6
d6N1

dx6 þ a4
d4N1

dx4 þ a2
d2N1

dx2 þ a0N1 þ aMMT þ aNNT ¼ 0; ð6Þ

where

a6 ¼
1

b2KnKs

; a4 ¼ � gþ h1

2
n

� �
1

bKn
� 1

B1
þ 1

B2

� �
1

bKs
;

a2 ¼
1
B1
þ 1

B2

� �
g
n
þ h1

2

� �
þ 1

D1
þ 1

D2

� �
1

bKs
;

a0 ¼ �
1

D1
þ 1

D2

� �
g� ðh1 þ h2Þ

2D2
n

aM ¼
1

D1
þ 1

D2

� �
h2

2D2
þ n

D2
; aN ¼

1
A2

1
D1
þ 1

D2

� �

and Kn = Cn1 + Cn2, Ks = Cs1 + Cs2; n ¼ h1
2D1
� h2

2D2
; g ¼ 1

A1
þ 1

A2
þ h2ðh1þh2Þ

4D2
.

The resultant forces and bending moments of each substrate can
be obtained by using the characteristic equation of Eq. (6) with
roots as: (a) ±R1, ±R2, and ±R3, or (b) ±R1 and ±R2 ± iR3. Here, R1,
R2, and R3 are three real numbers. For brevity, only the resultant
forces of two sub-layers in Case (a) is given as follows for instance
(the other case can be referred to – Qiao and Wang (2004)).

N1ðxÞ ¼
X3

i¼1

cie�Rix þ N1C ; M1ðxÞ ¼
X3

i¼1

ciSie�Rix þM1C ; Q 1ðxÞ

¼
X3

i¼1

ciTie�Rix þ Q 1C ð7aÞ

N2ðxÞ ¼ �
X3

i¼1

cie�Rix þ N2C ; M2ðxÞ ¼ �
X3

i¼1

ciS
0
ie
�Rix þM2C ;

Q2ðxÞ ¼ �
X3

i¼1

ciTie�Rix þ Q2C ð7bÞ

where the coefficients in Eq. (7) are given in the Appendix; NiC(x),
QiC(x), and MiC(x), are the internal forces of substrates i (i = 1, 2)
based on the conventional composite beam theory (rigid joint mod-
el), which can be expressed as

N1C ¼ �
aM

a0
MT �

aN

a0
NT ; N2C ¼ NT � N1C ; ð8aÞ
Δ

Δ

Δ

Δ

Δφ
φ

Δφ

(c)
ventional rigid joint; (b) the semi-rigid joint; and (c) the flexible joint.
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M1C ¼ �
g
n

aM

a0
þ h2

2D2n

� �
MT �

g
n

aN

a0
þ 1

A2n

� �
NT ;

M2C ¼ MT �M1C �
h1 þ h2

2
N1C ; ð8bÞ

Q 1C ¼ �
g
n
þ h1

2

� �
aM

a0
þ h2

2D2n

� �
Q T ; Q2C ¼ QT � Q1C : ð8cÞ

The interface stresses are then obtained as:

rðxÞ ¼ dQ1ðxÞ
bdx

¼ �1
b

X3

i¼1

ciRiTie�Rix þ rC ; ð9aÞ

sðxÞ ¼ dN1ðxÞ
bdx

¼ �1
b

X3

i¼1

ciRie�Rix þ sC ; ð9bÞ

where

sC ¼
dN1C

bdx
; rC ¼

dQ1C

bdx
: ð10Þ

The local deformations of the delamination tip can finally be
established as

DuF
1ð0Þ

DuF
2ð0Þ

D/F
1ð0Þ

D/F
2ð0Þ

DwF
1ð0Þ

DwF
2ð0Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

uF
1ð0Þ

uF
2ð0Þ

/F
1ð0Þ

/F
2ð0Þ

wF
1ð0Þ

wF
2ð0Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
�

uR
1ð0Þ

uR
2ð0Þ

/R
1ð0Þ

/R
2ð0Þ

wR
1ð0Þ

wR
2ð0Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

S11 S12 S13

S21 S22 S23

S31 S32 S33

S41 S42 S43

S51 S52 S53

S61 S62 S63

0
BBBBBBBB@

1
CCCCCCCCA

N

M

Q

0
B@

1
CA;

ð11Þ

where S = {Sij}6�3 is a matrix representing the local
deformation compliance at the delamination tip and given
in Appendix. fuF

