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Abstract

In this survey article we give a brief overview of various aspects of the recently emerging
+eld of idempotent analysis and suggest potential connections with domain theory.
c© 2004 Published by Elsevier B.V.

1. Introduction

Classical linear algebra and functional analysis have been based on (topological)
vector spaces over +elds, particular the real and complex +elds. In idempotent analy-
sis (the formal term was introduced in 1989) vector spaces are replaced by modules
(of functions) over idempotent semirings, the most common and important idem-
potent semiring being Rmax =R ∪ {−∞} with idempotent addition and multiplication
given by

a⊕ b = max{a; b} and a� b = a+ b;

or isomorphic reformulations thereof.
The structure of idempotent semirings is su6ciently rigid that signi+cant analogs of

many basic results in functional analysis can be derived. Indeed certain practitioners
of idempotent analysis advocate a “correspondence principle” for idempotent analysis,
a wide-ranging assertion (somewhere in the realm of metamathematics and supposedly
akin in spirit to N. Bohr’s correspondence principle in quantum mechanics) that there
is a correspondence between important, useful, and interesting constructions and results
in analysis over the +eld of real (or complex) numbers and appropriately analogous
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constructions and results in the idempotent analysis over idempotent semirings, par-
ticularly R−∞. The correspondence principle frequently manifests itself in practice in
settings where one considers certain “limiting” or “asymptotic” cases arising in clas-
sical analysis (see Section 12 of this survey). Ref. [9] gives a variety of illustrations
and applications of the correspondence principle.
Despite its recent origins, idempotent analysis already boasts an extensive literature

and widespread applications (although in many cases the idempotent structure appears
more implicitly than explicitly). It seems particularly suited to a variety of optimization
problems, for example optimal organization of parallel data processing. This makes
sense when one realizes that in scheduling parallel processes, a process dependent on
two earlier parallel processes must wait for the maximum run time of the two earlier
processes before it can be initiated. The +nite dimensional linear algebra is typically
the suitable tool for discrete optimization problems, while the functional analysis aspect
applies to continuous problems.
Two good sources to learn about idempotent analysis are [7] and [9]. The second

reference begins with a helpful and well-written survey article. Both books also contain
extensive references. Another useful reference is [10]. The discrete theory, which is
sometimes referred to as max-plus algebra, is treated in [3] and [4]. For the theory
of continuous lattices and domains we refer the reader to [1] or the more extensive
treatment of [6].

2. Idempotent semirings

A semiring is a quintuple (S;⊕;�; 0; 1) satisfying
(i) (S;⊕; 0) is a commutative monoid with identity 0.
(ii) (S;�; 1) is a monoid with identity 1.
(iii) a� 0= 0= 0� a for all a∈ S.
(iv) a� (b⊕ c)= a� b⊕ a� c, (b⊕ c)� a= b� a⊕ c � a for all a; b; c∈ S.
An idempotent semiring or dioid is a semiring for which the addition is idempotent:
(v) a⊕ a= a for all a∈ S.
Note that (S;⊕) is commutative idempotent monoid. If we de+ne an order by a6b iH
a⊕b= b, then the order is a partial order and any two elements a; b have a least upper
bound or join, namely a ⊕ b. Such structures are called ( join) semilattices. Thus the
additive structure of an idempotent semiring is that of a semilattice with least element
0. Conversely given a join semilattice with smallest element 0, the operation of taking
join converts it to a commutative idempotent semigroup with identity 0. We thus may
pass freely back and forth between the order-theoretic notion of a semilattice and the
algebraic notion of a commutative idempotent semigroup.
In some situations we may prefer to de+ne the order in the reverse manner: a6b iH

a ⊕ b= a. In this case every two elements of the commutative idempotent semigroup
have a greatest lower bound or meet and we obtain a meet semilattice with largest
element 0. For any speci+c example or setting of an idempotent semiring, we typically
+x the order by one means or the other so that the additive structure is either thought
of as a meet semilattice or a join semilattice. But unless the meet semilattice structure
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is speci+ed or clearly intended from context, we typically assume that S is a join
semilattice under ⊕ with smallest element 0.
There is a corresponding category of dioids whose objects are dioids and whose mor-

phisms are functions between dioids that preserve addition, multiplication, 0,
and 1.
We frequently impose further algebraic conditions on a dioid that provide a richer

algebraic theory. We say that a dioid is commutative if the multiplicative operation
� is commutative and cancellative if the multiplicative operation is cancellative for
non-zero elements. It is algebraically complete if the equation xn = a always has a
unique solution.
An important case where the cancellation law is satis+ed is requiring the nonzero

elements to form a group under multiplication. If it is additionally commutative, then
we call the dioid a semi5eld.

