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Abstract

We study Hardy spaces on the boundary of a smooth open subset orRn and prove that they can b
defined either through the intrinsic maximal function or through Poisson integrals, yielding ide
spaces. This extends to any smooth open subset ofRn results already known for the unit ball. As a
application, a characterization of the weak boundary values of functions that belong to holom
Hardy spaces is given, which implies an F. and M. Riesz type theorem.
 2004 Elsevier Inc. All rights reserved.

0. Introduction

The real Hardy spaceHp(RN), 0< p � ∞, introduced in 1971 by Stein and Weiss [1
is equal toLp(RN) for p > 1, is properly contained inL1(RN) for p = 1 and is a spac
of not necessarily locally integrable distributions for 0< p < 1. Forp � 1, Hp(RN) is an
advantageous substitute forLp(RN) [15], as the latter is not a space of distributions a
has trivial dual ifp < 1 while for p = 1, L1(RN) is not preserved by singular integra
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Let us choose a functionΦ ∈ S(RN), with
∫

Φ dz �= 0 and writeΦε(z) = ε−NΦ(z/ε),
z ∈ RN , and

MΦf (z) = sup
0<ε<∞

∣∣(Φε ∗ f )(z)
∣∣.

Then [15]

Hp(RN) = {
f ∈ S ′(RN): MΦf ∈ Lp(RN)

}
.

An obstacle to the localization of the elements ofHp(RN), 0< p � 1, is thatψu may not
belong toHp(RN) for ψ ∈ C∞

c (RN) andu ∈ Hp(RN). In particular,Hp(RN), 0< p � 1,
is not preserved by pseudo-differential operators and is not well defined on man
a fact that hinders applications to PDE with variable coefficients. On the other
Hp(RN) is preserved by singular integrals with sufficiently smooth kernels, which im
that it is locally preserved by pseudo-differential operators of order zero (and typeρ = 1,
δ = 0). This fact was used by Strichartz in 1972 [17] who definedH 1(Σ) for a compact
smoothN -dimensional manifoldΣ as the space of allf ∈ L1(Σ) such thatTf ∈ L1(Σ)

for all pseudo-differential operatorsT of order zero. Then Peetre [14] proposed in 197
more elementary definition ofHp(Σ), p > 0, in terms of an intrinsic maximal function
More precisely, he set

Hp(Σ) = {
f ∈D′(Σ): Msf ∈ Lp(Σ)

}
,

Msf (x) = sup
φ∈Ks(x)

∣∣〈f,φ〉∣∣,
whereKs(x) is the space of smooth functionsφ ∈ C∞(Σ) such that there is anh > 0
such that suppφ ⊂ B(x,h) and sup0�k�s hN+k‖φ‖k � 1. HereD′(Σ) is the space of dis
tributions inΣ , suppφ denotes the support ofφ, B(x,h) is the Riemannian ball centere
at x of radiush (assume a Riemannian metric is given onΣ), ‖φ‖k denotes the norm in
Ck(Σ) ands is a conveniently large integer that depends onp. It turns out that forp = 1
the spacesH 1(Σ) defined by Strichartz and Peetre coincide.

A way around the problem thatHp(RN) is not localizable for 0< p � 1 is the definition
of localizable Hardy spaceshp(RN) [9,15] by means of the truncated maximal function

mΦf (z) = sup
0<ε�1

∣∣(Φε ∗ f )(z)
∣∣,

hp(RN) = {
f ∈ S ′(RN): mΦf ∈ Lp(RN)

}
.

It follows that the spacehp(RN) is stable under multiplication by test functions as w
as by change of variables that behave well at infinity and also thathp(RN) = Lp(RN) for
1 < p � ∞. This opens the doorway to a definition of Hardy spaces on smooth man
through localization. Namely, if{Uα,Φα} is a family of local charts and{ϕi} a partition
of the unity subordinated to the coveringUα then we say thatf ∈ hp(Σ) if, and only if,
f ϕi ◦ Φ−1

α ∈ hp(Rn). It is known thathp(Σ) = Hp(Σ) (see, e.g., [4]).
Consider now a bounded open subsetΩ ⊂ Rn with smooth boundary∂Ω = Σ and

givenf ∈D′(Σ) let u ∈ C∞(Ω) be the solution of the Dirichlet problem{
∆u = 0 onΩ,

(0.1)

u|Σ = f.
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Thenu gives rise to two maximal functions:

(i) If νx is the outer normal unit vector field defined atx ∈ Σ, the normal maximal func
tion is

u⊥(x) = sup
0<t<t0

∣∣u(x − tνx)
∣∣, x ∈ Σ,

wheret0 is chosen small so, in particular,x − tνx ∈ Ω and dist(x − tνx,Σ) = t when-
everx ∈ Σ and 0< t � t0.

(ii) For fixeda > 1, the nontangential maximal function is

u∗
a(x) = sup

z∈Γa(x)

∣∣u(z)
∣∣, x ∈ Σ,

whereΓa(x) = {z ∈ Ω : |z − x| < a dist(z,Σ)} is then-dimensional analogue of
Stolz region, here| · | denotes the Euclidean norm inRn and dist(z,Σ) the distance
from z to Σ .

WhenΩ = B ⊂ Rn, n � 2, is the unit ball andΣ = Sn−1, it is known thatf ∈ Hp(Sn−1),
0 < p � ∞, if and only if u∗

a ∈ Lp(Sn−1) or, equivalently, if and only ifu⊥ ∈ Lp(Sn−1).
This is classic for the unit circle [7] and due to Colzani [5] forn � 3. A relevant fact in the
proof is that explicit formulas are known for the Poisson kernel that furnishes the so
of the boundary problem (0.1) whenΩ is a ball. In particular, these formulas show tha
P(z, x) :Ω × ∂Ω → R is the Poisson kernel of the domainΩ then there exist constan
Cαβ > 0 for every multi-indexesα,β ∈ Z

n+ such that

∣∣Dα
z Dβ

x P (z, x)
∣∣ � Cαβ

|x − z|n−1+|α|+|β| , (z, x) ∈ Ω × ∂Ω, (Kαβ )

at least whenΩ = B. For α = 0 andβ = 0 estimate(K0) is well known for genera
smoothly bounded domains (actually, classC2 suffices). A proof of this fact was give
by Kerzman in an unpublished set of notes [12] and can be found in [13, p. 332]. I
work we prove (Kαβ ) for all α andβ . This is the key to the characterization of the spa
Hp(∂Ω), 0 < p � ∞, in terms of the maximal functionsu⊥ andu∗

a . Since this charac
terization is well known forp > 1, we are mainly concerned in this paper with the c
0 < p � 1 although the proofs work as well for anyp.

The paper is organized as follows. In Section 1 we prove estimates (Kαβ ) by locally
flattening the boundary and constructing a pseudo-differential approximation of the
son operator following the method of Treves[19] to construct a parameterization of t
heat equation. The pseudo-differential approximation gives a wealth of information
the Poisson kernel and in particular shows the required estimates for its derivativ
Section 2 we study approximations of the identity that are obtained from the Poisso
erator but converge faster to the identity. In Section 3 we prove several technical le
about these approximations that are instrumental in the proof of the equivalence ofLp

“norms” of the different maximal functions defined in terms of Poisson integrals—
equivalence of different Poisson’s maximal functions is discussed in Section 4—wi
intrinsic maximal function, which is the subject of Section 5. Finally, in Section 6, we
cuss holomorphic Hardy spacesHp(Ω), Ω ⊂ Cn, and prove that everyf ∈ Hp(Ω) has a
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weak boundary valuebf ∈ Hp(∂Ω) of which it is its Poisson integral. This establishes
isomorphism of topological vector spaces betweenHp(Ω) and the subspace ofHp(∂Ω)

of distributions that are boundary value of some holomorphic function inΩ . We also prove
an “F. and M. Riesz theorem,” showing that if a measure in∂Ω is the boundary value o
a holomorphic function defined onΩ it must be absolutely continuous with respect
Lebesgue measure.

We use the standard notation for distributional spaces, soLp denotes a Lebesgue spa
S(Rn) denotes the Schwartz space, its dualS ′(Rn) denotes the tempered distribution
D′(Σ) denotes the space of distributions on a manifoldΣ , Cr denotes the space of co
tinuous functions with continuous derivatives up to orderr if r is a positive integer and th
corresponding Hölder space ifr > 0 is not integral. Different Hardy spaces are denoted
Hp, Hp andhp . We also denote byC a positive constant that may change from one
to the next.

1. Pointwise estimates for the Poisson kernel

The following theorem is the main result of this section. It gives estimates that we
later need to characterize Hardy spaces on the boundary of a smooth domain ofRn.

Theorem 1.1. LetP(z, x) be the Poisson kernel of a bounded domainΩ ⊆ Rn with smooth
boundaryΣ . For every multi-indexesα ∈ Z

n+ andβ ∈ Z
n−1+ there exist a constantCαβ =

Cαβ(Ω) > 0 such that

∣∣Dα
z Dβ

x P (z, x)
∣∣ � Cαβ

|x − z|n−1+|α|+|β| , (z, x) ∈ Ω × Σ, (Kαβ )

Proof. Fix a > 1 and consider the nontangential region insideΩ with vertex atx given by

Γa(x) = {
z ∈ Ω : |z − x| < a dist(z,Σ)

}
.

