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The buckling of a pin-ended slender rod subjected to a horizontal end load 
is formulated as a nonlinear boundary value problem. The rod material is 
taken to be governed by constitutive laws which are nonlinear with respect to 
both bending and compression. The nonlinear boundary value problem is 
converted to a suitable integral equation to allow the application of bounded 
operator methods. By treating the integral equation as a bifurcation problem, 
the branch points (critical values of load) are determined and the existence and 
form of nontrivial solutions (buckled states) in the neighborhood of the branch 
points is established. The integral equation also affords a direct attack upon the 
question of uniqueness of the trivial solution (unbuckled state). It is shown 
that, under certain conditions on the material properties, only the trivial 
solution is possible for restricted values of the load. One set of conditions gives 
uniqueness up to the first branch point, 

1. INTRODUCTION 

In this paper we consider the buckling of a pin-ended slender rod which 
is subjected to an axial end load. The rod is taken to be originally straight, 
and its material behavior is characterized by constitutive laws which are 
nonlinear with respect to both bending and compression. Two aspects of this 
problem will be our principal concern. First, we shall establish the existence 
of buckled configurations in some neighborhood of the unbuckled state for 
values of the load near certain critical values. Our proof is constructive and 
yields some explicit information about the character of these configurations. 
Second, we shall examine some conditions involving the constitutive laws, 
which will provide that only the unbuckled state can exist for certain restricted 
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values of the load. One set of conditions will even preclude buckling up to the 
first critical value of the load. 

The mathematical formulation of the physical problem is obtained by 
considering the equilibrium conditions, constitutive laws, and geometric 
relations from the theory of slender rods. Under our assumed form of the 
constitutive laws, the problem can be posed as a nonlinear Sturm-Liouville 
problem for the tangent angle of the rod. Since there are advantages in 

dealing with bounded operators, we devote some effort toward converting 
this boundary value problem into a suitable integral equation. We then analyze 
the integral equation as a bifurcation problem and determine the branch- 
points (critical values of the load), as well as the nature of the nontrivial 
solutions (buckled states) near these branch points. Our integral equation 
also affords a direct attack upon the question of uniqueness of the trivial 
solution (unbuckled state). This leads to our results on sufficient conditions 

to preclude buckling. 
The problem of interest here was considered in some detail by 

Greenberg [4]. However, his governing equations are developed from certain 
assumptions about the constitutive laws which are different from ours. For 
his equations, he has located the branchpoints and proven the existence of 
buckled states. Shortly after the publication of that work, there appeared a 
paper by Antman [I] which covered a general statement of the constitutive 

equations for plane-extensible elasticae. This, as well as related work by 
Antman [2] on global existence of equilibrium states of rods, has made it 
clear that his characterization of the problem is the appropriate one. More 

recently, Stakgold [13] has pointed out that the constitutive assumptions of 
Greenberg are not in accord with those of Antman. Moreover, he has pro- 
posed a different form of the constitutive laws which is compatible with the 

theory of Antman. It is our intention to explore the model suggested by 
Stakgold in some depth, so to obtain a correction and extension of the work 
initiated by Greenberg. Some preliminary results about the uniqueness 
problem have been reported by Olmstead [7]. 

2. FORMULATION OF THE PROBLEM 

We shall summarize the essential arguments from [l, 2, 4, 131 which are 
required for the proper formulation of our problem. Some compromise on 
notation is unavoidable, and we will strive to point out the important dif- 
ferences. 

Consider a pin-ended slender rod subjected to a horizontal end load of 
magnitude P. The rod has an undeformed length /. A given material point 
of the rod with coordinates x = X and y  = 0 for 0 < X < 8 in the unde- 



BUCKLING OF A NONLINEARLY ELASTIC ROD 611 

formed state is located in the deformed configuration by x = U(X) + X and 
y = Z’(X), where U(0) = V(0) = V(t) = 0. The displacements U(X) and 
V(X) are geometrically related to the arc length s(X) and the tangent angle 
v(X) of the deformed rod by the equations 

U’(X) = s’(X) cos v(X) - 1 (2.1) 
and 

v’(X) = s’(X) sin v(X). (2.2) 

A prime will always denote differentiation with respect to the independent 
variable indicated. 

The strain measures 6 (extension) and p (bending) are defined as’ 

6 = s’(X) (2.3) 
and 

I* = -p)‘(X). (2.41 

We follow Antman [I] in introducing a strain energy function 

w = W(p, 6, X). 

He shows that the bending moment M and the axial force N, taken as positive 
in compression, depend upon W through the equations 

and 
(2.5) 

(2.6) 

Moreover he indicates in [2] the importance of requiring that the Hessian 
matrix 

i 
azwjag a2 wjap as 
a2 wjas at* a2wps2 1 (2.7) 

be positive definite. 
From the equilibrium equations for the moments and forces in the rod, we 

have that2 
M=PV W) 

and 
N = P cos v. (2.9) 

1 This definition of 8 from [13] has the property of always being positive; it differs 
by unity from that used in [l]. Our 6 corresponds to y in [4]. 

2 Here, the positive sense of N is the same as in [13] except that (2.6) is not given 
correctly there. Our positive sense is opposite to that used in [l]. Also, P corresponds 
to -PO in [4]. 
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In order to obtain some explicit information about the buckling problem, 

it becomes necessary to make some specific constitutive assumptions. We 
follow Stakgold [13] in assuming that 

and 
M = Jqp) (2.10) 

N = m(S). (2.11) 

These functions are smooth and invertible, so that 

and 
CL = P(M) (2.12) 

S = 8(N). (2.13) 

Moreover, these functions are endowed with some additional physically 
reasonable properties. We take n;i’(p) E C3[- p,, , pa], for some appropriate 

P,, > 0, and 

Ii?(O) = 0; a-(-p) = -&qp); iIF > 0; -PLO G P G PO ’ 

(2.14) 

Furthermore we take 8(N) E C2[-P, PJ and 

S(0) = 1; 8(N) > 0, s’(N) < 0, -P<N<P, P > 0. 