1ð0Þ; uF
2ð0Þ; /F

1ð0Þ; /F
2ð0Þ; wF

1ð0Þ; wF
2ð0Þg

T repre-
sents the displacement components of the respective intact
substrates at the delamination tip by the flexible joint model;
fuR

1ð0Þ; uR
2ð0Þ; /R

1ð0Þ; /R
2ð0Þ; wR

1ð0Þ; wR
2ð0Þg

T represents the dis-
placement components at the delamination tip based on the con-
ventional rigid joint model. The superscripts ‘‘F’’ and ‘‘R’’ are used
to denote the solutions based on the flexible and rigid joint models,
respectively. fDuF

1ð0Þ; DuF
2ð0Þ; D/F

1ð0Þ; D/F
2ð0Þ; DwF

1ð0Þ; DwF
2ð0Þg

T

is the delamination tip deformations and expressed as the differ-
ence between the rigid and flexible joint models. N, M, Q are a group
of self-equilibrium loading parameters acting at the delamination
tip, which are defined as

N ¼ N1Cð0Þ � N10; ð12aÞ

Q ¼ Q 1Cð0Þ � Q 10; ð12bÞ

M ¼ M1Cð0Þ �M10: ð12cÞ
3.2. Governing equations of delaminated beam-columns

For a laminated composite beam-column, the shear deformation
can be taken into account in a generalization of Timoshenko beam
theory. The governing differential equations for the delaminated
beam-column with constant cross sections under constant compres-
sion can be expressed as (Bažant and Cedolin, 1991):

Dj
d3/j

dx3 þ Pj
d2wj

dx2 ¼ p; ðj ¼ 1 to 4Þ; ð13aÞ

Dj
d2/j

dx2 þ Bj
dwj

dx
� /j

� �
¼ 0; ðj ¼ 1 to 4Þ; ð13bÞ

where /jðxÞ and wj(x) are the rotations and transverse displace-
ments of beam regions j (j = 1–4) (Fig. 2(a)), respectively; Pj = �Nj
is the resultant compressive force applied at the neutral axis of
sub-layers j (j = 1–4), and p is the transverse distributed load; Bj

and Dj are the transverse shear and bending stiffness, respectively,
and Bj = 5Gjbhj/6 and Dj = EjIj (Gj, Ej and Ij are the transverse shear
modulus, Young’s modulus and the moment of inertia of beam re-
gions j (j = 1–4) in Fig. 2(a), respectively; b is the width of the com-
posite beam-column).

When p = 0, the general solution of Eq. (13) can be obtained as
(Bažant and Cedolin, 1991):

wjðxÞ ¼ Cj
1 þ Cj

2 cos kjxþ Cj
3xþ Cj

4 sin kjx; ðj ¼ 1 to 4Þ; ð14aÞ

/jðxÞ ¼ �bjC
j
2kj sin kjxþ Cj

3 þ bjC
j
4kj cos kjx; ðj ¼ 1 to 4Þ; ð14bÞ

where k2
j ¼

Pj=Dj

1�Pj=Bj
and bj ¼ 1� Pj=Bj.

Due to the symmetry of the delamination area in the beam with
respect to the center line (see Fig. 2(a)), the rotations and trans-
verse displacements of the delaminated sub-layers can be reduced
as

wjðxÞ ¼ Cj
1 þ Cj

2 cos kjx; ðj ¼ 3;4Þ; ð15aÞ

/jðxÞ ¼ �bjC
j
2kj sin kjx; ðj ¼ 3;4Þ: ð15bÞ
3.3. Boundary and continuity conditions

It is assumed that the considered specimen is simply supported
at both ends, and the boundary conditions for different regions and
the continuity conditions for the considered problem in Fig. 2(a)
can be expressed as

At x = L � a:

wj ¼ 0; ðj ¼ 1;2Þ; ð16aÞ

/j;x ¼ 0; ðj ¼ 1;2Þ; ð16bÞ

At x = �a:

/j ¼ 0; ðj ¼ 3;4Þ: ð17Þ

The continuity conditions at the delamination tip (Fig. 2(a)) are:
At x = 0:

w1 ¼ w3; w2 ¼ w4; ð18aÞ

/1 ¼ /3; /2 ¼ /4; ð18bÞ

w1 þ DwF
1 ¼ w2 þ DwF

2; ð18cÞ

/1 þ D/F
1 ¼ /2 þ D/F

2; ð18dÞ

where DwF
j and D/F

j are the local deformation of the delamination
tip as defined in Eq. (11). It can be seen from Eq. (18) that the con-
tinuity conditions considered in this study allow the delaminated
sub-layers and intact composite substrates at the location of the
delamination tip have their respective deformations, and as a result,
a flexible joint is formed at the delamination tip, with which the lo-
cal delamination tip deformation are taken into account, which is
thus different from the conventional rigid joint as shown in most
existing studies in the literature where both the rotation and defor-
mations of each sub-sections are artificially restrained to be identi-
cal. As already demonstrated in the sub-layer local delamination
buckling (Qiao et al., 2010), an equivalent but relatively longer
effective length ratio of the local delamination buckling is achieved
by considering the local delamination tip deformation.

A set of equations thus consist of six boundary conditions (Eqs.
(16) and (17)) and six continuity conditions (Eq. (18)), leading to a
total of 12 equations for 12 unknown coefficients, i.e., Cj

1; Cj
2; Cj

3
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and Cj
4 (j = 1,2), Cj

1 and Cj
2 ðj ¼ 3;4Þ. These equations are linear and

homogenous, and the coefficients of 12 unknowns can be written
in a matrix. The equations are constructed in the following matrix
form:

ka ¼ 0; ð19Þ

where K denotes the 12 � 12 matrix of coefficients, and a is the vec-
tor of 12 unknowns. Only the nontrivial solutions are of interest,
where all the unknown parameters are not equal to zero. For a non-
trivial solution, where a – 0, the lowest value of load P is sought,
such that the determinant of the coefficient matrix K must vanish
and the lowest value gives the critical buckling load. However,
due to the complexity of the delamination tip deformation consid-
ered in this study, the analytical expressions for det(K) are too com-
plicated to be presented as explicit closed-form formulas.

4. Comparisons and validation

The validity of the proposed method will be demonstrated in
this section by comparing the present analytical solution with
the ones predicted by the conventional rigid joint model, the
semi-rigid joint model, and finite element analysis (FEA). In the
comparison, the solutions based on the rigid joint model can be
easily obtained by neglecting the delamination tip deformations,
i.e., setting the delamination tip deformations in the continuity
equations of Eq. (18) to be zero, while the semi-rigid joint model
are reduced from the flexible joint model by simply neglecting
the interface deformations, i.e., setting the interface compliances
Cni and Csi in Eq. (5) to be zero. The finite element (FE) results are
taken as benchmark in the present numerical comparisons. In
FEA, there are two major steps. The first one is to determine the
stresses under the given boundary conditions and loading system
through a linear static analysis; while the second one is to obtain
the results in terms of load factors (eigenvalues) and buckling
mode shapes (eigenvectors) through an eigenvalue analysis. In
the FE modeling, the delaminated bi-layer beam-column is mod-
eled by the commercial finite element package ANSYS10.0 as a
plane stress structural plane element (PLANE42). To better capture
the local deformations near the delamination tips and preserve
more accurate numerical results, the refined elements at locations
near the delamination tips are employed. The finite element
arrangement and a typical buckled mode shape of the delaminated
bi-layer beam-column are shown in Fig. 5.