For fixedr0 > 0 consider the set

X = {
(z, x) ∈ Ω × Σ: |z − x| � r0

}
and observe that|z−x|n+|α|+|β|−1Dα

z D
β
x P (z, x) is continuous, thus bounded, on the co

pact setX, becauseP(z, x) is smooth onΩ × Σ \ Σ × Σ . Therefore, there is no loss o
generality if we prove (Kαβ ) assuming that|z − x| < r0 and we shall do so. The proof
divided into two cases.

Case1. z /∈ Γa(x)

By the compactness ofΣ it is enough to prove the estimate whenx is in a small neigh-
borhood of an arbitrary pointx0 ∈ Σ . Since|z − x| < r0 we may assume that bothx andz

belong to a small neighborhood ofx0. The initial step is to flatten the boundary in tha
neighborhood. Thus we consider a diffeomorphism that takes a neighborhoodW of x0
onto a neighborhood of the closure of the cubeQ ⊂ Rn−1

x × Rt given by|x| < 1, |t| < 1
so thatx0 is mapped to(0,0), Ω ∩ W is mapped toQ+ = {(x, t) ∈ Q: t > 0} andΣ is
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flattened to{t = 0}. Using(x, t) as new coordinates the Poisson kernel may be expre
as P̃ (y, t, x) with z = (y, t) ∈ Q+ andx = (x1, . . . , xn−1) ∈ ∂Q+ ∩ {t = 0}. If a > 0 is
large enough, the conditionz /∈ Γa(x) implies |x − y| > t . Notice that for|x − y| > t ,
(|x − y|2 + t2)1/2 is comparable to|x − y|. Thus, it will be enough to prove that for an
|x|, |y| < 1 and 0< t < |x − y|∣∣Dα

x Dβ
y Dk

t P̃ (x, t, y)
∣∣ � Cαβk

|x − y|n−1+|α|+|β|+k
. (1.1)

Recall that in the original coordinates

u(z) =Pφ(z) =
∫
Σ

P(z, y)φ(y) dσ(y), (1.2)

wheredσ indicates the volume element inΣ , solves the Dirichlet problem{
∆u(z) = 0, z ∈ Ω,

u(x) = φ(x), x ∈ Σ.
(1.3)

In the new coordinates, (1.3) becomes, with some abuse of notation,{
L(t, x,Dx,Dt )u = 0,

u(x,0) = φ(x),
(1.4)

where

L(t, x,Dx,Dt) = ∂2

∂t2
+ 2

n−1∑
j=1

bj (x, t)
∂2

∂xj ∂t
+

∑
j,k

cjk(x, t)
∂2

∂xj∂xk

+ · · · (1.5)

is an elliptic differential operator with real coefficients and principal symbol

σL(t, x, τ, ξ) = −τ2 − 2
n−1∑
j=1

τξj bj (x, t) −
∑
j,k

cj,k(x, t)ξj ξk,

and the dots in (1.5) denote terms of order one. We now follow the approach of Treve
Chapter 3] to construct parameterization of the heat equation. We will apply the machine
of pseudodifferential operators to find a family of pseudodifferential operatorsH(t, x,Dx),
acting on the variablex and depending smoothly ont > 0 as a parameter, that solves t
problem{

L ◦ H ∼ 0 modulo a smooth kernel,

H(0, x,Dx) = I.
(1.6)

The symbolσH (t, x, ξ) of H is identically equal to 1 fort = 0 and has order−∞ for
t > 0; furthermore,

⋃
0<t<1{σH (t, x, ξ)} is a bounded subset ofS0

1,0, the symbol class o

order zero and typeρ = 1, δ = 0, defined for|x| < 1 andξ ∈ Rn−1. We denote byLm
1,0 the

space of operators of orderm and typeρ = 1, δ = 0. Since the integral operatorP defined
by (1.2), which in the original variables is given by integration against the Poisson k
solves (in the new variables) (1.6) exactly, we may regardH as an approximation ofP by
pseudo-differential operators. To findH we first construct an operatorD ∈ L1

1,0, such that

L ∼
(

∂t +
n∑

bj
∂

∂xj

− D

)(
∂t +

n∑
bj

∂

∂xj

+ D

)
modL−∞. (1.7)
j=1 j=1
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We begin by choosing a pseudo-differentialoperator induced by the homogeneous func
of order one,

d1(t, x, ξ) =
(∑

j,k

cjk(x, t)ξj ξk −
(

n∑
j=1

bj (x, t)ξj

)2 )1/2

.

The ellipticity of L implies thatd1(t, x, ξ) � c|ξ | for somec > 0. Thus,d1 is an elliptic
homogeneous symbol of degree one. Even thoughd1 is not a symbol inS1

1,0 because it
fails to be smooth at the origin, we proceed as usual and after multiplication by a c
function that vanishes for|ξ | < 1/2 and is identically equal to 1 for|ξ | > 1, we can obtain
a symbol inS1

1,0 that we still denote byd1. If D1 = Op(d1) then we want to check that

L ∼
(

∂t +
n∑

j=1

bj

∂

∂xj

− D1

)(
∂t +

n∑
j=1

bj

∂

∂xj

+ D1

)
modL1

1,0. (1.8)

SetR1 = L− (∂t +∑n
j=1 bj

∂
∂xj

−D1)(∂t +∑n
j=1 bj

∂
∂xj

+D1). Then, the symbolic calcu
lus of pseudo-differential operators shows after a simple computation that the symbσR1

of R1 belongs toS1
1,0.

The next step consists in finding a symbold0 ∈ S0
1,0 such that the operatorD0 = Op(d0)

satisfies

L ∼ (
∂t + � − (D1 + D0)

)(
∂t + � + (D1 + D0)

)
modL0

1,0,

where we have written

� =
n∑

j=1

bj
∂

∂xj

.

Now let Q1 andQ2 denote respectively∂t + � − D1 and∂t + � + D1 and setR0 = L −
(Q1 − D0)(Q2 + D0). Then,R0 = L − Q1Q2 + (Q2 − Q1)D0 + D0D0 + [D0,Q2], and
observing thatQ2 − Q1 = 2D1 andL ∼ Q1Q2 modL1 because of (1.8) we haveR0 =
D0D0 + 2D1D0 + R1 for someR1 ∈ L1. Then, if r1 is the symbol ofR1 andd1 is the
symbol ofD1, we may takeD0 with symbol

d0(t, x, τ, ξ) = −1

2

r1(t, x, τ, ξ)

d1(t, x, τ, ξ)

and obtain thatR0 has order zero. Keeping up this process we may define a seque
symbols

d−j = −1

2

r1−j

d1 + d0 + · · · + d1−j

∈ S
−j

1,0

so that their associated operatorsDk = Op(dk), k = 1,0, . . . ,−j , satisfy

L ∼ (∂t + � − D1 − D0 − · · · − D−j )(∂t + � + D1 + D0 + · · · + D−j) modL−j

1,0.

Since the order ofd−j goes to−∞ asj → ∞, we may find a symbold ∈ S1
1,0 such that

d(t, x, ξ) ∼
∞∑

d1−j (t, x, ξ) modS−∞

j=0
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in the sense thatd − ∑k
j=0 d1−j ∈ S−k

1,0 or anyk = 0,1,2 . . . . Hence, the operatorD =
Op(d) satisfies (1.7). If we call

A1 =
n∑

j=1

bj
∂

∂xj

− D and A =
n∑

j=1

bj
∂

∂xj

+ D,

we may rewrite (1.7) as

L ∼ (∂t + A1)(∂t + A) modL−∞.

Hence, in order to obtain (1.6) it will suffice to find a family of operatorsH(t, x,Dx, ),
0 � t < 1, such that

(∂t + A) ◦ H(t, x,Dx) ∼ 0 modulo a smooth kernel, (1.9)

with the additional propertyH(0, x,Dx) = identity. Note that the symbola(t, x, ξ)

of A has principal symbola1(t, x, ξ) = d1(t, x, ξ) + i
∑n−1

j=0 bj (x, t)ξj . To construct
H(t, x,Dx) with symbolσH (t, x, ξ) = h(t, x, ξ) we propose

h(t, x, ξ) ∼ e− ∫ t
0 a1(s,x,ξ) ds

(
1+ κ−1(t, x, ξ) + κ−2(t, x, ξ) + · · ·) (1.10)

with κ−j ∈ S
−j

1,0. An important point here is that, becaused1(t, x, ξ) � c > 0 for |ξ | > 1,

e(t, x, ξ) = exp(− ∫ t

0 a1(s, x, ξ) ds) satisfies the following estimates∣∣Dα
x D

β
ξ Dk

t e(t, x, ξ)
∣∣ � Cαβk

(
1+ |ξ |)k−|β|

expressing the fact thatDk
t e ∈ Sk

1,0 uniformly in t . The proof of [19, Theorem 1.1] show
thatκ−1, κ−2, . . . satisfyingκ−j (0, x, ξ) = 0 may be inductively determined by a proce
similar to the construction ofD so that ifh(t, x, ξ) is given by (1.10) thenH = Op(h)

satisfies (1.9). Furthermore,∣∣Dα
x D

β
ξ Dk

t h(t, x, ξ)
∣∣ � Cαβk

(
1+ |ξ |)k−|β|

. (1.11)

Consider the kernel of the pseudo-differentialH(t, x,Dx )

h(t, x, y) = 1

(2π)n−1

∫
ei(x−y)ξh(t, x, ξ) dξ.