(2.15) 

The classical problem of the elastica corresponds to a material where 8(N) E 1 
and a(p) z J%‘(O) CL. A thorough treatment of that problem has been given 
by Love [6]. 

We hasten to add that these constitutive assumptions do satisfy the require- 
ment that (2.7) be positive definite. This is readily seen by considering 

a2w 

t$ = icy&c) > 0, 
(2.16) 

- = -[s’(N)]-l > 0, as2 and 
a2w a2w o 

--m= * as a, 

At the point we can make clear the difference between the constitutive 
assumptions of Greenberg and those used here. In [4], the assumptions are 
that M = @(p/8) and N = fi(S) in place of (2.10) and (2.11). The conse- 
quence of this is that it precludes a variational formulation of the problem in 
terms of W; in particular, we find that FW/(lJp 35) # a2W/(iX &L) = 0, so 
that (2.7) is not positive definite. 

To proceed with the study of the buckling phenomena, it is desirable to 
combine some of the given relations in order to obtain an appropriate bound- 
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ary value problem. It is easily seen that v and V must satisfy a pair of first- 
order differential equations: 

and 
-cp’(X) = lizvv)l (2.17) 

V’(X) = S[P cos y(X)] sin p(X) (2.18) 

for 0 < X < t?, with boundary conditions 

v’(O) = rJJ’(4) = V(0) = V(t) = 0. (2.19) 

Stakgold [13] explains how the symmetry of (2.17)-(2.19) is such that any 
physical configuration of the deflected rod can be found among the cases where 

P > 0; v,(O) = 90 > 0 < cpo < 97. (2.20) 

A combination of (2.8) and (2.18) p rovides the differential equality 

Ii?‘(p) p dp = -PS(P cos 9’) sin v dv, (2.21) 

which upon integration gives 

Since @‘(CL) > 0 and even, then I(p) 3 0. Furthermore, s(N) > 0 so that 
(2.22) implies cos 9 > cos ‘p. and 

I d-91 d To < 7i-e (2.23) 

By elimination of V from (2.17) and (2.18), one finds a second-order 
nonlinear Sturm-Liouville problem for the tangent angle gr-namely, 

f(X) + p &p cm d-VI 
@‘bP’m 

sin v(X) = 0, o<x<e, P>O, 

v’(O) = v’(e) = 0; do) = 90 > 0 < fp’o < QT. 
(2.24) 

It is this nonlinear boundary value problem, together with the properties 
of 8 and a, that will yield our results about the buckling problem. Clearly, 
v(X) = 0, the unbuckled state, is a solution of (2.24) for all P > 0. By means 
of bifurcation analysis, we shall be able to show the existence and character 
of nontrivial solutions (buckled states) in the neighborhood of the trivial 
solution for values of P near the branch points (critical values of P). Also of 
interest to us is the uniqueness problem for (2.24). We will determine suffi- 
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cient conditions involving 6, a, and P, such that the trivial solution is the 
only solution of (2.24). 

3. MAIN RESULTS 

In this section we state and discuss our principal theorems while postponing 
the proofs until Section 4. In this way we can present a concise picture of 
what our results reflect about the buckling problem. 

As a preliminary task, we wish to recast the boundary value problem (2.24) 

into a nonlinear integral equation so that we can treat a bounded operator 
problem. Ordinarily, this might be accomplished in a straightforward manner 
by the use of an appropriate Green’s function. However, this case is an 
exceptional one which requires some additional information about possible 
solutions of (2.24) before the desired integral equation can be derived. The 
essential properties are given by 

THEOREM 1. If  y(X) E C2(0, t) is a sohtion of (2.24), then 

I 
e- 
6[P cos v(X)] {fW[~‘(X)]}-l sin y(X) dX = 0 

0 
(3.1) 

and 

s 
’ v(X) dX = 0. 

0 
(3.2) 

These properties enable us to derive a suitable integral equation to replace 
(2.24). We obtain the following. 

THEOREM 2. If q(X) E C2(0, t) is a solution of (2.24), then q(X) is also a 
solution of 

dX> = p joeN I 5) ~[P COS ~,(‘)I sin pl(~) dE ~[~,(ol , o<x<t, P>O, 

where 
(3.3) 

g(xl.++V- E+(E-x)q-t). (3.4) 

We use H(X - [) to denote the Heaviside function. 

The kernel g(X 1 6) admits a certain degree of arbitrariness, because if 
any constant is added to it then any solution of (3.3) will still satisfy (2.24). 
This is of no consequence in view of (3.1). In fact, we could omit the terms 
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(k/3)+ X2/2& We choose to retain these terms because they facilitate our 
analysis of other results to follow. 

Hereafter, we will refer to solutions of the buckling problem as those which 
satisfy (3.3) in some appropriate Banach space. The choice of the space of 
functions is rather crucial to the analysis. We will point out, in the course 
of our proofs in Section 4, the difficulties encountered by a choice other than 
the one we make here. 

In particular, we will look for solutions y(X) which are Holder continuous 
and have derivatives that are Holder continuous. A function Y(X) is Holder 
continuous on [0, d] with exponent 01(0 < 01 < 1) if 

sup{/ X - Y i--o1 1 Y(X) - Y(Y)j} < co for all X, Y E [0, /I. 

We say y(X) E C1+a[O, /j if both Y(X) and F”(X) are Holder continuous on 
[0, Kj with exponent 01, 0 < 01 < 1. This function space 
under the norm 

is a Banach space 

II w+a = sup I Y(X)1 + SUP 
I %v - w? 

XE[O,L] S,YE[O,L] IX--Yp 

+ g& I y’(X)1 + sup I “;‘$)I ;;!y)l , O<n.<l. 
X,YE[O,G] 

The use of such spaces in the analysis of bifurcation problems has been 
considered by others (cf. Sattinger [lo, II] and Rabinowitz [S]). 

