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Abstract In this study, we found that pectenotoxin-2 (PTX-2)
decreased cell viability and inhibited telomerase activity with
downregulation of hTERT expression in human leukemia cells.
PTX-2 treatment also reduced c-Myc and Sp1 gene expression
and DNA binding activity. Further chromatin immunoprecipita-
tion assay demonstrated that PTX-2 attenuated the binding of c-
Myc and Sp1 to the regulatory regions of hTERT. We also ob-
served that PTX-2 treatment attenuated the phosphorylation of
Akt, thereby reducing the phosphorylation and nuclear translo-
cation of hTERT. We concluded that PTX-2 suppressed telome-
rase activity through the transcriptional and post-translational
suppression of hTERT and this process precedes cellular differ-
entiation of human leukemia cells.

Structured summary:

MINT-6742762:

hTERT (uniprotkb:O14746) physically interacts (MI:0218)

with AKT (uniprotkb:P31749) by anti bait coimmunoprecipita-

tion (MI:0006)

� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Telomeres are responsible for maintaining chromosomal sta-

bility by preventing attrition as well as end-to-end fusions and

chromosomal rearrangements [1–3]. Actually, most normal

human somatic cells progressively lose their telomeres with

each cell division [4,5]; however, telomerase activity is reacti-

vated through an unknown mechanism in over 85% of human

cancer cells and spontaneously immortalized cells, allowing
Abbreviations: PTX-2, pectenotoxin-2; TRAP, telomeric repeat ampli-
fication protocol; ELISA, enzyme-linked immunosorbent assay; ChIP,
Chromatin immunoprecipitation; PARP, DNA repair enzyme poly-
(ADP-ribose) polymerase
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these cells to survive with sustained telomeres [6,7]. Therefore,

this enzyme offers an attractive target for chemoprevention

and other anticancer strategies.

The telomerase complex consists of two essential compo-

nents: hTERT [8,9] and hTR [10]. Although hTR is ubiqui-

tously expressed in most cells [10], expression of hTERT is

limited in germinal and cancer cells [6,7]. As a result, many

studies have focused on relationships between apoptosis and

telomerase activity using anticancer agents, in order to find

the precise mechanism of hTERT expression, which is thought

to be a more attractive target than hTR [11,12]. The hTERT

promoter region includes two typical E-boxes and several

GC-boxes for transcription factors c-Myc and Sp1, respec-

tively [13]. c-Myc directly binds with E-box and induces

hTERT transcription and subsequent cell proliferation [14].

The core promoter for hTERT expression also contains Sp1

binding sites. Particularly, Sp1 works in conjunction with c-

Myc to activate transcription of hTERT [15]. In addition,

the regulation of hTERT activity is controlled in post-transla-

tional alterations [16–18], as well as at the transcriptional level.

Pectenotoxins are a group of natural toxins that can be ex-

tracted from marine sponges, also found in shellfish and intox-

icated humans [19]. The most toxic compound in this group is

pectenotoxin-2 (PTX-2), which is isolated from Dinophysis

spp. [20,21]. Previous studies have been also shown that

PTX-2 may modify actin cytoskeletons due to its depolymer-

ization through their binding sites with actin in vitro and

in vivo [22,23]. In addition, this compound was reported to dis-

play selective and potent cytotoxicity against human lung, co-

lon, and breast cancer cells [24,25].

This study was designed to investigate the underlying mech-

anisms involved in the induction of apoptosis by PTX-2 in hu-

man leukemia cells, with special emphasis on its role on the

regulation of telomerase, an important molecular marker for

carcinogenesis.
2. Materials and methods

2.1. Reagents and antibodies
PTX-2 was prepared as described previously [24]. Antibodies against

c-Myc, Sp1, DNA repair enzyme poly-(ADP-ribose) polymerase
(PARP), caspase-3, hTERT, and nucleolin were purchased from Santa
ation of European Biochemical Societies.
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Cruz Biotechnology (Santa Cruz, CA), and antibodies against a-tubu-
lin, phospho (p)-Akt, Akt, and Akt substrate were purchased from Cell
Signaling (Beverly, MA).