Proposition 2.1. If S is a dioid for which � is a group operation, then inversion is
order-reversing on S\{0}, and hence (S;6) is a lattice.

3. Topological idempotent semirings

A commutative idempotent semigroup (or semilattice) S is called metric if it is
equipped with a metric � that satis+es the minimax axiom
• �(a⊕b; c⊕d)6max(�(a; c); �(b; d)) for all a; b; c; d∈ S; and the monotonicity axiom
• a6b6c implies �(b; c)6�(a; c) and �(a; b)6�(a; c).
An idempotent semiring is metric if the additive part is metric in the above sense and
the multiplication � : S × S→ S is uniformly continuous on any order bounded subset
of S × S, where S × S is given the coordinate-sup metric.
The minimax axiom implies the uniform continuity of ⊕ and the minimax inequality

�
(

n⊕
i=1

ai;
n⊕

j=1
bj

)
6 min

�
max

i
�(ai; b�(i));

where the in+mum is taken over all permutations � of the set {1; : : : ; n}.

4. Idempotent semiring examples

1. The max-plus reals Rmax: on the set R ∪ {−∞} de+ne a ⊕ b := max{a; b}, a �
b= a + b, 0= −∞, and 1=0. This example is actually an idempotent semi+eld
((R;�) is a commutative group) that is algebraically complete. It is also an example
of a metric idempotent semiring with metric �(x; y)= |ex − ey|; this metric gives
rise to the usual topology on R and the open left rays as a basis of neighborhoods
for −∞.

2. The min-plus reals Rmin: on R∞ =R∪{∞} de+ne a⊕b :=min{a; b}, a�b= a+b,
0=∞, and 1=0. This is an isomorphic form of Rmax, the isomorphism sending
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x → −x. We also write this example as R∞, particularly when our emphasis is
more on the topological space than on the semiring structure. The semiring Rmin is
often convenient for applications to analysis and continuous optimization.

3. The max-plus extended reals: Set R=R ∪ {∞}∪{−∞} with a ⊕ b := max{a; b}
and a � b= a + b, where ∞ + (−∞)= − ∞ +∞= − ∞. While one loses the
metric and semi+eld properties with this example, it has the advantage of order
completeness. Since it is also a continuous lattice, it is often a good choice in
developing connections with domain theory. There is also an order dual version of
this example, the min-plus extended reals, where ∞ becomes the 0-element.

4. Let Rn
+ be the nonnegative octant in Rn with ⊕ the coordinatewise maximum opera-

tion. We can take for � either coordinatewise addition or coordinatewise multiplica-
tion. In the +rst case we obtain an algebraically complete cancellative commutative
dioid. Note that in the second case for n=1 we obtain an isomorphic copy of Rmax

(the isomorphism being exponentiation).
5. Let M be a monoid, a semigroup with identity 1. Let P(M) be the power set

and PFin(M) be the collection of +nite subsets with addition ⊕ given by union
and multiplication � given by set multiplication: A� B := {ab : a∈A; b∈B}. Then
0= ∅ and 1= {1}. If M =(Rn;+), then multiplication in P(Rn) corresponds to
(Minkowski) addition of subsets. If A is an alphabet and M =A∗ is the free monoid
over A, then P(A) is the dioid of (formal) languages over A.