It follows from standard estimates for the kernel of pseudo-differential operators
e.g., [1,18]) that estimates (1.11) imply the estimates∣∣Dα

x Dβ
y Dk

t h(t, x, y)
∣∣ � Cαβk

|x − y|n−1+k+|α|+|β| . (1.12)

Notice that estimates (1.12) forh are analogous to the estimates (1.1) that we wish to p
for P̃ . Thus, to obtain (1.1) it will be enough to find smooth functionsµ(t, x, y), ρ(t, x, y)

defined for|x|, |y| < 1, 0� t < 1 such thatP̃ (x, t, y) = µ(h + ρ)(t, x, y). Let p(x, t, y)

be the kernel of the integral operatorP expressed in the new coordinates: its expres
is readily obtained from (1.2) (which givesP in the original coordinates) by reverting
the new coordinates. We then see thatp(x, t, y) = P̃ (x, t, y)/µ(y) whereµ−1(y) dy is the
expression of the area elementdσ of Σ in the new coordinates, in particularµ > 0 and is
smooth. Therefore, we need only show thatρ = p − h is smooth up to the boundary. Th
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follows from the fact that the operatorsP andH , whose kernels are respectivelyp andh,
satisfyL ◦ (P −H) ∼ 0 modulo smoothing operators and(P −H)|t=0 = 0. That this is so
is already a consequence of the “uniqueness”part of [19, Theorem 1.1] but here it seem
simpler to give a direct argument. By returning to the original coordinates, let us tra
the operatorH to the initial neighborhoodW � x0 ∈ Σ obtaining an operator that we st
call H . Using a cut-off functionχ that is identically 1 in a neighborhoodω of x0 such
ω ⊂ W , it is easy to construct an operatorH̃ = χHχ :C∞(Σ) → C∞(Ω) such that

(a) ∆H̃ is regularizing when acting on distributions compactly supported inω,
(b) H̃φ|Σ = φ if φ is supported inω ∩ Σ .

If φ ∈D′(Σ), we have that∆(Pφ − H̃φ) = ψ , whereψ is smooth inΩ ∩ω in view of (a).
Furthermore, (b) implies thatPφ − H̃φ vanishes onω∩Σ . By boundary elliptic regularity
we conclude thatPφ − H̃φ ∈ C∞(Ω ∩ ω) and since this holds for any distributionφ ∈
D′(Σ) we conclude that the kernel ofP − H̃ is smooth when restricted to(ω ∩ Ω) × (ω ∩
Ω), which proves, as we wished, thatp − h is smooth up to the boundary. The proof
Case 1 is complete.

Case2. |x − y| � t

For |x − y| � t , (|x − y|2 + t2)1/2 is comparable tot . Thus, it will be enough to prov
that for any|x|, |y| < 1 and 0< |x − y| � t < 1

∣∣Dα
x Dβ

y Dk
t P̃ (x, t, y)

∣∣ � Cαβk

tn−1+|α|+|β|+k
. (1.13)

As before, it is enough to prove analogous estimates for the kernelh(t, x, y) of the pseudo
differential approximationH of the Poisson kernel. This leads us to look more clos
to its symbolh(t, x, y) = exp(− ∫ t

0 a1(s, x, ξ) ds)κ(t, x, ξ) given by (1.10). We recall tha

a1 is defined bya1(t, x, ξ) = d1(t, x, ξ) + i
∑n−1

j=0 bj (x, t)ξj whered1(t, x, ξ) > c|ξ | for
|ξ | > 1 andκ(t, x, ξ) has order zero uniformly int , furthermore the functionsbj (x, t) are
real. Thus∣∣h(t, x, y)

∣∣ � C exp
(−tc|ξ |), ξ ∈ R

n−1, 0 < t < 1,

and

h(t, x, y) = 1

(2π)n−1

∫
ei(x−y)ξh(t, x, ξ) dξ (1.14)

is easily seen to satisfy the estimate

∣∣h(t, x, y)
∣∣ � C

∫
Rn−1

exp
(−tc|ξ |)dξ � C′

tn−1 .

Similarly, we see that forξ ∈ Rn−1 and 0< t < 1∣∣Dα
x Dk

t h(t, x, ξ)
∣∣ � Cαk

(
1+ |ξ |)|α|+k

exp
(−tc|ξ |)

which implies, after differentiation of (1.14), that
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∣∣Dα
x Dβ

y Dk
t h(t, x, y)

∣∣ � Cαβk

∫
Rn−1

(
1+ |ξ |)|α|+|β|+k exp

(−tc|ξ |)dξ

� Cαβk

tn−1+|α|+|β|+k
. (1.15)

Reasoning as in Case 1, we see that the estimates (1.15) forDα
x D

β
y Dk

t h imply the analogous
estimates (1.13). The proof of Theorem 1.1 is complete.�
Corollary 1.2. Let P(z, x) be the Poisson kernel of a bounded domainΩ ⊆ Rn with
smooth boundaryΣ . There exist a constantC = C(Ω) > 0 such that for all(z, x) ∈ Ω ×Σ

∣∣P(z, x)| � C dist(z,Σ)min

(
1

dist(z,Σ)n
,

1

|x − z|n
)

. (1.16)

Proof. It is enough to prove (1.16) when|z − x| is small using local coordinates(x, t).
As in the proof of the theorem, we work in a thin tubular neighborhood ofΣ . We
first point out that ifz = (y, t), (1.13) for α = β = k = 0 gives |P(z, x)| � Ct1−n �
C′ dist(z,Σ)1−n, sincet ∼ dist(z,Σ). This gives (1.16) whenz ∈ Γa(x), in which case
|z − x| ∼ dist(z,Σ). When z = (y, t) /∈ Γa(x) we use the mean value theorem to
|P(z, x)| � sup|∇zP (z, x)|dist(z,Σ), where the supremum is taken along the segm
that joinsz to the pointζ ∈ Σ such that|z − ζ | = dist(z,Σ). Using (Kαβ ) with α = 0,
|β| = 1 we obtain|P(z, x)| � C|x − z|−n dist(z,Σ). The corollary easily follows. �
Remark 1.3. The proof of Theorem 1.1 shows that the Laplacian may be replace
any second order elliptic operator with smooth real coefficients defined in a neighborho
of Ω . In this case, the Poisson kernel must be replaced by the kernel of the operator th
solves the Dirichlet problem.

Remark 1.4. Estimates for the Poisson kernel can beobtained from estimates on the Gre
function. However, we point out that classical estimates for the Green function o
Laplace–Beltrami operator on compact manifolds with boundary are interior estimate
in the sense that constants blow up when approaching the boundary [2, p. 112], so
not seem to imply Theorem 1.1.

2. Approximations of the identity

Assume without loss of generality thatΩ is such thatzt = x − tνx ∈ Ω and t =
dist(zt ,Σ) if x ∈ Σ , 0 < t � 1. We may then shrinkΩ along the normal direction fo
0 < t < 1 and obtain the open set

Ωt = {
z ∈ Ω : dist(z,Σ) > t

}
with boundary

Σt = ∂Ωt = {
x − tνx(x): x ∈ Σ

}
.



474 L.A. Carvalho dos Santos, J. Hounie / J. Math. Anal. Appl. 299 (2004) 465–493

s
tity.

e
at
Clearly,
⋃

0<t<1 Ωt = Ω . The mapΣ � x �→ x − tνx is a diffeomorphism for fixed 0<
t < 1 and thus we may identify eachΣt with Σ . With this identification, the operator

D′(Σ) � φ �→Pφ|Σt ∈ C∞(Σt )

may be regarded as an operator fromD′(Σ) into C∞(Σ) that we denote byPt . The fact
thatPφ(z) → φ(x) asΩ � z → x ∈ Σ whenφ ∈ C(Σ) implies that the regularization
Ptφ converge toφ ast → 0, i.e.,Pt may be regarded as an approximation of the iden
Let 0< r < 1. The Hölder spaceCr(Σ) is defined as

Cr(Σ) = {
u ∈ C(Σ), ‖u‖r < ∞}

,

where

‖u‖r = |u|r + |u|0,
|u|0 = sup

x∈Σ

∣∣u(x)
∣∣,

|u|r = sup
x,y∈Σ
x �=y

|u(x) − u(y)|
d(x, y)r

andd(x, y) denotes the geodesic distance inΣ . If k > 0 is an integer andr = k + γ , for
some 0< γ < 1, Cr(Σ) is defined as

Cr(Σ) = {
u ∈ Ck(Σ),

∥∥Q(x,D)u
∥∥

γ
< ∞}

for all differential operatorsQ(x,D) of order� k with smooth coefficients defined onΣ .
Sinceu = Pφ solves the Dirichlet problem with boundary valueφ, it turns out that if
φ ∈ Cr(Σ), 0 < r < 1, thenPφ ∈ Cr(Ω) [8]. It follows that |φ(x) − Pt φ(x)| = O(tr )

uniformly in x ∈ Σ , so this gives an estimate of approximation speed ofPtφ to φ for
0 < r < 1 which increases withr. However, if we taker > 1 the exponent will not increas
beyond 1. Thus, it is convenient to replacePt by another approximation of the identity th
yields a faster approximation. This can be obtained by linear combinations ofPt evaluated
at different timest . If f (s), s ∈ R, we recall that the difference operator with stept > 0 is
defined as∆tf (s) = f (s + t) − f (s). Then∆2

t f (s) = ∆t(∆tf )(s) = f (s + 2t) − 2f (s +
t) + f (s) and ifL � 1 is an integer

∆L
t f (s) =

L∑
j=0

(−1)L−j

(
L

j

)
f (s + j t).