A composite bi-layer beam-column specimen with interface
delamination under pure end-loaded compressions (e = 0) is first
examined. The composite beam with both isotropic (E(1) = E(2) =
100 GPa, t(1) = t(2) = 0.3) and orthotropic ðEð1Þ11 ¼ Eð2Þ11 ¼ 100 GPa;
Eð1Þ33 ¼ Eð2Þ33 ¼ 10 GPa; Gð1Þ13 ¼ Gð2Þ13 ¼ 5 GPa; tð1Þ13 ¼ tð2Þ13 ¼ 0:3Þ material
properties are analyzed. In the following analysis, the obtained
Fig. 5. FE model of the bi-layer beam-column with through-the-width delaminati
critical buckling load (Pcr) is normalized with respect to the classi-
cal Euler buckling load (PE) of the intact composite beam in order
to present the buckling behavior and manifest the influence of var-
ious parameters, i.e.,

Pcr ¼
Pcr

PE
¼ Pcr

4p2D11=L2 ; ð20Þ

where D11 is the bending stiffness of the intact composite beam-
column.

Comparisons of normalized buckling loads with respect to dif-
ferent delamination length ratios (a/L) among different joint mod-
els and FEA are shown in Figs. 6 and 7 for a simply supported bi-
layer beam-column (without any eccentricity) with isotropic and
orthotropic material properties, respectively. To better compare
the predictions by different models, the solutions are also listed
in Tables 1 and 2, where some available solutions in the literature
based on the assumption of rigid joint at the delamination tips are
also compared (Parlapalli and Shu, 2004; Kryzanowski et al., 2008).
The slenderness ratios of the bi-layer beam-column, L/(h1 + h2), for
both the materials are fixed to be 5, and the total thickness of the
composite bi-layer column is unit. The symmetric delamination
buckling (where h1/(h1 + h2) = 0.5 and each sub-layer has the same
geometry and material properties) and asymmetric delamination
buckling (where h1/(h1 + h2) = 0.1, and each sub-layer has the same
material properties) are, respectively, analyzed. In Figs. 6 and 7, as
expected, the normalized buckling load decreases with the increas-
ing of the delamination length ratio for both symmetric and asym-
metric delamination buckling. It can be further found that the
normalized buckling load in the asymmetric delamination case
(Figs. 6(b) and 7(b)) reduces much more rapidly after the delami-
nation length ratio grows larger than 0.2; among different models,
as the delamination grows to a relatively large level (e.g., a/L ap-
proaches to 1.0), all the solutions asymptotically converge to the
same one, indicating the reduced effects of local delamination tip
deformation and transverse shear. As shown in Fig. 6(b), for the
asymmetric delamination buckling, the buckling mode shape of
the bi-layer beam-column changes with the increasing of the
delamination length ratio. When the delamination length or the
slenderness ratio of the delaminated sub-layer is relatively small
(e.g., a/L < 0.2, or a/h1 < 10), the whole beam-column is globally
buckled, indicating that the critical buckling load is primarily con-
trolled by the global buckling (Euler buckling) behavior. When the
delamination length or the slenderness ratio of the delaminated
sub-layer is relatively large (e.g., a/L > 0.4 or a/h1 > 20), only the
thin delaminated sub-layer is buckled, implying that the critical
buckling load of the bi-layer beam-column is dominantly con-
trolled by the local delamination buckling of the thin sub-layer. Be-
tween these two slenderness ratios, i.e., when 0.2 < a/L < 0.4, or
10 < a/h1 < 20, the global buckling of the whole beam and the local
on: (a) mesh of the whole specimen; and (b) a typical buckling mode shape.



(a)

(b)

Fig. 7. Comparisons of normalized buckling load among different models for
orthotropic bi-layer beam-column: (a) symmetric delamination buckling, and (b)
asymmetric delamination buckling.

(a)

(b)

Fig. 6. Comparisons of normalized buckling load among different models for
isotropic bi-layer beam-column: (a) symmetric delamination buckling, and (b)
asymmetric delamination buckling.
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buckling of the delaminated sub-layer co-exist. It should be men-
tioned that there is no unique definition of buckling modes for del-
aminated beam-columns in the literature. According to the study
(Short et al., 2001), the categorization of buckling modes was pri-
marily based on the delamination geometry, where the local mode
occurs when the upper sub-laminate is thin and the area of delam-
ination is large; and the global mode is observed when the delam-
ination has a small area and is deeper through the thickness. While
in the studies of Kryzanowski et al. (2008) and Ovesy and Kharazi
(2011), the buckling modes were characterized by the buckling
mode shapes. Thus, the classification of the buckling modes in this
study follows those classifications (Kryzanowski et al., 2008; Ovesy
and Kharazi, 2011), i.e., different buckling modes are classified
from the apparent mode shapes rather than any theoretically
definitions.