5. Semimodules

A semimodule over an idempotent semiring R consists of a commutative monoid
(M;+) together with a left R action R×M→M (scalar multiplication) satisfying for
r; s∈R and a; b∈M
• r · (a+ b)= r · a+ r · b, r · 0M =0M ,
• (r ⊕ s) · a= r · a+ s · a, 0 · a=0M ,
• r · (s · a)= (r · s) · a, 1 · a= a.
Note that a+ a= 1 · a+ 1 · a=(1+ 1) · a= 1 · a= a; so that (M;+) must also be idem-
potent.
If M and N are R-semimodules, a homomorphism from M to N is a homomorphism

of monoids that also respects scalar multiplication. The notions of submodules and
product modules should be clear.
A semimodule M over a metric idempotent semiring R is metric if it is a metric

idempotent semigroup for which the scalar multiplication from R×M to M is uniformly
continuous on order bounded subsets of R×M .
We give some basic examples of semimodules.

1. Let X be a set and let S be an commutative idempotent (metric) semigroup.
The set B(X; S) of bounded mappings (mappings with order-bounded range) is a
commutative idempotent (metric) semigroup with respect to the pointwise oper-
ation. (In the metric case, the metric on B(X; S) is given by the uniform met-
ric �(f; g)= supx{�(f(x); g(x)) : x∈X }. Since f; g are bounded, it follows from
the monotonicity axiom that the supremum exists and is +nite.) If R is a (metric)



J.D. Lawson / Theoretical Computer Science 316 (2004) 75–87 79

semiring, then B(X; R) is a (metric) R-semimodule with respect to pointwise addition
and scalar multiplication.

2. If X = {x1; : : : ; xn} is a +nite set, then every function from X to a dioid R is bounded
and B(X; R) is isomorphic to Rn.

3. If X is a topological space and R is a metric idempotent semiring, then one can
consider the subsemimodule C(X; R) of all continuous bounded functions. Further,
if X is locally compact, then one can consider the subsemimodules C0(X; R) of
continuous functions with compact support and C∞

0 (X; R) of continuous functions
vanishing at ∞.

4. Let R be a metric idempotent semiring, and let B(X; R) be the metric semimodule of
bounded functions. A linear operator on B(X; R) is a continuous mapping H : B(X; R)
→B(X; R) such that

H (g⊕ h) = H (g)⊕ H (h); H (r � g) = r � H (g)

for any bounded functions g and h and any constant r. With respect to the operations
⊕ of pointwise addition and � of composition and with the metric

�(H1; H2) = sup{�(H1(f); H2(f)) : ∀x; f(x) ∈ [0; 1]};
the linear operators become an idempotent semiring, and the pointwise scalar mul-
tiplication gives them the structure of a semialgebra.

6. Domain theory connections

The additive structure of an idempotent semiring and of a semimodule over an
idempotent semiring is that of a semilattice (where the operation is sometimes viewed
as join and sometimes as meet, according to the context). The theory of modules
over idempotent semirings has both discrete and continuous or analytic components.
Typically, in the analytic setting the semilattices have been assumed to be the metric
semilattices, as de+ned in Section 3. However domain theory suggests a modi+ed
approach.
We recall that in a partially ordered set, the approximation relation is de+ned q�p

if whenever D is a directed set for which the supremum sup D exists and satis+es
p6 sup D, then q6d for some d∈D. A partially ordered set P is a continuous poset
if every element in P is the directed supremum of the elements that approximate it.
A poset P is a dcpo (directed complete partially ordered set) if every directed set
has a supremum and a continuous domain if it both a continuous poset and a dcpo.
A continuous lattice is a complete lattice that is also a continuous poset. A dually
continuous lattice is one that is a continuous lattice in its order dual; other dual
notions of continuity are expressed similarly.
Following the lead of [2], we suggest a modi+ed version of a continuous lattice as

a suitable structure for replacing (and generalizing) the notion of a metric semilattice
in idempotent analysis, or at least in substantial portions of it. Our proposal is the
following: replace the assumption that S is metric by the assumption that each order
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interval [a; b] = {x : a6x6b} is a continuous or dually continuous lattice, the choice
depending on context. Such a hypothesis typically generalizes assumptions made in
the metric case, may often pinpoint more closely the assumptions needed, and allows
the theory of continuous lattices and domains to come into play.
The next propositions establish close connections between continuity and metric and

provide motivation for our proposal.