Our results about the existence and nature of the buckled states are obtained 
through a bifurcation analysis of (3.3). That is, we look for nontrivial solu- 
tions which branch from the trivial one at certain critical values of P. The 
existence of such critical values is vitally dependent upon the decay pro- 
perties of 8. To deal with this, it is convenient to introduce a hypothesis about 
P&P). We first consider a mild assumption which will provide for one branch- 
point. 

Hypothesis 1. Let S(N) satisfy (2.15) and be such that there exists a 
PI > 0 which is the smallest value of P satisfying 

and 

P&P,) = &r(O) G/82, (3.5) 

8(PJ + P$‘(P,) > 0. (3.6) 

Our results about bifurcation from the first branchpoint are given by 

THEOREM 3. Let Hypothesis 1 hold. Then, for P in some su@iently small 
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neighborhood of PI , there exists a nontrivial solution F(X) E C1+m[O, KJ of (3.3) 
such that 

I+T(X) = 2 2/2 [( 1 - 2) hl]1’2 cm y + w(X); 

II w lIl+a < C [,(I - +) hz]3’2, 

(3.7) 

where 
Wl) + p1w3 

h1 = 8(P,) + 3P,S’(P,) + .,,VQ8(PI) W(O) [nir’(O)]-1’ (3.8) 

Remark. Without Hypothesis 1, we have no branchpoint and hence no 
bifurcation, as has been discussed by Stakgold [13]. 

Remark. Here, as well as in Theorem 4, it easily follows that, if 
v(X) E C1+~[O, &] and satisfies (3.3), then in fact 9(X) E C2[0, 81 and satisfies 
(2.24). This is so because to differentiate (3.3) twice and obtain (2.24) 
requires only that 8[P cos ~1 [A@(,‘)]-l sin v be continuous on [0, 8’1. 

To provide for more branchpoints and to be able to order them, we intro- 
duce 

Hypothesis 2. Let 8(N) satisfy (2.15) and be such that 

8(N) + A@‘(N) > 0, O,<N<lV 

for some given E > 0. 

(3.9) 

The results of our bifurcation analysis are then given by 

THEOREM 4. Let Hypothesis 2 hold for ma(N) 3 ii?‘(O) n2r2/d2, 

n = 1, 2,..., k. Then there exist at least k branchpoints P, for (3.3) that satisfy 

P&P,) = &F(O) n2.rr2/L2, n = 1, 2 ,..., k, (3.10) 
and 

~(o)~“/e2~P~<P2<...<P~~. (3.11) 

Moreover, for P in some su$ic&ztly small neighborhood of each P, , there exists a 
nontrivial solution v(X) E C1+a[O, e] of (3.3) such that 

s&x) = 2 z/z [( 1 - +) h,]l” cos y + w(X), 

I/ w Ill+u < C [(I - +) h,ij3”, 

(3.12) 

where 

WJ + ~~W7J 
h7z = 8(P,) + 3PJ’(P,) + n%W8(P,) &V(O) p@‘(O)]-1’ 

(3.13) 
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To illustrate the results of Theorem 3 and 4, we refer to Fig. 1, a bifurca- 

tion diagram depicting jl v  jj versus P. The branchpoints (critical values) P, 
are indicated, and a nontrivial solution emanates from each P, . We have 
shown (solid lines) the two types of bifurcation at each P, , depending upon 
the sign of h, . Since (P - P,) h, > 0, we take the right branch if h, > 0 
and the left one if h, < 0. 

FIGURE 1 

In Fig. 1 we have labeled 

PE = i&(O) +2, (3.14) 

and we call it the first Euler buckling load. It represents the first critical 
value of load for inextensible materials (8 E 1). The solution of the classical 
problem of the elastica (cf. Love [6]) would give a branch emanating from PE 
and going to the right. 

Of course our results in Theorems 3 and 4 are valid only for sufficiently 
small values of 1 P - P, 1 . Nevertheless, we can speculate about how exten- 
sions of these branches might appear in the bifurcation diagram. In Fig. 1, 
we have indicated (with dotted lines) three possible extensions of the branch 
emanating from PI. Case I is an extension of the left branch (h, < 0), which 
ranges far to the left of PI . Cases II and III both are extensions of the right 
branch (h, > 0), where case II bends back to the left of PI while case III 
does not. 

One explicit example of case III is the solution of the classical problem of 
the elasticae with 8 = I and A?&) E A?(O) CL. It may be of some interest to 
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the reader to see another explicit example of case III which has nonlinear 
constitutive dependence. Take 8 = n and consider the constitutive relations 

8(N) = (1 + yN)-l, y  >, 0, - $ < -P < N < P, (3.15) 

and 

mcl) = B j” ((1 - 7Y [Pr + (1 - 7”)“‘“1>-’ d7, 
0 

(3.16) 

-l<p<l, 

where j3 and y  are assumed to be given material constants. Now (2.24) takes 
the form 

I” + “I - (~‘(X))2t’BY + [l - (~‘(X))211’2)sin ~ = 0, 
m + YP cos dW1 

0 < X < ~, 

v’(O) = cp’(“) = 0. 

It is a straightforward matter to verify that (3.17) is satisfied by 

(3.17) 

y(X) = sin-l([l - (Pl/P)2]1i2 cos X>, p, =P, Pi<P<1/2Y. 

(3.18) 

Next, we consider the matter of uniqueness of the trivial solution. When- 
ever v(X) = 0 is the only solution of (3.3), there cannot exist any buckled 

states and the rod remains straight. Theorem 3 gives the existence of buckled 
states near the smallest critical value PI , so that we know not to expect 
uniqueness for P > PI . Of course we could have buckled states which exist 
far to the left of PI , as is suggested in Fig. 1 by cases I and II. Just how far 
case I or II might range to the left can be partially answered by our uniqueness 
theorems. Under some mild restrictions on 8 and ii?, we will show that no 
branch can extend to the left of some P* < PI . Under stronger restrictions, 
we will show that no branch can extend to the left of PI . 