As shown in Fig. 6(a), the solutions predicted by the semi-rigid
joint model are identical with those provided by the rigid joint
model, indicating that the semi-rigid joint model cannot provide
better predication of critical buckling load for the symmetric
delamination buckling than the conventional rigid joint model.
This phenomenon is due to the fact that the semi-rigid joint model
only releases the restraint on the rotation of both the sub-layers at
the delamination tip, which has no effect on the solution when the
specimen consisting of two symmetric sub-layers under pure com-
pression or bending moment. The rotations of the two sub-layers
in this symmetric delamination case are in fact identical. While
for the asymmetric delamination buckling, there exists different
rotation of each sub-layer after it buckles. Due to the release of
the restriction on the rotation of each sub-layer, the semi-rigid
joint model is able to capture the local rotation effect of sub-layers
at the delamination tip, and it thus provides better predications of
the critical buckling loads than the rigid joint model (see Figs. 6(b)
and 7(b)). Nevertheless, because the deformation at the delamina-
tion tip is fully restrained in the rigid joint model and only the indi-
vidual sub-layer rotations are allowed while individual
displacements are prohibited in the semi-rigid joint model, both
these two models overestimated the critical buckling load com-
pared with the FEA. Through releasing the local delamination tip
deformation such that each sub-layer has their individual rotation
and elastic deformation at the delamination tip, the local delami-
nation tip deformation is retrieved by the flexible joint model. As
a result, the critical buckling loads predicted by the flexible joint
model are much closer to those evaluated by FEA (see Figs. 6 and
7), which verifies the accuracy and improvement offered by the
present solution. On the other hand, it manifests that the local
delamination tip deformation plays an important role in accurately
evaluating the critical buckling load, especially for the material
with the low transverse shear modulus (i.e., orthotropic vs. isotro-
pic materials) and when the delamination ratio (a/L) is small.
5. Parametric studies

To further illustrate the improved accuracy brought by the pres-
ent solution and shed light on the effects of local delamination tip



Table 1
Normalized buckling load for simply supported bi-layer beam-columns with isotropic material property.

a/L h1/(h1 + h2) = 0.1 h1/(h1 + h2) = 0.5

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Rigid joint model 0.9723 0.2494 0.1109 0.0624 0.9997 0.9912 0.9343 0.7867
MSRao and Shu (2004) 0.9723 0.2494 0.1109 0.0624 0.9997 0.9912 0.9343 0.7867
Kryzanowski et al. (2008) 0.9723 0.2494 0.1109 0.0624 0.9997 0.9912 0.9343 0.7867
Semi-rigid joint model 0.9487 0.2431 0.1093 0.0613 0.9997 0.9912 0.9343 0.7867
Flexible joint model 0.9193 0.2295 0.1038 0.0607 0.9759 0.9655 0.9090 0.7660
FEA 0.8985 0.2197 0.0976 0.0594 0.9643 0.9550 0.8967 0.7534

Table 2
Normalized buckling load for simply supported bi-layer beam-columns with orthotropic material property.

a/L h1/(h1 + h2) = 0.1 h1/(h1 + h2) = 0.5

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Rigid joint model 0.8307 0.2374 0.1082 0.0613 0.7602 0.7581 0.7403 0.6726
Semi-rigid joint model 0.7801 0.2165 0.1027 0.0598 0.7602 0.7581 0.7403 0.6726
Flexible joint model 0.7194 0.2038 0.0983 0.0594 0.7297 0.7274 0.7129 0.6472
FEA 0.7099 0.2199 0.1055 0.0665 0.7153 0.7132 0.6977 0.6312
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deformations and transverse shear on the critical buckling load of
the delaminated composite beam-column, a parametric study is
conducted in this section. The critical buckling load of a delaminat-
ed beam-column depends on various loading, geometric and mate-
rial parameters. In this section, the influences of a few key factors
(e.g., delaminated sub-layer thickness ratio, loading eccentricity,
and interface compliance) on the buckling load are analyzed.
5.1. Effect of delaminated sub-layer thickness ratio