Let f (L) denote the derivative of orderL of f . Taylor’s formula for∆Lf (s) whenf (L) is
continuous is given by

∆L
t f (s) = tL

∫
[0,1]L

f (L)
(
s + t (τ1 + · · · + τL)

)
dτ. (2.1)

If f ∈ Cr(R), r = L + γ , 0< γ < 1, we have

∆L+1
t f (s) = tL

∫
L

∆tf
(L)

(
s + t (τ1 + · · · + τL)

)
dτ
[0,1]
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which gives the estimate∣∣∆L+1
t f (s)

∣∣ = tr‖f (L)‖γ � tr‖f ‖r . (2.2)

Next we define

SL
t =

L∑
j=0

(−1)L−j

(
L

j

)
Pj t , 0 < t � 1/L,

where it is understood thatP0 = I = identityoperator. Fort = 0 we see thatSL
0 =

(1− 1)LI = 0, so

Γ L
t =

L∑
j=1

(−1)j+1
(

L

j

)
Pj t = I − (−1)LSL

t

is an approximation of the identity. The next lemma shows thatΓ L
t φ approximatesφ faster

thanPt φ is φ is sufficiently regular.

Lemma 2.1. Let 0 < r < L not be an integer. There existsC > 0 such that for every
φ ∈ CL(Σ) andα ∈ Z

n−1+ , 0 � |α| < r,

sup
x∈Σt

∣∣Dα
x

(
Γ L

t φ(x) − φ(x)
)∣∣ = ∥∥Dα

x SL
t φ

∥∥
L∞ � Ctr−|α|‖φ‖r . (2.3)

Proof. Consider first the caseα = 0, so we wish to show that|SL
t φ(x)| � Ctr‖φ‖r . Let

u = Pφ, sou is harmonic inΩ and has the boundary valueφ. Sinceφ ∈ Cr(Σ), standard
Hölder boundary estimates [8] imply thatu ∈ Cr(Ω) and‖u‖r � C‖φ‖r . Then

SL
t φ(x) =

L∑
j=0

(−1)L−j

(
L

j

)
u(x − tνx)

= tL−1
∫

[0,1]L−1

∆tD
L−1
t u

(
x − t (τ1 + · · · + τL−1)νx

)
dτ. (2.4)

We may majorize|∆tD
L−1
t u| by tγ ‖DL−1

t u‖γ whereγ = r − L + 1. Writing

DL−1
t u

(
x − t (τ1 + · · · + τL−1)νx

)
=

∑
|α|=L−1

(−t (τ1 + · · · + τL−1)νx

)α
Dα

z u
(
x − t (τ1 + · · · + τL−1)νx

)

as a sum of derivatives ofu of orderL− 1 we have‖DL−1
t u‖γ � C‖u‖L−1+γ = C‖u‖r �

C′‖φ‖r , so we get|∆tD
L−1
t u| � Ctγ ‖φ‖r . Plugging this estimate in (2.4) yields (2.3) f

α = 0.
For |α| = 1 we writeDα

x SL
t φ = SL

t Dα
x φ + [Dα

x ,SL
t ]φ. The estimate already proved f

α = 0 with r − 1 in the place ofr gives∥∥SL
t Dα

x φ
∥∥ ∞ � Ctr−1‖Dαφ‖r−1 � Ctr−1‖φ‖r (2.5)
L
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and we need only show a similar estimate for the commutator term[Dα
x ,SL

t ]φ. We saw in
the proof of Theorem 1.1 how to find family of pseudo-differential operatorsHt depending
on a parametert differing fromP by a smooth kernel. That was a local construction
using a finite partition of unity in a tubular neighborhood ofΣ we can make it global an
find a family of pseudo-differentialHt ∈ L0

1,0(Σ), 0< t < 1, such that

(i) for anyk = 0,1, . . . , the set{Dk
t Ht }0<t<1 is a bounded subset ofLk

1,0(Σ);
(ii) Pt − Ht is regularizing, more precisely, there existsr(x, y, t) ∈ C∞(Σ × Σ × [0,1))

such that

(Pt − Ht)φ(x) =
∫
Σ

r(x, y, t)φ(y) dσ(y), φ ∈ D′(Σ).

Notice that (i) follows from estimates (1.11) and (ii) from the fact that the kernelp − h

is smooth up to the boundary as shown in the proof or Theorem 1.1. SinceHtφ → φ

as t → 0 by construction it follows thatr(x, y,0) ≡ 0. Consider the pseudo-different
approximation ofSt for 0< t � 1/L,

S̃t =
L∑

j=0

(−1)L−j

(
L

j

)
Hjt = tL−1

∫
[0,1]L−1

∆tD
L−1
t Ht(τ1+···+τL−1) dτ.

By (i) DL−1
t Ht ∈ LL−1

1,0 which implies that∆tD
L−1
t Ht ∈ LL−1

1,0 . It follows that [Dα
x ,

∆tD
L−1
t Ht ] ∈ LL−1

1,0 . Hence,[Dα
x ,∆tD

L−1
t Ht(τ1+···+τL−1)] maps continuouslyCr(Σ) to

Cr−L+1(Σ) = Cγ (Σ) ⊂ L∞(Σ) (for the continuity of pseudo-differential operators
Rn−1 see [15, p. 253]; these results are extended to smooth compact manifolds by
ization). We conclude that

sup
x∈Σt

∣∣[Dα
x , S̃t

]
φ(x)

∣∣ � CtL−1‖φ‖r � Ctr−1‖φ‖r , φ ∈ Cr(Σ). (2.6)

Since the kernel ofPt − Ht is r(x, y, t) it follows that the kernel ofSt − S̃t is

L∑
j=0

(−1)L−j

(
L

j

)
r(x, y, j t) = tL

∫
[0,1]L

DL
t r

(
x, y, t (τ1 + · · · + τL)

)
dτ,

which easily implies

sup
x∈Σt

∣∣[Dα
x , (St − S̃t )

]
φ(x)

∣∣ � CtL‖φ‖L∞ � Ctr−1‖φ‖r . (2.7)

Now (2.6) and (2.7) imply

sup
x∈Σt

∣∣[Dα
x ,St

]
φ(x)

∣∣ � Ctr−1‖φ‖r ,

which together with (2.5) prove (2.3) for|α| = 1. Keeping up this process we may pro
(2.3) for all |α| < r. �
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3. Definitions and technical lemmas

In this section we keep the notation of the previous one, in particular,Ω ⊂ Rn is a
bounded open set with smooth boundary and we denote its boundary∂Ω by Σ . We con-
sider inΣ the Riemannian structure inherited fromRn a denote bydσ its volume element
We recall that the Poisson integralu(z) = Pφ(z) = ∫

Σ
P(z, x)φ(x) dσ(x) which is ini-

tially defined forφ ∈ C(Σ) and solves the Dirichlet problem onΩ with boundary valueφ
has a natural extension toD′(Σ). For fixedz ∈ Ω , Σ � x �→ P(z, x) ∈ C∞(Σ) and we
set

u(z) =Pf (z) = 〈
f,P (z, ·)〉, f ∈D′(Σ), (3.1)

where the brackets denote the pairing betweenD′(Σ) andC∞(Σ) that extends the bilinea
form

C∞(Σ) × C∞(Σ) � (ψ,φ) �→
∫
Σ

ψ(x)φ(x) dσ(x).

If u is given by (3.1) thenu is harmonic inΩ and its weak boundary valuebu is f . That
means that for anyφ ∈ C∞(Σ)

lim
t↘0

∫
Σ

u(x − tνx)φ(x) dσ(x) = 〈f,φ〉,

whereνx is the outer normal unit vector field. Since our conclusions are invariant u
dilations of Euclidean space, we will assume without loss of generality thatΩ is such that
for anyx ∈ Σ and 0< t � 1 zt = x − tνx ∈ Ω andt = dist(zt ,Σ). To simplify the notation
we will often write in the sequel

d(z,Σ) = dist(z,Σ) = inf
x∈Σ

|z − x|.

We consider now three different maximal functions associated to three different wa
of approaching the boundaryΣ .