2.2. Cell culture
Human leukemia U937, THP-1, HL-60 cells, human prostate cancer

cell PC-3, and human colorectal cancer cell HCT116 were obtained
from the American Type Culture Collection (Manassas, VA). Cells
were maintained in an RPMI-1640 medium supplemented with 10%
heat-inactivated FBS and 1% penicillin–streptomycin (Sigma) in 5%
CO2 at 37�C.

2.3. Flow cytometric analysis
In order to analyze the percentage of apoptotic cells with annexin V

staining, cells were washed in phosphate-buffered saline and then incu-
bated with annexin V-fluorescein isothiocyanate (R&D Systems; Min-
neapolis, MN). Normal murine splenocytes were pooled, washed with
PBS, fixed in 70% ethanol for 20 min at �20 �C, and incubated with
40 lg/ml propidium iodide (PI; Sigma) and 100 lg/ml RNase A for
30 min at 37 �C in the dark. In a parallel experiment, GFP-conjugated
CD11b antibody (Pharmingen; Sin Diego, CA) was used for the detec-
tion of cell differentiation. Cells were analyzed using a FACSCalibur
flow cytometer (Becton Dickenson; San Jose, CA).
2.4. In vitro caspase-3 activity assay
The activity of caspase-like protease was measured using a caspase

activation kit (R&D System) according to the manufacturer�s protocol.
2.5. RNA extraction and RT-PCR
Total RNA was isolated using the Trizol reagent (GIBCO-BRL;

Gaithersburg, MD) according to the manufacturer�s recommenda-
tions. Genes of interest were amplified from cDNA which was reverse
transcribed from 1 lg of total RNA using the One-Step RT-PCR Pre-
Fig. 1. PTX-2-induced apoptosis in human leukemia cells. Cells were seeded a
2 for 72 h. (A) Annexin V+ cells are represented on the x-axis, while the num
analyzed in normal murine splenocytes by flow cytometry. Arrows indicate t
determined by the manufacturer�s protocol. (D) Western blot was performe
from three independent experiments. Statistical significance was determined
mix (iNtRON Biotechnology; Sungnam, Republic of Korea). Primers
and conditions for the amplification of hTERT, GAPDH, c-Myc, and
Sp1 have been described previously [26].

2.6. Western blot analysis
Total cell extracts were prepared using PRO-PREP protein extrac-

tion solution (iNtRON Biotechnology; Sungnam, Republic of Korea).
The preparation of cytoplasmic and nuclear extracts was conducted
using the NE-PER nuclear and cytosolic extraction reagents (Pierce;
Rockford, IL). Total cell extracts were separated on 10% polyacryl-
amide gels, and then transferred to nitrocellulose membranes using
standard procedures. The membranes were developed using an ECL
reagent (Amersham; Arlington Heights, IL).

2.7. Immunoprecipitation
The total cell extracts were immunoprecipitated with anti-hTERT

overnight at 4 �C. Immune complexes were collected using protein
A/G-Sepharose beads (Santa Cruz Biotechnology), washed, and eluted
in sample buffer. Samples were run on 8% SDS–PAGE gels, trans-
ferred to nitrocellulose membranes, and probed with the Akt-substrate
antibody or hTERT antibody. Blots were developed using the ECL re-
agent.

2.8. Telomerase activity assay
Telomerase activity was measured using a TRAP-ELISA kit (Boeh-

ringer Mannheim; Mannheim, Germany) according to the manufac-
turer�s instructions.

2.9. Electrophoretic mobility shift assay (EMSA)
DNA–protein binding assays were carried out with nuclear extract.

Synthetic complementary c-Myc (5 0-GGA AGC AGA CCA CGT
GGT CTG CTT CC-3 0) and Sp1 (5 0-ATT CGA TCG GGG CGG
GGC GAG C-3 0) binding oligonucleotides (Santa Cruz) were 3 0-biotin-
ylated using the biotin 3 0-end DNA labeling kit (Pierce).
t 4 · 104 cells/ml and treated with the indicated concentrations of PTX-
ber of cells counted is represented on the y-axis. (B) DNA content was
he population of cells in the sub-G1 phase. (C) Caspase-3 activity was
d by standard procedure. Data are expressed as overall means ± S.D.
by Student�s t-test (*P < 0.05 vs. vehicle control).
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2.10. Chromatin immunoprecipitation (ChIP) assay
The ChIP assay was performed using the EZ-Chip� assay kit