The variations of the normalized critical buckling load with re-
spect to the delaminated sub-layer thickness ratio h1/(h1 + h2) for
three different delamination length levels (a/L = 0.2, a/L = 0.4, and
a/L = 0.6) are compared and shown in Fig. 8. The loading, geometry
and material properties of the bi-layer beam-column are the same
as the isotropic case examined in Section 4. In this examination,
the delaminated sub-layer thickness ratio h1/(h1 + h2) varies from
0.05 (thin film delamination buckling) to 0.5 (symmetric delamina-
tion buckling). It can be seen from Fig. 8 that when the delamina-
tion length ratio is relatively small (e.g., a/L 6 0.2), the change of
the delaminated sub-layer thickness does not affect the normal-
ized critical buckling load much, which implies that the buckling
Fig. 8. Effect of delaminated sub-layer thickness ratio on the normalized critical
delamination buckling load in bi-layer beam-column.
strength is relatively independent of the through-thickness posi-
tion of the delamination for a short delamination. With the growth
of the delamination (i.e., the increase of a/L), the normalized buck-
ling load reduces rapidly with the decrease of the delaminated sub-
layer thickness ratio, indicating that, as the delamination moves
outward the surface from the mid-plane, the loading capacity of
the beam-column will rapidly decrease. Fig. 9 shows the buckling
mode shapes of the same beam-column (without any loading
eccentricity) with a fixed delamination length ratio of a/L = 0.4
for different delaminated sub-layer thickness ratios. It indicates
that the buckling mode shape changes from the global buckling,
to global-local coexistent buckling, and to local sub-layer delami-
nation buckling as the position of delamination gradually moves
from inside to outside of the beam-column or the thickness of
one sub-layer decreases. As shown in Fig. 9, when there is a thin
delaminated sub-layer (thin debonded film), the critical buckling
load of the beam-column is more controlled by the local delamina-
tion buckling of the thin sub-layer, resulting in a significantly low-
er buckling strength when compared to the Euler buckling load of
the intact beam-column.

5.2. Effect of loading eccentricity

To examine the initial imperfection of the beam-column such as
initial curve of the structure or loading eccentricity, the effect of
the loading eccentricity on the normalized critical buckling load
for a bi-layer beam-column with delamination that has already
developed to a certain stage of a/L = 0.4 will be examined. It should
be mentioned that in some cases there will be no buckling or the
critical buckling load cannot be solved if imperfection is accounted
for, and this uncertainty will depend on the type or the ‘‘value’’ of
the introduced imperfection. For the considered specimen chosen
in this study, the eccentric axial load is always applied within
the cross section area, and the slenderness ratio for the considered
specimen is within a reasonable range, i.e., not too small or too
large. As a result, the introduced imperfection resulted from the
considered loading eccentricity is small, and the eigenvalue solu-
tion of the determinant of the matrix K always exists, leading to
an ever existent critical buckling load of the considered delaminat-
ed beam-column. The geometry and material properties of the bi-
layer beam-column are the same as the isotropic one examined in
Section 4. The variations of the normalized critical buckling load
with respect to the loading eccentricity parameter l for four