Proposition 6.1. Let S be metric meet (resp. join) semilattice. Then it is a topological
semilattice with a basis of subsemilattices. If an order interval [a; b] is a complete
lattice, then it is a continuous (resp. dually continuous) lattice and the relative metric
topology agrees with the Lawson topology.

Proof. In metric semilattices the open !-balls are all subsemilattices, so the +rst asser-
tion is true. The remaining assertions can be readily deduced from the theory presented
in Chapters III and VI of [6].

Proposition 6.2. Let S be a meet semilattice that is a continuous domain with a
countable basis. Then S admits the structure of a metric semilattice such that the
metric and Lawson topologies agree.

Proof. The proof follows along the lines sketched in Exercise VI-3.17 of [6].

Since domain connections to idempotent analysis have hitherto been drawn only to
a limited extent, one would like to examine the theory from this perspective. This
will necessitate some extensions of the standard theory of domains, since one will
be working with ordered objects that are not necessarily domains, but have ordered
intervals that are continuous lattices. Conversely, idempotent analysis may provide an
opportunity to import useful and rather natural algebraic and analytic ideas into domain
theory that will make it a much more powerful tool in certain contexts and provide
new areas of application in theoretical computer science.

Problem. Find general conditions that yield equivalences between
(i) metric semilattices and continuous semilattices and
(ii) the metric and Lawson topologies.
We point out further connections and potential connections between domain theory

and idempotent analysis in the following sections.

7. Max-plus algebra

For the semimodule Rn over a semiring R, the second example of Section 5, one has
a satisfactory linear algebra, typically referred to as max-plus algebra, that shares many
features in common with classical linear algebra. For example any vector v∈Rn can
be uniquely represented in the form v= ⊕n

i=1 ri� ei, where ei is the “unit” vector with
1 in the ith coordinate and 0 in the remaining coordinates. The collection {e1; : : : ; en}
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is called the standard basis. As in conventional linear algebra, one readily proves that
any linear functional that is, semimodule homomorphism m : Rn→R, has the form

m(v) =
n⊕

i=1
mi � ai; v = (a1; : : : ; an) ∈ Rn;

where mi ∈R. Therefore, the semimodule of linear functionals on Rn is isomorphic
to Rn.
By analogy with Euclidean space, we de+ne an inner product on Rn by

〈a; b〉 = n⊕
i=1

ai � bi:

The inner product is bilinear with respect to ⊕ and �, and the standard basis is
orthonormal with respect to this inner product. Furthermore, each linear functional has
a unique representation of the form m(a)= 〈a; b〉 for some b∈Rn.

Any semimodule endomorphism H : Rn→Rn (a linear operator on Rn) has a matrix
representation with respect to the standard basis. Thus the endomorphism ring has a
representation as the n× n-matrices (with matrix operations like the usual ones, except
with respect to ⊕ and �). It is a special case of the semialgebra given in the fourth
example of Section 5.
Unlike the classical theory, the class of invertible matrices in max-plus algebra is

rather thin. However, there is another matrix in this context that plays an important
role in the computations of max-plus algebra. Let us consider max-plus algebra over
the max-plus extended reals R. Let A : Rn→Rm

be a (max-plus) linear map. Then
x �→ Ax preserves arbitrary suprema, and thus is residuated, or equivalently, the lower
adjoint of a Galois adjoint pair. The upper adjoint A† preserves arbitrary infs, and one
veri+es that it is also homogeneous with respect to the �-scalar multiplication. Thus
A† is linear in the context of semimodules over the min-plus extended reals. The fact
that Rn

is a continuous lattice and the prevalence of Galois connections provide ties
with the theory of continuous lattices and domains.
Max-plus algebra has been applied to a variety of discrete optimization problems

such as graph optimization problems, parallel computation and production scheduling,
queueing systems with +nite capacity, and timed Petri nets, timed event graphs and
stochastic versions thereof. We refer to [3,4]; further references may be found in [7,9].