(1) The normal maximal function:

u⊥(x) = sup
0<ε<1

∣∣u(x − ενx)
∣∣,

whereνx is the outer normal unit vector field.
(2) The nontangential maximal function:

u∗
a(x) = sup

z∈Γa(x)

∣∣u(z)
∣∣,

where for a givena > 1 the region

Γa(x) = {
z ∈ Ω : |z − x| < ad(z,Σ), d(z,Σ) < 1

}
is then-dimensional analogue of a truncated Stolz angle.
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(3) The tangential maximal function:

u∗∗
m (x) = sup

z∈Ω
d(z,Σ)<1

∣∣u(z)
∣∣(d(z,Σ)

|z − x|
)m

,

wherem is a positive integer.

We will make use inΣ of both the geodesic distanced(x, y) and the Euclidean distanc
|x −y|. Sincec1|x −y| � d(x, y) � c2|x −y|, x, y ∈ Σ , for some positive constantsc1, c2,
switching from one distance to the other inan inequality will cause no trouble. We deno
by B(x, r) the ball of centerx and radiusr > 0 in Rn and byBΣ(x, r) the geodesic bal
in Σ . We shall also consider a special family of smooth functions defined onΣ .

Definition 3.1. For everys ∈ Z+ andx ∈ Σ let Ks(x) denote the set of allφ ∈ C∞(Σ)

such that for someh > 0 the conditions below are satisfied:

(i) suppφ ⊆ BΣ(x,h),
(ii) sup0�k�s hn−1+k‖φ‖k � 1.

Definition 3.2. Forf ∈ D′(Σ) we define the grand maximal function by

Msf (x) = sup
φ∈Ks(x)

∣∣〈f,φ〉∣∣.
The spaceHp(Σ), p > 0, is the subspace ofD′(Σ) of thosef such thatMsf ∈ Lp for
s � [(n − 1)/p] + 2.

Although the definition ofHp(Σ) seems to depend ons it does not as long ass is
sufficiently large (s > (dimΣ)/p suffices). That this is so fors � [(n − 1)/p] + 2 follows
also from Theorem 5.1 below.

If T :C∞(Σ) → C∞(Σ) is a continuous linear operator, we denote byt T :D′(Σ) →
D′(Σ) the transpose operator, defined by〈t T v,φ〉 = 〈v,T φ〉, v ∈ D′(Σ), φ ∈ C∞(Σ). In
particular, we denote bytΓh, 0< h < 1, the transpose of the approximation of the iden
discussed in the previous section (from now on, in order to alleviate the notation, we
write Γh rather thanΓ L

h unless there is a need to stress the role ofL). By Lemma 2.1,
Γhφ → φ in C∞(Σ) if φ ∈ C∞(Σ). Furthermore,t Γh is bounded inCr(Σ) for every
nonintegralr > 0. Indeed, this is clearly so if we replaceΓh by its pseudo-differentia
approximationΓ̃h, which is a pseudo-differential of order zero, and the conclusion
lows because the difference between the two operators has a smooth kernel. Hence
φ ∈ C∞(Σ), t ΓhΓhφ → φ in C∞(Σ) ash ↘ 0. Thus, ifφ ∈ C∞(Σ) and 0< h < 1 we
have the following representation:

φ = tΓhΓhφ +
∞∑

j=0

(
tΓ2−j−1hΓ2−j−1h − tΓ2−j hΓ2−j h

)
φ. (∗)



L.A. Carvalho dos Santos, J. Hounie / J. Math. Anal. Appl. 299 (2004) 465–493 479

ds
Definition 3.3. Let m, L be positive integer numbers andf ∈ D′(Σ). We define onΣ a
tangential maximal function associated to the approximation of identityΓt as

Γ ∗∗
m f (x) = sup

y∈Σ
0�t�1/L

∣∣Γtf (y)
∣∣(1+ d(x, y)

t

)−m

,

whered(x, y) denotes the geodesic distance inΣ .

Lemma 3.4. For all f ∈D′(Σ), the following pointwise inequality holds:

Γ ∗∗
m f (x) � Cu∗∗

m (x), x ∈ Σ. (3.2)

Proof. We recall thatu∗∗
m (x) is given by

u∗∗
m (x) = sup

z∈Ω

∣∣u(z)
∣∣(d(z,Σ)

|z − x|
)m

,

whereu(z) = 〈f,P (z, ·)〉. We have

Γ ∗∗
m f (x) = sup

y∈Σ
0�t�1/L

∣∣Γtf (y)
∣∣(1+ d(x, y)

t

)−m

�
L∑

j=1

(
L

j

)
sup
y∈Σ

0�t�1/L

∣∣u(y − j tνy)
∣∣(1+ d(x, y)

t

)−m

.

Notice that forzj = y − j tνy we have, becausej t = d(zj ,Σ) whentj � 1,(
1+ d(x, y)

t

)−m

�
(

1+ d(x, y)

j t

)−m

�
(

d(zj ,Σ)

|zj − x|
)m

so that

Γ ∗∗
m f (x) �

L∑
j=1

(
L

j

)
sup
z∈Ω

∣∣u(z)
∣∣(d(z,Σ)

|z − x|
)m

� 2Lu∗∗
m (x)

which proves (3.2). �
We now recall the operator

St =
L∑

j=0

(−1)L−j

(
L

j

)
Pj t

defined in Section 2 and denote byσt (x, y), x, y ∈ Σ , its kernel. The next lemma depen
strongly on the estimates (Kαβ ) proved in Theorem 1.1.

Lemma 3.5. There existsCα > 0 depending only ofL andn such that for allx �= y in Σ

∣∣Dα
x σt (x, y)

∣∣ � CαtL

|x − y|n−1+L+|α| , 0 � t � 1/L.
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Proof. Notice that the first term in the sum that definesSt is ±I so its kernel is supporte
in the diagonalx = y. Hence, in the proof of the lemma we need only look at terms w
j � 1. We prove the estimate forα = 0, the proof for|α| > 0 is similar and will be left to
the reader. We consider two cases.

Case1. Letx, y ∈ Σ be such thatx �= y and|y − x| < 2Lt . Then(
1

2

)n−1+L

� tn−1+L

|x − y|n−1+L
Ln−1+L (3.3)

sinceL � 1. Taking account of (Kαβ ) with α = β = 0 we get

∣∣σt (x, y)
∣∣ �

L∑
j=1

(
L

j

)
P(x − j tνx, y) �

L∑
j=1

(
L

j

)
C

|x − j tνx − y|n−1

�
L∑

j=1

(
L

j

)
C

(jt)n−1 � 1

tn−1 C2L � C′tL|x − y|−n+1−L,

where the last inequality is a consequence of (3.3).

Case2. Letx, y ∈ Σ such that|x − y| > 2Lt. Then, using Taylor’s formula, we get

∣∣σt (x, y)
∣∣ �

∣∣∣∣∣(Lt)L
∑

|α|=L

∫
[0,1]L

∂α

∂zα
P

(
x − t (s1 + · · · + sL)νx, y

)
ds

∣∣∣∣∣
� (Lt)L

∑
|α|=L

∫
[0,1]L

∣∣∣∣ ∂α

∂zα
P

(
x − t (s1 + · · · + sL)νx, y

)∣∣∣∣ds

� tL
∫

[0,1]L

C(L,n)

|x − t (s1 + · · · + sL)νx − y|n−1+L
ds,

where we used (Kαβ ) to obtain the last inequality. Since,|x − y| > 2Lt and|t (s1 + · · · +
sL)νx | < Lt it follows that

1

2
|x − y| � ∣∣x − t (s1 + · · · + sL)νx − y

∣∣
which gives the desired estimate also in this case.�
Lemma 3.6. Let 1 � m < L be integers and0 < s < L. Letφ ∈ C∞(Σ) be such that

(1) suppφ ⊆ BΣ(x,h) and
(2) ‖φ‖L∞ � h1−n and‖φ‖CL � h1−n−L.

There exists a positive constantc = c(n,Σ,L,m, s) independent ofh andφ such that ifh
andth ∈ (0,1/L)∫ ∣∣Sthφ(y)

∣∣(1+ d(x, y)

h

)m

dσ(y) � cts (3.4)
Σ
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f

and ∫
Σ

∣∣Γhφ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y) � c. (3.5)

Proof. Since (3.4) for a given value ofs implies the same estimate for smaller values os

we may assume thatL−1 < s < L. Interpolating the estimates (2) we have, withρ = s/L,

‖φ‖s � C‖φ‖1−ρ
L∞ ‖φ‖ρ

CL � Ch1−n−s . (3.6)

Note that (2) also implies that‖φ‖L1 � C. Let

B = {
y ∈ Σ: d(x, y) < h

}
, B∗ = {

y ∈ Σ: d(x, y) < 2h
}
.

Let us write the integralI on the left hand side of (3.4) asI = I1 + I2 where

I1 =
∫
B∗

∣∣Sthφ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y)

and

I2 =
∫

Σ\B∗

∣∣Sthφ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y).

To estimateI1 note that for everyy ∈ B∗ we have(1+ d(x, y)/h)m � 3m so∫
B∗

∣∣Sthφ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y) � 3m

∫
B∗

∣∣Sthφ(y)
∣∣dσ(y). (3.7)

Recalling estimate (2.3) in Lemma 2.1 with|α| = 0 and (3.6) we have∫
B∗

∣∣Sthφ(y)
∣∣dσ(y) � C

∫
B∗

(th)s‖φ‖s dσ (y) � C

∫
B∗

(th)sh1−n−s dσ (y)

� Ctsh1−n

∫
B∗

dσ(y) � Cts, (3.8)

with the constantC depending only ofs,L,n,Σ . Thus, (3.7) and (3.8) giveI1 � Cts . To
estimateI2 observe that(

1+ d(x, y)

h

)m

� 2mh−md(x, y)m, y ∈ Σ \ B∗.