Our analysis of the uniqueness problem does not have to be confined to 
the function space C1+~[O, d], which was needed for the existence problem. 
We find it more convenient to consider the space Cl[O, /] of continuously 
differentiable functions on [0, e], which is a Banach space under the norm 

To obtain our first uniqueness theorem, we introduce some mild restric- 
tions on &l and 8 through 



BUCKLING OF A NONLINEARLY ELASTIC ROD 619 

Hypothesis 3. Let a(p) and 8(N) satisfy (2.14) and (2.15), respectively, 

and let there exist a constant m (0 < m < co) such that 

and 

1 S’(N)1 < mg ) N < 0. 

We then have the following. 

THEOREM 5. Let Hypothesis 3 hold. If P < P* = 6/mF, then the only 
solution q(X) E Cl[O, 8-J of (3.3) is v(X) E 0. 

Since (3.19) clearly implies m >, [A@(O)]-l, we have that 

P* < PE < PI. (3.21) 

Some other uniqueness results similar to Theorem 5 have been derived by 
Olmstead [7]. While those results give uniqueness to the right of P*, they 
depend upon a condition on 8” which we have not imposed. 

To extend uniqueness up to the first branchpoint PI requires more stringent 
restrictions on ii? and 8. We consider 

Hypothesis 4. Let A?&) and 8(N) satisfy (2.14) and (2.15), respectively, 

and be such that 

&P(p) 2 0, --PO d P d PO (3.22) 
and 

8(N) + 3N8’(N) - (P” - N2) 8”(N) > 0, -P,<N<P. (3.23) 

Remark. The differential inequality (3.23) is not easily interpreted. We 

can characterize it to this extent: I f  8(N) E C2(-P, P) and satisfies (3.23) 
then it also satisfies 

8(N) < P [l + 8’(O) Psin-1 i;)] (P” - N2)-l/*, 0 < 1 N 1 < P. 

(3.24) 

This inequality follows from well-known comparison theorems (cf. [3, 
Theorem 5.11) and the fact that the bounding function would satisfy (3.23) 
with equality. 

Our stronger result about uniqueness is given by 

THEOREM 6. Let Hypotheses 1 and 4 hold. If P < PI , then the only solution 
q(X) E Cl[O, 61 of (3.3) is v(X) E 0. 
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Thus we are able to show that, under appropriate restrictions on the 
constitutive relations, no buckled state can exist for P < PI . Of course, 
this is the best we could expect since Theorem 3 provides for the existence 
of a nontrivial solution for P > PI . Referring to Fig. 1, we see that Theorem 6 
not only makes case I impossible but also implies that the branch in case II 
could not bend back to the left of PI . 

4. PROOFS OF THEOREMS 

Out task remains to prove the results of Sec. 3. We begin with the following. 

Proof of Theorem 1. The integral property (3.1) follows immediately 
from the boundary value problem (2.24). Integration of the differential 
equation over the interval (O,e), while invoking the boundary conditions, 
yields the desired result. 

To establish the integral condition (3.2), we will use a symmetry property 

of solutions of (2.24) along with some phase plane arguments. The desired 
property of symmetry is obtained by noting that, if v(X) is a solution of 
(2.24), then both v(/- X) and -v(L - X) will satisfy the differential 
equation and end-slope conditions. Only one of these cases can satisfy our 
specification of initial value ~(0) = y0 > 0. Thus, we are only able to con- 
clude that either 

dX) = TV - w (4.1) 
or 

q(X) = +a - X). (4.2) 

Knowing this symmetry condition, we turn to a phase plane analysis of 
(2.24). It is easily found that the phase plane equation is simply (2.21) or 
(2.22) with p = -$. That is, 

A?($) v’ dF’ = -P&P cos y) sin v  dy, 

which can be integrated to give 

&‘) = 49)). 

Furthermore, we see that 

(4.3) 

(4.4) 

0 < qT4 =1(-v’), 4P)) = +f)T and V) = 4f%)- (4.5) 

These relationships imply a phase plane diagram which is a closed curve 
symmetric with respect to both axes. Furthermore, this closed curve has 
negative slope in the first (and third) quadrant, while it has positive slope 
in the second (and fourth) quadrant. 



BUCKLING OF A NONLINEARLY ELASTIC ROD 621 

The independent variable X is increasing along the closed curve in the 
clockwise direction with X = 0 located at (v, v’) = (p),, , 0). From the sym- 

metry property (4. I) and (4.2) the point X = I is located at either 

(~~99 = (~‘0 y  0) or (-v. ,O). 
It follows that an evaluation of ji v(X) dX in the phase plane involves 

integration along the closed curve in a clockwise direction over either the 
whole curve or its lower half, depending upon the location of X = /. The 

symmetry of the closed curve is such that the integration over its lower half as 
half as well as over its upper half is zero. 

Next, we consider the following. 

Proof of Theorem 2. It is easily verified that the boundary value problem 
(2.24) is satisfied by the expression 

dx) = +- joe ~(0 d5 + P joeg(x I t) ~” ‘OS ~(‘)I sin ~(5) d5 n;r,Lq,(t)l 9 (4.6) 

with g(X 1 f) given by (3.4). That verification requires the use of (3.1). The 
term e-r st v( 0 d[ is needed for consistency; that is, integration of both sides 
of (4.6) over (0,d) must yield an identity. We are justified in dropping this 
term only because of (3.2). Thus (3.3) is obtained. 

This difficulty in converting the boundary value problem (2.24) into a 

suitable integral equation stems from the nature of the linear problem 
obtained by setting P = 0 in (2.24). A G reen’s function for that problem 

does not exist. The remedy for such situations is to construct a modified 
Green’s function (cf. Stakgold [12]) like g(X / 5). The modified Green’s 
function is typically nonunique, as is evident from our comments following 
Theorem 2. 