8. A discrete-time Bellman equation

In this section we consider one important discrete optimization problem that can be
eHectively studied from the view-point of max-plus algebra. Let X = {x1; : : : ; xn} and
consider A :=B(X; R)∼=Rn, where R is a metric idempotent semiring. Let H = [hij] be
a linear operator on A, and let b ∈ A. We consider the discrete-time equation

xt+1 = Hxt ⊕ b;
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called the generalized evolution Bellman equation. The equation

x = Hx ⊕ b

is called the generalized stationary (steady state) Bellman equation. There equations
are homogeneous if b= 0 and nonhomogeneous otherwise. They are formulations in the
context of idempotent analysis of important classes of the discrete Hamilton–Jacobi–
Bellman systems in control theory (see, for example [11]) or of systems that arise
when optimization problems on graphs are solved by dynamic programming methods.
We consider +rst the stationary steady state Bellman equation

x = Hx ⊕ b:

If we de+ne the order so that ⊕ is sup and 0=(0; : : : ; 0) is the bottom element of
Rn, then we observe that the right-hand side is a continuous order-preserving map, and
that we are looking for +xed points, in particular, a least +xed point for this “a6ne”
equation. However, we are not assuming the dcpo property in this context, so +xed
points are not guaranteed, indeed need not exist in general, even under the hypothesis
of conditional completeness. Thus we get into interesting questions about existence
of +xed points. Therefore a somewhat diHerent +xed point theory arises from that of
domain theory; nevertheless, one observes certain kinships between the two versions.

Proposition 8.1. If principal ideals in R are dcpo’s and if 5xed points do exist, then
there is a smallest solution to the stationary Bellman equation, namely the least 5xed
point given by

x =
∨↑{H (n)b : n ∈ N};

where

H (n) := sup{Hk : 06 k 6 n} = n⊕
k=0

Hk = (H ⊕ I)n:

The solutions are frequently derived from the asymptotic limit of the appropriate
powers of H , provided this limit exists.

Proposition 8.2. If the sequence H (t) = ⊕t
k=0 Hk =(H⊕I)t converges to H∗ as t→∞,

then H∗b is a solution to the stationary Bellman equation, and is the smallest of all
the solutions. Every solution y is of the form y=w⊕H∗b, where w is a solution of
the homogeneous equation Hw=w.

By linearity it su6ces to solve the stationary equation for b= ei for each i. If !i is
the solution of the stationary equation for b= ei (such solutions are called sources),
then

x =
n⊕

i=1
bi � !i

is the solution for arbitrary b= ⊕n
i=1 bi�ei. Thus the general solution of the stationary

Bellman equation has a source representation.
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We turn now to the evolution equation. The solution xt of the evolution equation
for x0 = 0 has the form

xt = H (t−1)b :=
t−1⊕
k=0

Hkb:

The solution of the homogeneous evolution equation with arbitrary initial value x0 =
⊕n

i=1 xi0 � ei is given by

xt =
n⊕

i=1
xi0 � Htei;

that is, a linear combination of the source functions (Green’s functions) Htei, which
are solutions of the homogeneous evolution equation with initial value ei. Thus the
evolution Bellman equation also has a source representation.
We remark that in the context of Rmax-semimodules, one could work instead with the

max-plus extended reals and always be guaranteed a +xed point or solution. There are
two reasons for not doing so: +rst of all one is frequently interested in a 5nite solution,
and so the general existence of an in+nite solution is no help. Secondly, the max-plus
extended reals do not form a metric idempotent semialgebra nor a semi+eld, and it is
sometimes useful to have such tools as the minimax inequality to show existence of
+nite solutions.
There is a spectral theory for operators in idempotent analysis that diverges rather

dramatically from the classical theory. It is sometimes useful for determining existence
of asymptotic limits of operators.
A scalar ' ∈ R is an eigenvalue of the linear operator H on Rn if

Hv = '� v

for some v∈Rn\{0}. Any such v satisfying the equation is called an eigenvector
for '.

Proposition 8.3. For R=Rmax, the max-plus reals, every linear operator H on Rn has
at least one eigenvalue. If all matrix entries of H are not equal to 0, then ' �= 0, and
is unique. Furthermore the vector v is unique up to �-multiplication by a constant.