Hence, using Lemma 3.5 withα = 0 to estimate the kernelσth of Sth, we get

I2 � 2mh−m

∫
Σ\B∗

(
C(th)L

∫
B

|φ(w)|
d(y,w)n−1+L

dw

)
d(x, y)m dσ(y)

� CtLhL−m‖φ‖L1(Σ)

∫
∗

d(x, y)m−n+1−L dσ(y)
Σ\B
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� CtLhL−mhm−L = c′′tL � c′′ts ,
which concludes the proof of (3.4).

To prove (3.5) we note that|Γhφ(y)| � |Shφ(y)| + |φ(y)|, so (3.4) witht = 1 implies∫
Σ

∣∣Γhφ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y) � c +
∫
Σ

∣∣φ(y)
∣∣(1+ d(x, y)

h

)m

dσ(y)

and the last integral is majorized by|BΣ(x,h)|h1−n2m � c. �
In the next lemma we recall a standard majorization ofu⊥(x) by the Hardy–Littlewood

maximal function off

Mf (x) = sup
r>0

1

|BΣ(x, r)|
∫

BΣ(x,r)

∣∣f (y)
∣∣dσ(y).

Lemma 3.7. There existsC > 0 such that

u⊥(x) � CMf (x), f ∈ L1(Σ). (3.9)

Proof. We decompose the integral

u(x − tνx) =
∫
Σ

P(x − tνx, y)f (y) dσ(y)

as ∫
Σ

=
∫

BΣ(x,2t )

+
∫

BΣ(x,4t )\BΣ(x,2t )

+
∫

BΣ(x,8t )\BΣ(x,4t )

+· · · = I1 + I2 + I3 + · · · .

By Corollary 1.2,|P(x − tνx, y)| � Ct1−n so

|I1| � Ct1−n

∫
BΣ(x,2t )

∣∣f (y)
∣∣dσ(y) � C′Mf (x).

To estimateIj , j � 2, we recall that∣∣P(x − tνx, y)
∣∣ � C

t

d(x, y)n
,

again by Corollary 1.2, which implies

|Ij | � Ct

∫
BΣ(x,2j t )

|f (y)|
(t2j )n

dσ(y) � C′2−jMf (x).

Hence,

∣∣u(x − tνx)
∣∣ �

∑
j

|Ij | � CMf (x)

∞∑
j=1

2−j � CMf (x)

and taking the supremum int we get (3.9). �
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Since the Hardy–Littlewood maximal operator is bounded inL2 we have

Corollary 3.8. If f ∈ L2(Σ),

‖u⊥‖L2(Σ) � C‖f ‖L2(Σ). (3.10)

4. Equivalence of Poisson’s maximal functions

In this section we show that the three maximal functions defined through the Po
integral—the normal, nontangential and tangential maximal functionsu⊥, u∗

α andu∗∗
m —

have equivalentLp norms for fixedm > (n−1)/p and apertureα > 1. As before,Ω ⊂ Rn

is a bounded open set with a smooth boundary∂Ω denoted byΣ .

Theorem 4.1. Let f ∈ D′(Σ) be a distribution and let u denote its Poisson integral.
0 < p � ∞, 1 < α < ∞ andm > (n − 1)/p be an integer. The following conditions a
equivalent:

(i) u⊥ ∈ Lp(Σ);
(ii) u∗

α ∈ Lp(Σ);
(iii ) u∗∗

m ∈ Lp(Σ).

Moreover, theLp-norms of the three maximal functions involved are equivalent.

Proof. The proof has three steps.

(i) ⇒ (ii) We recall the generalized mean value property for harmonic functions due to
Hardy and Littlewood [10]:

Lemma 4.2. LetB ⊂ Rn be a ball centered atz and suppose thatu is harmonic onB and
continuous on its closureB. Then for allq > 0 there exists a constantC = C(n,q) such
that ∣∣u(z)

∣∣q � C

|B|
∫
B

∣∣u(w)
∣∣q dw. (4.1)

Following [6], we apply (4.1) to obtain for a fixedq > 0 the estimate

u∗
α(x) � CM

[
u⊥q]

(x)1/q, x ∈ Σ,

whereM denotes Hardy–Littlewood maximal function. It is a classical result thatM is
bounded inL2(Rn). This remains true ifRn is replaced by a compact Riemannian manif
such asΣ . Choosingq = p/2 we have∫

Σ

∣∣u∗
α(x)

∣∣p dσ(x) � C

∫
Σ

{
M

[
u⊥q]}p/q

(x) dσ(x) � C

∫
Σ

∣∣u⊥(x)
∣∣p dσ(x),

which shows that (i) implies (ii).
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e

with

ty
(ii) ⇒ (iii) The control ofu∗∗
m by u∗

α follows from very generalarguments. Consider th
sets

A0 = {
z ∈ Ω : |z − x| � αd(z,Σ)

}
and

Aj = {
z ∈ Ω : 2j−1αd(z,Σ) � |z − x| < 2jαd(z,Σ)

}
, j = 1,2, . . . .

Since the collection{Aj }∞j=0 is a covering ofΩ we have

u∗∗
m (x) � sup

A0

{∣∣u(z)
∣∣(d(z,Σ)

|z − x|
)m

}
+

∞∑
j=1

sup
Aj

{∣∣u(z)
∣∣(d(z,Σ)

|z − x|
)m

}
.

It now follows from the definition ofu∗
α that

u∗∗
m (x)p � u∗

α(x)p +
∞∑

j=1

2(1−j)mpu∗
2j α

(x)p.

Integrating overΣ we obtain∫
Σ

u∗∗
m (x)p dσ(x) �

∫
Σ

u∗
α(x)p dσ(x) +

∞∑
j=1

2(1−j)mp

∫
Σ

u∗
2jα

(x)p dσ(x). (4.2)

We now use a variation of a useful lemma that relates maximal functions defined
respect to different apertures [15, p. 62]:

Lemma 4.3. There exists a positive constantC depending onΣ such that ifa andb are
real numbers satisfying0 < b � a then the following estimate holds:∫

Σ

u∗
a(x)p dσ(x) � C

(
1+ 2a

b

)n−1 ∫
Σ

u∗
1+b(x)p dσ(x).

Invoking Lemma 4.3 witha = 2jα andb = α − 1 we get∫
Σ

u∗
2jα

(x)p dσ(x) � C(Σ,α)2j (n−1)

∫
Σ

u∗
α(x)p dσ(x),

which combined with (4.2) yields

∥∥u∗∗
m

∥∥p

Lp(Σ)
�

∥∥u∗
α

∥∥
Lp(Σ)

+ C

∞∑
j=1

2j (n−1−mp)
∥∥u∗

α

∥∥p

Lp(Σ)

� C(Σ,n,p,m,α)
∥∥u∗

α

∥∥p

Lp(Σ)

becausen − 1− mp < 0.

(iii) ⇒ (i) This implication follows trivially from the obvious pointwise inequali
u⊥(x) � u∗∗

m (x). �
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. As

n

the

m-
y 1.2,
5. Comparison with the intrinsic maximal function

We now compare Poisson’s maximal functions with the intrinsic maximal function
always,Ω ⊂ Rn is a bounded open set with a smooth boundary∂Ω denoted byΣ with
the property that for any 0< t � 1 andx ∈ Σ the pointzt = x − tνx belongs toΩ and
d(zt ,Σ) = t . First we see that the normal maximal functionu⊥(x) is dominated pointwise
by Msf (x) for anys ∈ Z+. We may find a finite partition of unity{ρk(x)}Nk=1 in Σ such
that for j = 1, . . . ,N , suppρj is contained in a ball with radiusrj < rΣ , whererΣ is
the injectivity radius ofΣ . If f ∈ D′(Σ) we write f = ∑N

j=1 ρjf = ∑N
j=1 fj . Since

Ms(ρj f )(x) � CMsf (x), it is enough to prove thatu⊥(x) � CMsf (x) when suppf
is contained in a ball with a radius smaller thanrΣ . That means that in the definitio
of Msf (x) = supφ∈Ks(x) |〈f,φ〉| we may consider test functions inKs(x) supported in
BΣ(x, rΣ) and we shall do so. To estimateu⊥(x) we find zt = x − tνx ∈ Ω , 0 < t < 1,
such thatu⊥(x) < 2|u(zt )|. Next we splitP(zt , x) as a sum of elements ofKs(x). Consider
the finite covering ofBΣ(x, rΣ),

BΣ(x,2t) ∪ (
BΣ(x,4t) \ B̄Σ (x, t)

) ∪ (
BΣ(x,8t) \ B̄Σ (x,2t)

) ∪ · · · ,
and find a partition of unity{ψj (x)}Nj=0 subordinated to this covering that satisfies

estimates‖Dα
x ψj‖L∞ � C(t2j )−|α|, α ∈ Z

n−1+ , |α| � s. We know from Theorem 1.1 that

∣∣Dα
y P(zt , y)

∣∣ � C

|zt − y|n−1+|α| � C

(t + |x − y|)n−1+|α| , |α| � s.