Our next two results in Section 3 involve similar proofs. Once the possible 
branchpoints have been established, the method of construction of the solu- 
tions is the same. Some preliminary definitions and results will facilitate the 
discussion. 

For convenience, we introduce an operator notation so that (3.3) can be 

expressed as 

9 = P4% v', P) = p je.dx I E) ~[’ COS ~,(‘)I sin ~(~) do n;1,[v,(5)1 (4.7) 
0 

Our existence proof will be a constructive one known as the Lyapunov- 
Schmidt method. We will follow this method essentially as it has been outlined 
by Stakgold [13]. The intricacies of our proof will require the use of four 
Banach spaces. We consider CO[O, L], the space of continuous functions on 
[0, t] with norm 
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The space Cl[O, 81 of continuously differentiable functions has the norm 

In anticipation of the use of Holder continuous functions on [0, d], we first 
note that such functions form a Banach space C”+a[O, 81 under the norm 

II Wo+, = il Yll, + SUP 
I Y(X) - Y(k’)l 

IX-Y/= ’ 
O<ci<l. 

X,Y~P,~l 

Then C1fa[O, e] is the Banach space of functions which are Holder continuous 
and have Holder continuous derivatives. Its norm can be expressed as 

II w lfa: = II y /lo+a + II Y’ llo+n Y O<a<l. 

It is easily seen that 

cyo, e] c cyo, L], c1+qo, e] c co+yo, zq, 
co+yo, L] c cyo, e], and Cl’“[O, L] c qo, e]. 

The need for these Holder spaces will become clear as our proof of existence 
unfolds. 

Some information about the linearized form of (4.7) will be needed. 
Linearization about the trivial solution yields the eigenvalue problem 

e=desv J ‘t,G’ I 0 45) dt, v = P(P) = P8(P)/n;r’(O). (4.8) 
0 

Moreover, (V/P) L is the FrCchet derivative of A at v  = 0. This eigenvalue 
problem is satisfied by 

e,(x) = (3)“’ cos y , 72 2772 vn=-, P n = 1, 2,.... (4.9) 

To gain insight about possible branchpoints, we consider 

LEMMA 1. Nontrivial solutions of (4.7) can branch from the trivial solution 
only at values of P = PC which satisfy any one of the equations 

n27f2 
G(PJ = - 

e2 ’ 
12 = 1, 2,.... (4.10) 

Proof. This follows immediately from a well-known result of bifurcation 
theory which states that branchpoint of the nonlinear operator A must be 
in the spectrum of the linearized operator L (cf. Stakgold [13]). 
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Of course Lemma 1 does not tell us if there is any branching. It just gives 
us the candidates for the branchpoints. To show that there is branching, we 
must prove the existence of nontrivial solutions for values of P in some neigh- 
borhood of a given PC which satisfies (4.10). 

One of the key parts of the Lyapunov-Schmidt method involves a rearran- 
gement of (4.7) into a form more appropriate for considering P near PC or, 
equivalently, v near V, . We express (4.7) as 

LF+P=+%~P~‘), 1 1 cc---, 
” VR 

(4.11) 

where the remainder operator R is defined as 

NV> v’> PI = $4, 4, P> - -b = j-h I 5)Wt), y’(t), P] d5, 
0 

for (4.12) 

To obtain a suitable representation of v(X), we utilize the set {0,} of 
orthonormal functions. Since sip)(X) dX = 0, this set is complete, and we 
can form the series expansion 

q(X) = 5 d4(X>, Ci = (V, ei), i = 1, 2,.... (4.13) 
i=l 

Here we have introduced an inner product notation only for some conciseness 
of presentation. We denote 

(x, yu> = 1” x(X) WV dx. 
0 

In bifurcation analysis, a special decomposition of the expansion (4.13) is 
used. For a given branch point P, , we single out the eigenfunction 0% 
associated with the corresponding Y, . This gives 

9J(X) = 4x> + w(X); 4-v = 44 4L(X), 
(4.14) 

m 

i=l 
i+n 

where we have set c, = a(.~). In the course of our analysis, we will determine 
U(C) and establish a bound for w(X) in terms of a(~). 

409/46/3-6 
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Upon substituting (4.14) into (4.11) we find 

Lw - ;w = ,(v + w)- R(v + w,v' + w',P). (4.15) 

The inversion of the operator (L - ( I/YJ I) in (4.15) involves the concept of 

the pseudoinverse. General statements about the character of the pseudo- 
inverse are available (cf. Stakgold [13]). H owever, in our case it is a simple 

matter to derive it explicitly. From (4.8) and (4.14) we have that 

so that 

( 1 1 
)Ei=(Bi,Lm--lw ) 

> 
i # n. 

Vi V1z V, 
(4.17) 

Solving for C~ , we then have 

w(X) = f Vivn i=l G ( ei Y Jew - $ w > fw>, (4.18) 
z 

i#VZ 

which provides the desired inversion for (4.15). We denote the pseudoinverse 

operator by T, where 

T,, = f  ‘ivn 
i=l v, _ v. (4 , e 6(x). (4.19) 

z 
if?2 

By substituting (4.15) into (4.18), while noting that TV = 0, we obtain 

w = Rw = T[EW - R(v + w,v'+ w',P)]. (4.20) 

In this equation we regard P and, hence, E as given. We think of a = U(C) 
as fixed but unknown. Thus v  = a0, is also fixed but unknown. 

To obtain an independent equation for a = U(E), we take the inner product 
of (4.15) with 0, . Since 

(en, V> = 6 co,, 6 = 0, 
and 

ce,,-w =whw) =+k, w> = 0, 

we find that 
+) = (8, , R(V f W, Vr + W’, P)). (4.21) 
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Once we have established that a solution of (4.20) exists for fixed a = U(E), 
then we can use (4.21) to determine a = u(c). 