according to the manufacturer�s protocol (Upstate Biotechnology;
Lake Placid, NY). The primers used for the amplification of hTERT
promoter region were Sp1 (forward): 5 0-GGT ACC GAC CCC
CGG GTC CGC CCG GA-3 0 and Sp1 (reverse): 5 0-AAG CTT GCT
GCC TGA AAC TCG CGC CG-3 0 (284 bp DNA product); and c-
Myc (forward): 5 0-AGT GGA TTC GCG GGC ACA GA-30and c-
Myc (forward): 5 0-TTC CCA CGT GCG CAG CAG GA-30 (reverse)
(257 bp DNA product) [27,28].

2.11. Statistical analysis
Statistical analyses were conducted using SigmaPlot software (ver-

sion 6.0), and Scion Imaging software (http://www.scioncorp.com)
was used to quantify the results normalized to the control gene. Values
were presented as means ± S.D. Significant differences between the
groups were determined using the unpaired Student�s t-test. Statistical
significance was regarded at P < 0.05.
3. Results

3.1. PTX-2 inhibits cell proliferation of leukemia cells

To determine the effect of PTX-2 on cell growth, human

myeloid leukemia cells were treated with increasing concentra-

tions for 72 h, and apoptosis was analyzed using FACS flow

cytometer. As shown in Fig. 1A, a 72 h exposure time of each

cell line to 10 ng/ml PTX-2 resulted in an increase of more than

50%, indicating an apoptotic population. However, normal
Fig. 2. Downregulation of telomerase activity by PTX-2. Leukemia cells
Telomerase activity was measured using a TRAP-ELISA kit (A) and TRAP
PCR was performed. (D) Western blot was performed by standard procedure.
3, and HCT116. Data are expressed as overall means ± S.D. from three indepe
t-test (*P < 0.05 vs. vehicle control).
murine splenocytes cells had no effect on cytotoxicity and cell

cycle distribution (Fig. 1B). In this process, PTX-2 exposure

also increased caspase-3 activity, which was observed to in-

crease over 3-fold as compared with control cells (Fig. 1C).

Western blot analysis revealed that 10 ng/ml of PTX-2 treat-

ment for 72 h resulted in the cleaved form of caspase-3

(Fig. 1D). The cleavage of PARP was consistently revealed

by the appearance of the 89 kDa cleaved intermediate in

PTX-2 treatment. Collectively, these data indicate that PTX-

2 inhibits cell viability and leads to caspase-3 activation in leu-

kemia cells.

3.2. PTX2 represses telomerase activity in leukemia cells

As shown in Fig. 2A, telomerase activity was significantly re-

duced in cells after 72 h of exposure with PTX-2 in a dose-

dependent manner. To visualize the effect observed by

TRAP-ELISA assay, we also investigated ladder formation

by telomerase activity. As expected, the addition of PTX-2

(10 ng/ml) decreased ladder formation by telomerase

(Fig. 2B). We next performed RT-PCR and Western blot anal-

ysis to examine changes in hTERT expression following treat-

ment with PTX-2. As indicated in Fig. 2C, hTERT mRNA

decreased in leukemia cells following PTX-2 treatment. Con-

cordantly, the level of hTERT protein was also shown to un-

dergo a decrease in the whole cell extraction fraction

(Fig. 2D). The PTX-2-induced downregulation in telomerase
were incubated with the indicated concentration of PTX-2 for 72 h.
assay (B). (C) Total RNA was isolated using a Trizol reagent and RT-
(E) Telomerase activity using TARP assay was assessed in HepG2, PC-
ndent experiments. Statistical significance was determined by Student�s

http://www.scioncorp.com
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activity was not cell line specific because a similar effect was

observed in another human cancer cell lines (Fig. 2E). These

results suggest that PTX-2 treatment induces the downregula-

tion of telomerase activity through suppression of hTERT

gene expression at the transcriptional levels.