Hence,∣∣Dα
y

(
ψ0(y)P (zt , y)

)∣∣ � C

tn−1+|α| , |α| � s,

since|x −y| � 2t on the support ofψ0, showing thatC−1ψ0(y)P (zt , y) belongs toKs(x).
For j � 1, |x − y| � t2j−1 on suppψj , which leads to

∣∣Dα
y

(
ψj (y)P (zt , y)

)∣∣ � C

(2j t)n−1+|α| , |α| � s + 1.

This already shows thatC−1ψj (y)P (zt , y) ∈ Ks(x) but we need a better estimate to co
pensate for the possibly large number of terms in the sum. Thus, invoking Corollar
we have∣∣ψj (y)P (zt , y)

∣∣ � Ct

(2j t)n
= C2−j

(2j t)n−1 .

Summing up, we know that∥∥ψj (·)P (zt , ·)
∥∥

L∞ � C2−j (2j t)−n+1

and ∣∣Dβ
y

(
ψj(y)P (zt , y)

)∣∣ � C(2j t)−n+1(2j t)−L−1 for |β| = L + 1.

For 0� k � L and|α| = k we derive by interpolation
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∣∣Dα
y ψj (y)P (zt , y)

∣∣ � C
∥∥ψj (·)P (zt , ·)

∥∥1−ρk

L∞
(

max
|β|=L+1

∥∥Dβ
y ψjP (zt , y)

∥∥
L∞

)ρk

� C(2−j )1−ρk (2j t)−(n−1)(2j t)−(L+1)ρk

� C(2−j )1−ρk (2j t)−(n−1+k) � C(2−j )δ(2j t)−(n−1+k),

whereρk = k/(L + 1) andδ = 1/(L + 1). The estimates show that onBΣ(x, rΣ) we may
write

P(zt , x) = C

N∑
j=0

2−jδφj (x), φj (x) ∈ Ks(x).

It follows that

∣∣u(zt )
∣∣ = ∣∣〈f,P (zt , x)

〉∣∣ � C

N∑
j=0

2−jδ
∣∣〈f,φj (x)

〉∣∣ � C′Msf (x).

Thus

u⊥(x) � CMsf (x) (5.1)

which may be viewed as a sharper version of Lemma 3.7.
The next step is the control ofMsf (x) by u∗∗

m (x) whens > m. We will need to write
the identity

φ = tΓhΓhφ +
∞∑

j=0

(
tΓ2−j−1hΓ2−j−1h − tΓ2−j hΓ2−j h

)
φ, φ ∈ C∞(Σ), (∗)

already discussed in Section 3, in a convenient way. HereΓt = Γ L
t , 0< t < 1, is chosen

with L > s.
Setting

Γ +
t = Γt/2 + Γt , Γ −

t = Γt/2 − Γt , 0< t < 1,

we may write

Γt/2 = 1

2

(
Γ +

t + Γ −
t

)
, Γt = 1

2

(
Γ +

t − Γ −
t

)
, 0 < t < 1.

Substitution of these formulas in (∗) gives after some simplifications

φ = tΓhΓhφ + 1

2

∞∑
j=1

tΓ −
2−j−1h

Γ +
2−j−1h

φ + tΓ +
2−j−1h

Γ −
2−j−1h

φ (∗∗)

for anyφ ∈ C∞(Σ). Thus, iff ∈ D′(Σ) we have

〈f,φ〉 = 〈Γhf,Γhφ〉 + 1

2

∞∑
j=1

〈
Γ −

2−j−1h
f,Γ +

2−j−1h
φ
〉 + 〈

Γ +
2−j−1h

f,Γ −
2−j−1h

φ
〉
.

We must estimate each term in the expression above whenφ ∈ Ks(x). Assuming that
suppφ ⊂ BΣ(x,h) and that 0< h < 1/L, we have

〈Γhf,Γhφ〉 =
∫

Γhf (y)Γhφ(y) dσ(y).
Σ
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e same
Taking account of Definition 3.3 and Lemma 3.4 we get

∣∣Γhf (y)
∣∣ � Cu∗∗

m (x)

(
1+ d(x, y)

h

)m

so ∣∣〈Γhf,Γhφ
〉∣∣� Cu∗∗

m (x)

∫
Σ

(
1+ d(x, y)

h

)m∣∣Γhφ(y)
∣∣dσ(y) � Cu∗∗

m (x), (5.2)

in view of (3.5) in Lemma 3.6. To study the terms〈Γ +
2−j−1h

f,Γ −
2−j−1h

φ〉 we point out that

sinceΓ L
t = I − (−1)LSL

t we have∣∣Γ −
2−j−1h

φ
∣∣ � |S2−j−1hφ| + |S2−j−2hφ|.

Then, (3.4) in Lemma 3.6 gives∫
Σ

(
1+ d(x, y)

h

)m∣∣Γ −
2−j−1h

φ(y)
∣∣dσ(y) � C2−js .

On the other hand, using once more Lemma 3.4, we have

∣∣Γ +
h2−j−1f (y)

∣∣ � Cu∗∗
m (x)

(
1+ d(x, y)

2−j−1h

)m

� Cu∗∗
m (x)2jm

(
1+ d(x, y)

h

)m

so ∣∣〈Γ +
2−j−1h

f,Γ −
2−j−1h

φ
〉∣∣ � C2jmu∗∗

m (x)

∫
Σ

(
1+ d(x, y)

h

)m∣∣Γ −
h2−j−1φ(y)

∣∣dσ(y)

� C2j (m−s)u∗∗
m (x) � C2−j u∗∗

m (x). (5.3)

To handle the terms〈Γ −
2−j−1h

f,Γ +
2−j−1h

φ〉 we writeΓ +
2−j−1h

φ = 2φ − (−1)L(S2−j−1hφ +
S2−j−2hφ) which leads to〈

Γ −
2−j−1h

f,Γ +
2−j−1h

φ
〉 = 2

〈
Γ −

2−j−1h
f,φ

〉 + Rj (5.4)

with

|Rj | �
∣∣〈Γ −

2−j−1h
f,S2−j−1hφ

〉∣∣ + ∣∣〈Γ −
2−j−1h

f,S2−j−2hφ
〉∣∣.

The terms on the right hand side can be estimated using Lemmas 3.4 and 3.6—in th
fashion used to obtain (5.3)—in order to get

|Rj | � C2−ju∗∗
m (x). (5.5)

Since

2
∞∑

j=1

〈
Γ −

2−j−1h
f,φ

〉 = 2〈f − Γh/2f,φ〉 = 2(−1)L〈Sh/2f,φ〉,

we obtain, in view of (5.2)–(5.5), that∣∣〈f,φ〉∣∣ � Cu∗∗
m (x) + ∣∣〈Sh/2f,φ〉∣∣.
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small
l
6).
In the proof of this inequality we assumed for simplicity and ease of notation the
restriction thatφ was supported in a ball of radiush < 1/L, which was useful for technica
reasons (the relevant operators in all terms of (∗∗) satisfied the hypotheses of Lemma 3.
In the general case, ifd is the diameter ofΣ , we may findλ > 0 so thatλd < 1/L and
replace (∗∗) by

φ = tΓλhΓλhφ + 1

2

∞∑
j=0

tΓ −
2−j−1λh

Γ +
2−j−1λh

φ + tΓ +
2−j−1λh

Γ −
2−j−1λh

φ.

Carrying out the proof with this representation we get∣∣〈f,φ〉∣∣ � C(λ)u∗∗
m (x) + ∣∣〈f, tSλh/2φ〉∣∣

for anyφ ∈ Ks(x), so taking the supremum inφ ∈ Ks(x) we obtain

Msf (x) � Cu∗∗
m (x) + ∣∣〈f, tSλh/2φ〉∣∣. (5.6)

The operatort Sh has similar properties toSh. In fact, the latter is related to

L = ∂2

∂t2 + 2
n−1∑
j=1

bj (x, t)
∂2

∂xj ∂t
+

∑
j,k

cjk(x, t)
∂2

∂xj∂xk

+ · · · ,

in the same wayt Sh is related to

L̃ = ∂2

∂t2 − 2
n−1∑
j=1

bj (x, t)
∂2

∂xj ∂t
+

∑
j,k

cjk(x, t)
∂2

∂xj∂xk

+ · · · ,

which is elliptic if and onlyL is. From the analog of Lemma 3.5 for the kernelσ̃t (x, y) of
t Sh (notice thatσ̃t (x, y) vanishes fort = 0 andx �= y) we get for allx �= y in Σ

∣∣Dασ̃t (x, y)
∣∣ � C tL

|x − y|n−1+L+|α| , 0 � t � 1/L, (5.7)

for someC > 0 depending only onL andn. SetΦ = t Sλh/2φ. By Lemma 2.1

‖DαΦ‖L∞ � C(λh)r−|α|‖φ‖r � C′λh1−n−|α| (5.8)

for |α| < r < L. Assuming without loss of generality thath is smaller that the injectivity
radiusrΣ we find a partition of unity{ψj(x)}Nj=0 subordinated to the covering