It is Eqs. (4.20) and (4.21) that will be analyzed to establish the existence 
of nontrivial solutions of (4.7). 0 ur choice of function space is motivated by 

the nature of these two equations. To prove a fixed point theorem for (4.20) 
necessitates that the operator T be bounded. The space Cl[O, 81 is convenient 
for many of the estimates, but T is not bounded on it (as we will indicate). 
While T is bounded on some Sobolev spaces, there are certain operators used 
in the analysis of (4.21) which are not well defined on these spaces. Undoubt- 
edly, there are several possible remedies to this situation. We have chosen 
to use the Holder space C1+B[0,8] because T is bounded on it, and we will 
have the convenience of continuous differentiability for other estimates. 

We prove the boundedness of T in the following. 

LEMMA 2. There exists a constant 1) T I/ < co such that 

II Tu &+a < II T II II u 111 G II T II II u //~+a 

for all 21 E C1+a[O, 4. 

Proof. First consider u E CO+=[O, 41. It suffices to take 

(u, 1) = (u, e,> = 0 

(4.22) 

since these terms do not appear in (4.19). It is well known that the series 
C:=, (u, ei) Si(X) converges pointwise to u(X) as j -+ ~0.~ Thus we consider 

S,(X) = $il g+ ’ 
2 12 edx) = ,r; A,(& - A,) z A&~ ed e.(x) - f i cu, e,),e,(x), 

n z=l i#7l i#Tl 

where Xi = l/vi = 12/?r2i2. Clearly, Sj(X) converges as j- co since the first 
series converges absolutely while the second converges pointwise to u(X). 
Thus S,(X) + Tu and 

Tu(X) = G(X) - + u(X), 
1 

G(X) = h, a?1 (Ai - A,) z 
m Uu, 4) e,(x). 

12 
i#7L 

It then follows that 

II TuI,~l/Glio+fll~llo~[C’~~,+~]ll~l~o=C~~~~~o~ 
n i=l n 

3 If we require only that u E COIO, Q, then it is possible for S,(X) to diverge at some 
points (cf. [14]). It therefore follows that T is not bounded on COIO, 4. 
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Next we consider 

sup I WX) - WY)l 
XYmGI IX--Yp 

< SUP [ 
I G(X) - W)I + A,” I u(X) - u( k*) j 

X,Y@,4 ,x--Y,* 1. 

To estimate this last expression, we will utilize 

which follows since u(X)/jl u &, E C”fa[O, I]. We also find 

sup I G(X) - G(Y)1 m I 4(X> - 04 Y)I 
x,ym,a 1 x - Y ,a G c ” u ‘lOX,$po$] z1 hi IX--Yp 

and 

Combining these gives 

sup I G(X) - GWI 
,X-Y,” < c II u /lo f Pi2 d c II u II0 , O<ol<l. 

X,YGvJ i-1 

Thus we find 

II Tu llo+a G C II u IL, . (4.23) 

Next we treat the derivative of Tu. For U’ E C”+a[O, 4, we have 

and 

(9.i) U> = Xi(Oi’, U’), (Ai)1/2 Bi’ = -sin[X/(AJ1lz], 

(2-u) (X) = f y;‘y;; u’> (A$‘2 t&‘(X). 
i=l 
i#R 

Now the procedure that was used to bound Tu, u E CO+=[O, e], can be repeated 
to yield 

iI{ TU)‘llo+or < c’ II u’ II0 * (4.24) 
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Thus we find that, if u E C1+a[O, t], then 

II Tu Ill+a = II Tu /IO+a + MT4 IIOfu G max(C, C’) II u IL = II VI II u III . (4.25) 

The other estimates that we will need in our proof of Theorems 3 and 4 
can be stated in terms of the norm of Cl[O, L]. First, we have 

LEMMA 3. The remainder operator R has the property that 

where K( y, y’, z, z’, P) --f 0 as Ij y II1 + 0 and 11 x /iI + 0. 

Proof. We have R defined by (4.12), and dRjdX is found by replacing 
g(X I 5) with (dg/dX) (X / 5). Since g(X I 5) is continuous on [O,Z!‘] and 
(dg/dX) (X / 5) is piecewise continuous on [0, e], there exists a constant 
C < co such that 

II R(Y, Y’, P) - R(z, z’, 0, < C II F( y, y’, P) - F(z, z’, P)llo . (4.27) 

Using a mean value theorem, we find 

II qy, Y’T P) - F(? z’, P)II, 
< Kl II Y - 2 Ilo + K, II Y’ - 2’ /lo + 4 II Y - 2 I/o II Y’ - z’ llo 9 

where K,+O, K,+O, and K3+ 1 as llyIIr--+O and jlzIj,+O. 
Since II y - 2 II,, d II y - x /II and II y’ - .d Ilo ,< II y - z III , we have 

II WY, Y’, P) - R(z, ~‘3 0, G WG + K, + & II Y - z II,) II Y - x III 2 
(4.28) 

which implies (4.26). 
Next we consider a decomposition of the remainder R which will single 

out the “leading term” of the nonlinearity. 
Let 

R(Y, Y’, P> = Q,(Y, Y’, P) + D(Y, Y’, 0, (4.29) 

where the “leading term” operator D, is defined as 

WY, Y’, P) = [kx I 0 F,[y(E), ~‘(0, PI d5, 
with 
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It therefore follows that D is given by 

D(Y, Y’, PI = /“g(X I 0 {F[Y(S), r’(4), PI - Fo[~(t), Y’(S), PI) dt. (4.31) 
0 

The nature of this decomposition is exposed in 

LEMMA 4. The operators D, and D have the properties that 

II D,(Y, Y', P) - Do@, ~‘3 f’)ll, < WY II; + II z II;> II Y - z Ill 9 (4.32) 

II D(Y, Y’, P> - D( x3 x’, P>II1 d cur 11: + II x 113 II Y - x Ill * (4.33) 

Proof. We have Do given by (4.30), and dD,ldX is found by replacing 

g(X I 63 with (d&X) (X I 5). Th en, as in the proof of Lemma 3, there is a 
constant C such that 

II Do(y, y’, P> - Do@, z’, J’II, < C[ll y3 - z3 /lo + II Y(Y’)’ - ~(4~ 1101. 
(4.34) 

We also have that 

as well as 

II Y3 - x3 II0 < 2(llY II: + II z 113 II Y - x II0 9 

II Y(YY - 442 /lo G 2(ll Y IIf + II z II;) II Y - z III . 