Fig. 9. Buckling mode shapes for bi-layer beam-column with a/L = 0.4 and different delaminated thickness ratio.
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different delaminated sub-layer ratio cases (i.e., h1/(h1 + h2) = 0.5,
0.3, 0.2, and 0.1) are shown in Fig. 10. The loading eccentricity ratio
l = e/(h1 + h2), which is defined in Fig. 2(b), varies from 0 (pure
compression) to 0.5 (loaded at the edge point). As expected (see
Fig. 10), the buckling strength of the bi-layer beam-column de-
creases with the increasing of the eccentricity of the applied com-
pression load. However, for the symmetric delamination buckling
(h1/(h1 + h2) = 0.5) where the buckled mode is primarily controlled
by the global behavior (see Fig. 8), as the compression load moves
from the mid-plane (l = 0) to the cross section edge (l = 0.5) of the
beam-column, the effect of loading eccentricity is negligible only
with a reduction around 2.7% of critical buckling capacity. How-
ever, as the delamination moves outward the surface from the
mid-plane, the loading capacity of the beam-column decreases
much more observably with the increase of the loading eccentric-
ity. An interesting phenomenon occurs between the delaminated
sub-layer ratio h1/(h1 + h2) = 0.3 and h1/(h1 + h2) = 0.2, where the
decreasing trend of the buckling load with the increasing loading
eccentricity is convex for the first one (i.e., h1/(h1 + h2) = 0.3), which
is totally different from the latter one (i.e., h1/(h1 + h2) = 0.2) exhib-
iting a concave decrease. For the moderately thick sub-layers as
shown in these two cases, a coexistent global-local buckling mode
exists (see Fig. 9). When there is a thin delaminated sub-layer
Fig. 10. Effect of loading eccentricity on the normalized critical delamination
buckling load in bi-layer beam-column.
(film) (e.g., h1/(h1 + h2) = 0.1) where the local sub-layer delamina-
tion buckling controls, the effect of loading eccentricity becomes
small but still quite noticeable.

5.3. Effect of interface compliance

In the flexible joint model, when the interface is assumed to be
infinitely rigid (i.e., Cn = Cs = 0), the local delamination tip deforma-
tion due to the interface stress diminishes, and the flexible joint
model will converge to the semi-rigid joint model. Since both the
interface normal and shear stresses contribute to the local delam-
ination tip deformations, the effect of the interface normal compli-
ance Cn resulted from the through-thickness Young’s modulus and
the shear compliance Cs due to the transverse shear modulus (as
shown in Eq. (5)) on the critical buckling load will be separately
investigated in this section. The slenderness ratio and thickness
of the considered bi-layer beam-column are the same as examined
in Section 4, and the delamination length ratio and the delaminat-
ed sub-layer thickness ratio are fixed to be, respectively, a/L = 0.4,
and h1/(h1 + h2) = 0.2, in which a combined local-global buckling
mode (see Fig. 9) is anticipated. In examining the effect of the
interface normal compliance (Cn) on the buckling load, the
through-thickness Young’s modulus E33 varies from E33/E11 = 0.05
to E33/E11 = 10, while keeping the longitudinal Young’s modulus
E11, transverse shear modulus G13 and Poisson’s ratio t13 the same
as the orthotropic material properties studied in Section 4. To
study the effect of the interface shear compliance (Cs), the sub-
layer transverse shear modulus G13 varies from G13/E11 = 0.05 to
G13/E11 = 10 while keeping the other material properties the same
as the orthotropic ones studied in Section 4.

Fig. 11 shows the variation of the normalized critical delamina-
tion buckling load with respect to the interface compliances for the
bi-layer beam-column under pure compression based on three dif-
ferent joint models as well as the FE model. Overall, a good agree-
ment between the flexible joint model and the FEA is observed. It is
obvious from Fig. 11(a) that the solutions predicted by the rigid
joint model and semi-rigid joint model are independent of the
through-thickness Young’s modulus since both of them are based
on the one dimensional beam theory. However, as shown in
Fig. 11(a), when log(E33/E11) is less than -0.6 (i.e., E33/E11 < 0.25,
which is common in orthotropic composite material), the critical
normalized buckling load of the considered bi-layer beam-column
decreases rapidly with the decreasing through-thickness Young’s
modulus, and consequently, the difference between the rigid joint



(a)

(b)

Fig. 11. Effect of interface compliance on the normalized critical delamination
buckling load in bi-layer beam-column: (a) interface normal compliance, and (b)
interface shear compliance.
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model and the flexible joint model becomes much larger. It indi-
cates that both the rigid and semi-rigid joint models significantly
overestimate the buckling strength for composite beam-column
structures with low through-thickness Young’s modulus. On the
other hand, the present flexible joint model, to some extent as a
pseudo-2D model, is capable of capturing the local delamination
tip deformation and thus providing an improved prediction of
buckling strength.