The operator H is said to be nilpotent if H (t) =H (t+1) for some t¿1. Note that in
this case H∗ =H (t).

Proposition 8.4. Suppose that the linear operator H on Rn
max has all entries not equal

to 0. Then H is nilpotent i: '¿1=0, where ' is the eigenvalue.

9. Quantales

The Bellman equations of the previous section always have solutions in the context
of quantales. A quantale is a complete sup-semilattice (thus ⊕ admits in+nite sums)
with an associative multiplication � that distributes over arbitrary sups. Quantales are
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often not required to have a multiplicative 1, but in order to be a dioid, this must be
the case. The earlier example of the power set of a free semigroup A∗ under union
and set product is a quantale, actually the free one over the set A.
In a quantale the simple Bellman system

x = (a� x)⊕ b:

has a least solution a∗ � b, where a∗ is the Kleene star of a, de+ned by

a∗ = 1⊕ a⊕ a2 + · · · = sup
06i

ai:

The star operation satis+es many interesting identities, for example:

(a⊕ b)∗ = (a∗ � b)∗ � a∗:

For a quantale Q, the semialgebra of n× n matrices over Q is again a quantale.
This applies in particular to the quantale of the max-plus extended reals R; moreover,
the semialgebra is a completely distributive, hence dually continuous, lattice. There are
recursion formulas for reducing the star operation for matrices back to the computation
of the star operation in Q (see Section 2.7 of [7]).

10. Function spaces

The functional analysis aspects of idempotent analysis arise in the study of certain
important classes of function spaces. The analysis has for the most part been worked out
for the case of Rmin, so our presentation is given in this framework. It is in this context
that some of the major theorems of the theory have arisen. One important function space
is the Rmin-semimodule C0(X ) of continuous functions with compact support from a
locally compact HausdorH space X into R∞, where R∞ is the underlying space of
Rmin. Note that in this context compact support means that the function takes only the
value 0=∞ outside a compact set.
The +rst theorem connects continuous linear operators and kernel functions. Note

that in idempotent analysis in+nite in+ma (or suprema) typically play the role of the
integral.

Theorem 10.1. Let X; Y be locally compact Hausdor: spaces. If B : C0(Y )→C0(X )
is a continuous (Rmin-)linear operator, then there exists a unique Scott continuous
k : X ×Y →R∞ such that

(Bf)(x) =
∫ ⊕

k(x; y)� f(y) dy = inf{k(x; y) + f(y) : y ∈ Y}:

The theorem specializes to the following characterization of functionals.

Corollary 10.2. If + : C0(Y )→Rmin is a continuous linear functional on the space of
continuous functions of compact support on a locally compact Hausdor: space Y ,
then there exists a unique lower semicontinuous map k = k+ : Y →R∞
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such that

+(f) =
∫ ⊕

k(y)� f(y) dy

Thus the map + �→ k+ is an isomorphism of the semimodule C∗
0 (Y ) onto the semi-

module of lower semicontinuous functions.

See Chapter 1 of [9] for proofs of the preceding results. We remark that lower semi-
continuous functions on locally compact spaces have received considerable attention in
domain theory. However, there is again a twist here similar to that we encountered
earlier in looking at +xed point results. In this case the absence of a bottom element
in Rmin means that the semimodule of lower semicontinuous functions isomorphic to
the dual space C∗

0 (Y ) will generally not be a domain. Thus idempotent analysis moti-
vates the study of structures that are more general than domains, for example, dcpos
in which every order interval is a domain.
Let us specialize to the case that X is an open subset of Rn. In the study of partial

diHerential equations on X , one sometimes considers generalized solutions that are
distributions, functionals on a linear space of test functions. For an Rmin-linear partial
diHerential equation, one takes for the test functions C0(X ). As we have seen, the
dual space is then the semimodule of lower semicontinuous functions into R∞. These
“idempotent distributions” provide an alternative version of the viscosity solutions and
thus provide an important impetus for functional idempotent analysis.