These, together with /I y  [lo < II y  (I1 , bring (4.34) into the form of (4.32). 
To establish (4.33), we begin, as in the proof of Lemma 3, with the estimate 

II D(Y, Y’, P> - D(x, ~‘3 P)III 

< c II F(Y, Y’, P) - Fo(Y, Y’, P) - Q, z’, P) + Fo(G z’, P)llo * 
(4.35) 

Then, using a mean value theorem and some tedious but straightforward 
estimation, we are led to the desired result. 

In the proofs of Theorems 3 and 4 we keep in mind what is required to 
show branching. We first need to know that some critical value PC does 
satisfy (4.10) and that P(P) is invertible in some neighborhood of PC . Then we 
must prove the existence of a nontrivial solution for I P - PC j or I v  - v, I 
sufficiently small. We begin with 

Proof of Theorem 3. Hypothesis 1 provides that there is a PI which 
satisfies (4.10) with n = 1, and in particular it is the smallest such value. 
Also, (3.6) is sufficient to insure that P(P) is invertible in some neighborhood 
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of PI . The existence of a nontrivial solution of (3.3) or, equivalently, of 
(4.7), follows as a special case of Theorem 4. 

Proof of Theorem 4. Hypothesis 2 provides that P(P) E C2[-P, P] and is 
strictly increasing on [O, m] for some N > 0. Hence, on [0, n] we have 
max P(P) = G(m). Therefore, if G(m) > n2~2//2 for some values of 71, say 
n = 1, 2,..., k, then there must be k distinct values of P which satisfy (4.10); 
we calI them P, , n = 1, 2 ,..., K. Also, the monotonicity of 5(P) provides 
that Pl<P2<...<Pk. Furthermore, the strictly increasing property 
insures that C(P) is invertible in some neighborhood of each P, . This esta- 
blishes the first part of the theorem regarding the branch points. 

We now turn our attention to proving that nontrivial solutions of (4.7) 
exist in the neighborhood of the branch points. We have followed the 
Lyapunov-Schmidt method in converting (4.7) into a pair of Equations 
(4.20) and (4.21) for w(X) and U(E). 

For w E C1+a[O, 41, we have from Lemmas 2 and 3 

II BW Ill+n < II T II {I 6 I II w IL + K II v + w II& (4.36) 

Take I E I < (4 II T II)-’ and pick an or such that /I v Ill+a < Q and II w /II+= < or 
imply K < (4 /I T II)-‘. Then (4.36) gives II Bw /llfa < or , which shows that 
the ball II w II l+ol ,< or is mapped into itself. 

To show that B is a contraction on C1fa[O, 4, we consider II Bw, - Bw, Ill+@. 
Again, from Lemmas 2 and 3, we have 

II Bw, - Bw2 //~+a < II Tll (I E I + K) II ~1 - ~2 IL 

G II T II (I E I + K) II WI- ~2 IL+a 3 
(4.37) 

where K+ 0 as I/ w II1 -+ 0, II w1 II1 --f 0, and /I w2 II1 ---f 0. Take I E I < (2 II Tll)-’ 
ad pick an Q such that II e Ill+a < c2, II q IJlfa < e2, and II ~2 lLrr < ~2 
imply K < (2 II T II)-‘. Then II T 11 (I E ] + K) < I, and we have a con- 
traction implied by (4.37). 

Therefore, if we set 6s = min(c, , c2) we find that B is a contraction 
mapping of the ball 1) w /Il+a < co into itself. So there exists a unique 
w E C1+a[O, e] which satisfies (4.20). Of course, this means that for a given V, 
there is a unique solution, which gives bifurcation at each of the branch 
points. 

Now that the existence of a solution w to (4.20) has been established, let us 
derive a bound on that solution. As a preliminary bound, we have from 
(4.20) and (4.36) that 

II w IL = II Bw II 1+a G II T I I  HI E I + K> II w Ill + RII ?J IL>- (4.38) 
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For 1 E 1 < (4 I/ T II)-’ and K < (4 11 T l/)-l, we find 

II w /ll+or d + II v III = 4 I 44 II &A Ill . (4.39) 

To improve this estimate, we make a more careful examination of (4.20) and 
find 

II w /L+a < II T II {I e I II w //I + II 4@ + WI 2)’ + w’, P)Il, 

+ /I D(v + w, v’ + w’, P>lll>. 
(4.40) 

Employing Lemma 4 gives 

II w I/l+a 9 II Tll (I 6 I \I w 111 + C II v + w II: + C II v + w II:}. (4.41) 

In view of (4.39), we see 11 w II1 ,( /I w jll+or < 4 II v  Ill and 

II w I/l+rr d II T II (I E I II w IL + c’ II ZJ II; + c” II v II:>- (4.42) 

Consequently, if j E / < (2 11 T/1)-l, then 

II w //1+a d c II v II: = c I a I3 II 0% II: . (4.43) 

The remaining part of the proof is to determine u(e). We consider (4.21) 
expressed as 

l = <en , WV, v’, P)> + <ha, D,,(v + w, v’ + w’, P) - WV, v’, 9 

+ (0, , D(v + w, v’ + w’, P)>. (4.44) 

From (4.30) we see that 

D,(v, 01, q = D,(ae, , ae,‘, P) = a3D,(e, , e,‘, PI. 