3.3. PTX-2 downregulates c-Myc- and Sp1-dependent hTERT

gene expression in leukemia cells

We next examined whether PTX-2 treatment alters the

expression and DNA binding activity of c-Myc and Sp1 in leu-

kemia cells. As shown in Fig. 3A and B, the levels of c-Myc

mRNA and protein were markedly reduced in PTX-2-treated

cells. Sp1 was also downregulated in mRNA levels, but its pro-

teins were degraded at the same conditions. Additionally,
Fig. 3. Downregulation of c-Myc and Sp1 by PTX-2. Cells were treated with
reagent and RT-PCR was performed. (B) Western blot was performed by
analyzed by a LightShiftTM chemiluminescent EMSA kit as described in Se
(left panel) and Sp1 (right panel). Total sonicated chromatin was used to use
against histone-H3 and rabbit IgG, respectively. I, input; N, negative control;
blotting using anti-c-Myc and anti-Sp1 antibodies in PC-3 and HCT116.
PTX-2 treatment resulted in a significant decrease of c-Myc

and Sp1 DNA binding activity in leukemia cells (Fig. 3C).

To further investigate the exact mechanism of PTX-2 on the

regulation of hTERT expression, ChIP assay was performed

to examine the binding of c-Myc and Sp1 on the hTERT pro-

moter regions. As shown in Fig. 3D, our results showed that

PTX-2 attenuated c-Myc (left panel) and Sp1 (right panel)

binding to the promoter regions of hTERT. PTX-2 was shown

to significantly suppress the nuclear expression of c-Myc and

Sp1 in other two cancer cell lines tested, indicating that the ef-

fect of PTX-2 was not cell type specific (Fig. 3E). These results

indicate that PTX-2 attenuates hTERT gene expression

through suppression of c-Myc- and Sp1-binding on the regula-

tory regions of hTERT.
10 ng/ml of PTX-2 for 72 h. (A) Total RNA was isolated using a Trizol
standard procedure. (C) c-Myc and Sp1 DNA binding activity was

ction 2. (D) ChIP assay was performed using antibodies against c-Myc
as input. Positive and negative controls were performed using antibody
and P: positive control. (E) Nuclear proteins were subjected to Western



Fig. 4. Suppression of Akt-dependent hTERT phosphorylation by PTX-2. Cells were incubated with the indicated concentrations of PTX-2 for 72 h.
(A) Western blot was performed by standard procedure. (B) The lysates were subjected to immunoprecipitation with the anti-hTERT antibody and
then blotted with anti-p-Akt substrate or anti-hTERT antibody. (C) Nuclear proteins were subjected to Western blotting using anti-hTERT
antibodies, and then normalized to nucleolin.
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3.4. PTX-2 attenuates nuclear translocation of hTERT through

dephosphorylation of Akt

Because Akt is reported to enhance human telomerase activ-

ity through the phosphorylation and nuclear translocation of

hTERT [17], we investigated whether PTX-2 treatment inacti-

vates the Akt pathway, resulting in hTERT dephosphorylation

and nuclear translocation. As shown in Fig. 4A, total leukemia

cell Akt levels did not change following treatment with 10 ng/

ml PTX-2 for 72 h, while p-Akt levels significantly decreased.

Since the activation of Akt is known to directly phosphorylate

hTERT, which could subsequently translocate into the nu-

cleus, we also investigated whether phosphorylation and nucle-

ar translocation of hTERT was inhibited by PTX-2 treatment.

The cells were treated with PTX-2 and then used to prepare ly-

sates that were immunoprecipitated with the anti-hTERT anti-

body. The cell lysates were subjected to Western blotting with

the anti-p-Akt substrate antibody or anti-hTERT antibody. As

can be seen in Fig. 4B, PTX-2 decreased hTERT phosphoryla-

tion at a putative Akt phosphorylation site. As already high-

lighted, because phosphorylation of hTERT is necessary for

its nuclear translocation, we determined that PTX-2 also

blocked the nuclear translocation of hTERT (Fig. 4C). These

results suggest that PTX-2 decreases phosphorylation of

hTERT and thereby possibly inhibits its translocation to the

nucleus through the dephosphorylation of Akt.