The variation of the normalized critical delamination buckling
load with respect to the interface shear compliance (Cs) is shown
in Fig. 11(b). In this case, the solutions predicted by all the three
joint models decrease with the decreasing of the transverse shear
modulus. Nevertheless, the differences among three solutions
based on three different joint models becomes larger with the
decreasing transverse shear modulus, which means that the effect
of the interface shear deformation on the buckling behavior is
more observable when the interface becomes more shear
compliant.

The increasing discrepancies of the critical buckling load among
the rigid, semi-rigid, and flexible joint models with the increasing
interface compliance coefficients (Cn and Cs) shown in Fig. 11 dem-
onstrate that the local delamination tip deformations are a key fac-
tor for accurately evaluating the buckling strength in composite
beam-columns, especially for those with material properties of rel-
atively lower through-thickness stiffness and/or transverse shear
stiffness. Fig. 11(b) also demonstrates that the transverse shear
modulus of the sub-layers plays a significant role to all the three
joint models.

6. Conclusions

Based on the flexible joint model (Qiao and Wang, 2004), an im-
proved one-dimensional (1-D) analytical model is developed in
this study to analyze the buckling behavior of a delaminated bi-
layer composite beam-column. The transverse shear deformation
and local delamination tip deformations are taken into consider-
ation by modeling the delaminated sub-layers and intact sub-
strates as individual Timoshenko beams. A deformable interface
is introduced to establish the continuity condition at the interface
between the intact substrates. As a result, the elastic deformations
of the joint, such as differential axial extension, normal peeling and
rotations of the two delaminated sub-layers at the delamination
tips are fully captured, which completely differs from the conven-
tional rigid joint in most existing studies in the literature where
the local delamination tip deformations are fully ignored. More-
over, by accounting for the global deformations of the intact region
in the delaminated composite beam-column, the present model is
capable of capturing the buckling mode shape transitions from glo-
bal, to global-local coexistent, and to local buckling for asymmetric
delamination buckling as the interface delamination increases.
Comparisons among the conventional rigid joint model, semi-rigid
joint model, the present flexible joint model, and FEA show that the
former two models overestimate the critical buckling load while
the solutions predicted by the present model agree well with those
evaluated by FEA. On the other hand, it indicates that the local
delamination tip deformation plays an important role in accurately
evaluating the buckling strength of a delaminated composite
beam-column.

Based on the parametric study by the present flexible joint
model, the following observations of the effects of loading, geom-
etry and material properties on the buckling behavior of delami-
nated composite beam-columns are obtained:

(1) When the delamination length ratio is relatively small (e.g.,
a/L 6 0.2), the buckling strength is relatively independent of
the through-thickness position of the delamination; while as
the delamination moves outward the surface from the mid-
plane, the loading capacity of the beam-column will rapidly
decrease, and at the same time, gradual transitions of buck-
ling mode shapes from global to combined global-local and
finally to sub-layer local delamination buckling take place.

(2) For symmetric delamination buckling (h1/(h1 + h2) = 0.5), the
effect of loading eccentricity on the buckling load is negligi-
ble; as the delamination moves outward the surface from
the mid-plane, the loading capacity of the beam-column
decreases considerably with the increase of the loading
eccentricity.

(3) For orthotropic composite beam-columns with relatively
low through-thickness Young’s modulus, due to the limit
of one dimensional beam theory, the rigid and semi-rigid
joint models significantly overestimate the buckling
strength when compared with the present model, implying
that the present model, to some extent, is a pseudo-2D
model for solving composite beam-column buckling prob-
lem and capable of capturing the through-thickness effect
of beams.

(4) As the interface normal and shear compliances increase,
the discrepancies of solutions among the rigid, semi-rigid,
and flexible joint models increase, demonstrating that the
local delamination tip deformations play a key role for
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accurately evaluating the buckling strength of delaminated
composite beam-columns, especially for those with mate-
rial properties of relatively lower through-thickness stiff-
ness and transverse shear stiffness.

In summary, the improved analytical solution based on the flex-
ible joint model presented in this study can be used to better pre-
dict the buckling behavior of delaminated composite column and
beam-column structures and provides a viable and effective tool
when compared to numerical finite element and other high-order
beam models.
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