Moreover, from Lemma 4 and our estimate (4.43), we have 

I(% , &(V d- W, 0’ + W’, p> - D&4 V’, p))l 

G C(ll ?J + w II! + II v II3 II w Ill G c I a T, 
and 

I<&, &J + W, 0’ + W’, p))l G c ii V -k W 11: G cU4. (4.45) 

Thus, (4.44) becomes 

a = uv, > QUL , en', m + Q&>, I Q&I G Ca4. (4.46) 
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After the calculation of (0, , Q(0, ,8,‘, P)), we find 

a2 = (1 - +) 4&(P) 
8(P) + 3PS’(P) + .,8(P) &r(O) [m(o)]-‘+ Q&j1 

I Q&>I G C I a 13- (4.47) 

A Taylor series expansion about P, yields the form indicated in the theorem. 
Higher-order terms in P - P, can be included with w. The positive square 
root was used since ~(0) = r~+, > 0. 

There is another method used in bifurcation theory which is an alternative 
to that of Lyapunov-Schmidt. The Poincare-Keller method4 can be applied 
directly to the boundary value problem (2.24). We have carried out this 
procedure to obtain the results of Theorem 4 (except for the estimates on w). 
This alternative proof is omitted. 

Turning to the proofs of the uniqueness theorems, we consider 

Proof of Theorem 5. Our goal will be show that, under the given condi- 
tions, v0 = 0, and hence, by (2.23), v = 0. W e achieve this goal in two stages. 
First, we show that v,, < 3r/2; then we show that 9s = 0. 

From (4.2) we have p)(8) = &,, . Thus, for any solution of (3.3) it follows 
that 

Utilizing (3.1), we eliminate one of the terms and find 

PL2 S(Pcos y) sinv ~ Prne2 
PO G 6 II ~‘[~‘I II 6 II W ~0s d sin P II0 , (4.49) 

0 

where (3.19) has been used in the latter inequality.Since 8 is strictly decreasing 
and cos v >, cos q. , we have 

To G 
Pmt2 e 
6 6(P cos rpo) I/ sin p jlo . (4.50) 

If v. ,< n/2, then j sin v / < sin v,, . On the other hand, if v. > 7r/2, then 
v = m/2 at some point on (0, e) and I sin v I < 1. Thus (4.50) becomes 

VP0 G -$ff 8(P cos po) [sin v0 + (1 - sin po) H (p, - $)1 . (4.51) 

4 This method has been so named by Stakgold [13] owing to the elegant application 
by Keller [5] of the Poincari technique. 
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To first show that v0 < 3~12, we assume the contrary. If q+, > 7712, then 
cos v0 < 0 and (3.20) applies. Thus, 

8(P cos vo) < 1 + j” I8’(iV)( dN < 1 + 7 I cos ~0 I . (4.52) 
PCOSOO 

So (4.51) becomes 

vo G y (1 + y 1 cos ‘PO 1) , T < v’o < i?. (4.53) 

For 7rj2 < v. < r, 1 cos ‘p. / < q,, - 7r/2, so that we have 

I cm To I + 5 < 7 + (qg” 1 cos yJo 1 ) + < To < i7. (4.54) 

But if Pmt2/6 < 1, this is clearly a contradiction. Hence, we conclude that, 
under the hypothesis of the theorem, qua < ~12. 

For y. < n/2, we have that 8(P cos vo) < 1, and (4.51) yields 

Pmt2 
vo G -g- sin v. , (4.55) 

which can only be satisfied by ~a = 0 if Pmt2/6 < 1. 
Finally, we come to 

Proof of Theorem 6. Suppose there is a solution q E C1+a[O, 81 that satisfies 
(3.3), which we express in the form 

‘p = PL 
[ 

~(’ ‘OS ~) sin ~ 

I A?&‘) ’ 
(4.56) 

where the linear integral operator L is defined by (4.8). 
We wish to analyze (4.56) in the space of square integrable functions 

L,[O, 81 with norm 

II W2 = [IO! Y”(X) dx]1’2. 

Since C1ta[O, &] CL,[O, 41 and due to the smoothness of 8 and a, we are 
justified in considering 

(4.57) 
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From the Hilbert-Schmidt theory of integral operators (cf. Stakgold [12]), 

we have that 

!I-wL2 ~II~llLzll~llL2~ llLl!Ls=-&~. (4.58) 

By Hypothesis 1, there exists a PI such that P&PI) = v~J?Y(O). Thus, (4.57) 
yields the inequality 

,I g, /I < P@(O) 
L ‘p,60 2 !I 

w cos 9’) sin v 
Aa’ q II 

I/ ~ ,I 
L2 * (4.59) 0 

Now the properties of 8 and i@ admit the representation 

8(P cos p) sin v  

@w) 91 
= [8(P) - q(P cos &) v sin &I] [(J@(O))-l - r(77p’) q] 

for 

with 
0</3<1 and O<T<l, (4.60) 

and 
q(N) = 8(N) + 3Nz?(N) - (P” - Iv) 8”(N) 

+) = @Q-4 @w + PQ%412 
PwPL)13 . 

(4.61) 

The conditions of Hypothesis 4 give y(N) > 0 and r(p) > 0, so that 

&P COST) sin ‘p < 8(P) 

fi’(v’) ‘p ‘?iF@p 
(4.62) 

and hence (4.59) becomes 

II P lIL* G (4.63) 

I f  P&P) < P&P,), then (4.63) can only be satisfied by II CJI ljLz = 0, which 
gives us uniqueness for the trivial solution. Moreover, P8(P) < P&P,) 
implies that P < PI . 

As an alternative approach to the proof of Theorem 6, one could apply 
variational principles to the boundary value problem (2.24) while utilizing 
(3.2). A proof of this type was used in a simpler buckling problem considered 
by Reiss [9]. 
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