3.5. PTX-2 induces cytodifferentiation of leukemia cells

Expression of the CD11b antigen was analyzed at 72 h dur-

ing the suppression of telomerase activity by PTX-2 in leuke-
Fig. 5. Differentiation of leukemia cells by PTX-2. To investigate cellular d
line) or absence (black-shaded line) of 10 ng/ml PTX-2. After 72-h incubation
within each histogram represents the incidence of CD11b+ cells. The results
mia cells. Cells were stained with FITC-conjugated mouse

monoclonal antibody against human CD11b after 72 h of

PTX-2 treatment. As shown in Fig. 5, untreated cells were

grown in parallel and included as controls (black-shade line).

Following PTX-2 treatment, expression of CD11b significantly

increased in three leukemia cells (white-shade line). These re-

sults indicate that telomerase transcription and activity may

be reduced in all these cell lines upon induction of differentia-

tion.
4. Discussion

Telomerase is composed of a catalytic subunit, hTERT,

hTR, and TEP-1 [3–5]. In particular, hTERT has received con-

siderable attention for its role in regulating telomerase activity

[11,12]. The hTERT core promoter contains numerous tran-

scription factor binding sites, including two for c-Myc, five

for Sp1, one for Ets, and two for Inr [29,30]. Of all these tran-

scription factors, c-Myc binds directly to E-boxes at the pro-

moter of hTERT and activates hTERT transcription [14]. In

addition to the c-Myc recognition sequence (E-box), Sp1 is in-

volved in the regulation of hTERT promoter activity in vari-

ous human cells [13,15]. Similar to these findings, our results

indicate that PTX-2 suppresses telomerase activity in human

leukemia cells via the transcriptional downregulation of

hTERT through a reduction of c-Myc and Sp1 activity. Nev-

ertheless, we could not rule out the possibility that other tran-

scriptional factors might also be involved in the suppression of
ifferentiation, HL-60 cells were cultured in the presence (white-shaded
, cells were harvested and analyzed by flow cytometry. The percentage
are representative of three independent experiments.
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hTERT gene expression by PTX-2, because Ets and NF-jB are

implicated in the repression of telomerase activity [18]. It is

also known that telomerase inhibition precedes differentiation

of leukemia cells and may contribute to terminal differentia-

tion [31]. We found that ablation of telomerase may be compa-

nied with the differentiation of leukemia cells. Therefore,

further investigations are needed to identify inactivation mech-

anisms of telomerase and differentiation of leukemia cells by

PTX-2.

Akt is a potent inhibitor of apoptosis through a blocking of

caspase activation and the inhibition of chromatin condensa-

tion [32,33]. It has also been reported that constitutive and

inducible Akt activity promotes resistance to chemotherapy

in cancer cells [34]. Akt phosphorylation could also be a potent

inducer for telomerase activation via hTERT phosphorylation

linked to nuclear localization [17]. Nuclear translocation of

hTERT from a presumably nonfunctional cytosolic location

to a physiologically relevant nuclear compartment may be

one important mechanism involved in the regulation of telo-

merase function in cells. The loss of PTEN, which can act as

a counterpart of Akt, may allow malignant cells to inhibit tel-

omerase activity through decreasing hTERT mRNA levels

[35]. In this study, PTX-2 was observed to downregulate p-

Akt, and phosphorylation and translocation of hTERT. These

results clearly suggest that PTX-2 treatment regulates hTERT

at the post-translational level by downregulating its phosphor-

ylation by the Akt pathway. Recently, mitogen-activated pro-

tein kinases and serine/threonine kinases have also been shown

to phosphorylate hTERT and regulate telomerase activity

[36,37]. Therefore, further studies will be necessary to deter-

mine whether these kinases are related to the PTX-2–induced

downregulation of hTERT.

In conclusion, our study demonstrated that PTX-2 sup-

presses cell viability and telomerase activity in human leuke-

mia cells. Overall results suggest that PTX-2 can be used to

effectively inhibit telomerase activity via the transcriptional

and post-translational suppression of hTERT.
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