11. Measures in idempotent analysis

We further develop some of the ideas of the preceding section, but now in the
context of Rmax instead of Rmin (to connect with the literature that we cite in this
section). Let X be a topological space. An idempotent analog of the usual integration
can be de+ned by the formula

∫ ⊕

X
+(x) dx = sup

x∈X
+(x)

if + is a continuous or upper semicontinuous function from X into Rmax. The set
function

,+(B) = sup
x∈B

+(x);

where B⊆X is called an idempotent measure on X . Since ,+(
⋃

A-)= ⊕- ,+(A-)=
sup ,+(A-), the measure is completely additive. The function + is called a density
function for the idempotent measure ,+. More generally one can de+ne measures as
completely additive functions on the lattice of open sets, or more general lattices closed
under arbitrary unions, and investigate their properties, particularly the existence of a
density function and the extent to which it is unique. Such investigations have been
carried out in [8] and in quite some detail in [2]. Both treatments use notions from the
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theory of continuous lattices quite heavily in their development. The second reference
generalizes to measures de+ned into more general idempotent semirings and makes
substantial use of the hypotheses suggested in Section 6 that intervals be either dually
continuous or continuous.
An idempotent measure gives rise to an idempotent integral de+ned by

∫ ⊕

X
 (x) d,+ =

∫ ⊕

X
 (x)� +(x) dx = sup

x∈X
 (x)� +(x):

This integration is max-plus linear and de+nes a continuous linear form on the space
of bounded continuous functions. In [2] a Riesz representation theorem for idempotent
analysis is established, which shows that under quite general conditions a continuous
linear functional on the space of continuous bounded functions can be realized as idem-
potent integration against an idempotent measure. The theorem is proved in the more
general setting of idempotent semirings in which each order interval is a continuous
lattice.

12. Deformations, asymptotics, and superposition

Let R∞ the underlying space of Rmin consider the inverse mappings u= e−w=h : R∞

→R+ = [0;∞) and w= − h ln u : R+→R∞. These bijections induce isomorphisms
between the following operations and systems:

a⊕h b := −h ln(e−a=h + e−b=h) ≈←→ a+ b;

a� b = a+ b ≈←→ ab;

(R∞;⊕h;�) ≈←→(R+;+; ·):
Such constructions in Lie theory and quantum group theory are called deformations:

(R+;+; ·) deforms−→ (R∞;⊕h;�)
We note that limh→0 a⊕h b= min{a; b}= a⊕b. Thus Rmin appears as the asymptotic

structure, and in this fashion idempotent analysis appears in the asymptotics of the study
of what are sometimes called “large deviation limits.”
Let us consider a rather simple illustration of such asymptotics. If u1; u2 are solutions

of the one-dimensional heat equation @tu= h@2xu for a small parameter h¿0, then so is
a1u1 + a2u2. This linearity of solutions is a special case of what is sometimes called a
superposition principle. We transform the heat equation and linearity of solutions via
the transforms of the preceding paragraphs.

@tu = h@2xu
w=−h ln u−→ @tw + (@xw)2 − h@2xw = 0 (?)

w1; w2 solutions
superposition−→ −h ln(e−(a1+w1)=h + e−(a2+w2)=h)
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As h→ 0, we obtain

(?)→ @tw + (@xw)2 = 0 (HJ)

−h ln(e−a=h + e−b=h)→ min{a; b}

w1; w2 solutions
superposition−→ min{a1 + w1; a2 + w2}

= (a1 � w1)⊕ (a2 � w2)

The transformed asymptotic equation (HJ) is the Hamilton–Jacobi equation, a basic
equation in continuous optimization. Its superposition principle has a natural formula-
tion in the language of idempotent analysis. In this manner one observes that idempo-
tent analysis has close connections with the Hamilton–Jacobi equation and its viscosity
solutions.

13. Conclusion

The preceding discussion has been an attempt to give some of the Qavor of idem-
potent analysis, with a view toward pointing out how many important aspects of the
theory resonate with aspects of domain theory. It appears to the author that indeed
there should be points of fruitful interaction between the two theories, and a major
goal of this article is to point out possibilities for and encourage such developments.
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