BΣ(x,2h) ∪ (
BΣ(x,4h) \ B̄Σ(x,h)

) ∪ (
BΣ(x,8h) \ B̄Σ (x,2h)

) ∪ · · ·
of BΣ(x, rΣ) that satisfies the estimates‖Dα

x ψj‖L∞ � C(h2j )−|α|, α ∈ Z
n−1+ , |α| � s and

write

Φj (y) = ψj(y)Φ(y) = ψj(y)

∫
σ̃λh/2(y, y ′)φ(y ′) dσ(y ′)

soΦ = ∑N
j=0 Φj . Choosingr > s, (5.8) and the fact that suppψ0 ⊂ BΣ(x,2h) allows us

to write Φ0 = Cλ�0 with � ∈ Ks(x). For j � 1, y ∈ suppψj andy ′ ∈ suppφ, d(y, y ′) ∼
d(y, x) ∼ 2jh, so for those values ofy, y ′ we have∣∣Dα

y σ̃λh/2(y, y ′)
∣∣ � C(λ2−j )L(2−jh−1)n−1+|α|
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Let
which shows thatΦj = Cλ2−j�j with �j ∈ Ks(x). Thus, takingλ sufficiently small we
may assume thatt Sλh/2φ = (1/2)

∑N
j=0 2−j−1�j with �j ∈ Ks(x). Now (5.6) gives

Msf (x) � Cu∗∗
m (x) + 1

2
Msf (x)

which shows that

Msf (x) � Cu∗∗
m (x) (5.9)

if Msf (x) < ∞. For arbitraryx ∈ Σ we may reason with an approximation ofMsf (x).
Set

Mε
sf (x) = sup

φ∈Kε
s (x)

∣∣〈f,φ〉∣∣,
whereKε

s (x) is the space of smooth functionsφ ∈ C∞(Σ) such that there is anh > ε such
that suppφ ⊂ B(x,h) and sup0�k�s hN+k‖φ‖k � 1. Reasoning as before withMε

sf (x)

which is always finite in the place ofMsf (x) we get

Mε
sf (x) � Cu∗∗

m (x)

and lettingε → 0 we obtain (5.9) in general.
Summing up, (5.1) and (5.6) show that fors > m we have the pointwise inequalities

u⊥(x) � CMsf (x) � C2u∗∗
m (x)

which trivially imply

‖u⊥‖Lp(Σ) � C‖Msf ‖Lp(Σ) � C2
∥∥u∗∗

m

∥∥
Lp(Σ)

.

However, if m > (n − 1)/p, Theorem 4.1 asserts that theLp norms ofu⊥ andu∗∗
m are

comparable. We have proved

Theorem 5.1. Let f ∈ D′(Σ) be a distribution and let u denote its Poisson integral.
0 < p � ∞, 1 < α < ∞, and assumes > m > (n − 1)/p are integers. The following
conditions are equivalent:

(i) f ∈ Hp(Σ);
(ii) Msf ∈ Lp(Σ);
(iii ) u⊥ ∈ Lp(Σ);
(iv) u∗

α ∈ Lp(Σ);
(v) u∗∗

m ∈ Lp(Σ).

Moreover, theLp-norms of all maximal functions involved are comparable.

6. Complex Hardy spaces

In this sectionΩ will denote a bounded open subset of complex spaceCn with smooth
boundary∂Ω = Σ . Denote byρ a smooth real function that vanishes precisely onΣ
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such thatdρ �= 0 on Σ andρ > 0 on Ω . For ε > 0 sufficiently small the setΣρ
ε = {z ∈

Ω : ρ(z) = ε} is a smooth embedded orientable hypersurface with a Riemannian str
inherited fromCn � R2n.

For 0< p < ∞, the complex Hardy spaceHp(Ω) is defined as the space of all hol
morphic functionsf defined onΩ such that

sup
0<ε<ε0

∫
Σ

ρ
ε

∣∣f (z)
∣∣p dσρ

ε (z) < ∞. (6.1)

Since|f |p is subharmonic, the independence of condition (6.1) from the particular definin
functionρ follows from the following lemma of Stein [13].

Lemma 6.1. Let ρ andρ′ be two defining functions forΩ and letu be a positive subhar-
monic function onΩ . Then

sup
0<ε<ε0

∫
Σ

ρ
ε

u(z) dσρ
ε (z) < ∞

if and only if

sup
0<ε<ε0

∫
Σ

ρ′
ε

u(z) dσρ′
ε (z) < ∞.

We may take asρ the functionΩ � x − tνx �→ t , defined forx ∈ Σ and 0< t < t0, and
set

‖f ‖p

Hp = sup
0<t<t0

∫
Σt

∣∣f (z)
∣∣p dσt (z) < ∞

for f ∈ Hp(Ω). With this choice ofρ, the level setst = const> 0 are the submanifold
Σt already considered in Section 2.

We recall that iff (z) is holomorphic onΩ and has tempered growth at the bounda
i.e., |f (z)| � C dist(z,Σ)−N for some positive constantsC andN , thenf (z) has a weak
boundary valuebf ∈ D′(Σ) [11, p. 66]. This means that if we regard the restrictionsft =
f |Σt as distributions defined onΣ via the identificationΣt � x − tνx �→ x ∈ Σ , then
〈ft ,φ〉 → 〈bf,φ〉 for any φ ∈ C∞(Σ) as t → 0. Conversely, ifbf exists,f must have
tempered growth at the boundary. We denote byHb(Ω) the space of holomorphic function
onΩ with tempered growth at the boundary.

Theorem 6.2. LetΩ ⊂ Cn be a bounded open subset with smooth boundary∂Ω = Σ . Let
0 < p � ∞ and letf (z) be a holomorphic function onΩ . The following properties are
equivalent:

(i) f ∈ Hp(Ω);
(ii) |f |p has a harmonic majorant onΩ ;
(iii ) f ∈ Hb(Ω) andbf ∈ Hp(Σ);
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(iv) f is the Poisson integral of somef0 ∈ Hp(Σ).

Proof. Whenp = ∞ (ii) has to be understood as “‖f ‖L∞ has a harmonic majorant onΩ”;
the proof of this case is simpler and will be left to the reader, so from now on we as
that 0< p < ∞ and prove the theorem in four steps.

(i) ⇒ (ii) Let G(z,w) be the Green function ofΩ . Fix a pointz0 ∈ Ω and consider the
function w �→ G(z0,w). Since the normal derivative−νw(D)G(z0,w) = P(z0,w) > 0
for w ∈ Σ andG(z0,w) > 0 for w ∈ Ω , we may use a defining functionρ(w) for Ω that
coincides withG(z0,w) whenw ∈ Ω is close toΣ . For ε > 0 and small setΩε = {z ∈
Ω : ρ(z) > ε}. Then the Green functionGε(z,w) of Ωε is given byGε(z,w) = G(z,w)−ε

and writing the Poisson kernelPε(z0,w) of Ωε, w ∈ ∂Ωε, as the normal derivative of th
Green function it follows thatPε(z0,w) → P(z0,w) uniformly onw ∈ Σ asε → 0 if we
identify points in∂Ωε with their normal projections ontoΣ . Let f ∈ Hp(Ω). Then the
restriction of|f |p to ∂Ωε belongs toL1(∂Ωε) uniformly in ε ↘ 0. By our identification
we may think of|f |p∂Ωε

as bounded subset ofL1(Σ) and find a sequenceεj such thatvj =
|f |p∂Ωεj

converges weakly to a positive Radon measureµ ∈ M(Σ). Let uj be harmonic
function onΩεj with boundary valuevj = |f |p∂Ωεj

. Since|f |p is subharmonic,vj � uj

onΩεj , so for largej we have|f (z0)|p � uj (z0). We may write

uj (z0) =
∫

∂Ωεj

Pεj (z0, y)vj (y) dσεj (y)

and letεj → 0 to get∣∣f (z0)
∣∣p �

〈
µ,P(z0, ·)

〉 .= u(z0)

sou(z), the Poisson integral ofµ, is the required harmonic majorant.

(ii) ⇒ (iii) Since |f |p has a harmonic majorant,|f |p/2 � 1+|f |p also does. Reasonin
as before, we may find a functionv ∈ L2(Σ) which is the weak limit of the restrictions o
|f |p/2 to ∂Ωεj . Hence, ifu(z) is the Poisson integral ofv we have|f |p/2(z) � u(z), z ∈ Ω .
Then

f ⊥(x)
.= sup

0<t<t0

∣∣f (x − tνx)
∣∣ � u⊥(x)2/p. (6.2)

By Corollary 3.8,u⊥(x) ∈ L2(Σ) becauseu is the Poisson integral ofv ∈ L2(Σ), which
implies that∫

Σ

f ⊥(y)p dσ(y) � C.

Considerz = x − tνx ∈ Ω lying at a small distancet = d(z,Σ) < ε0/2 from the boundary
and consider the ballB(z, t/2) ⊂ Ω . For w = y − sνy ∈ B(z, t/2) we have|f (w)| �
f ⊥(y). Hence,
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erving
∣∣f (z)
∣∣p � 1

|B(z, t/2)|
∫

B(z,t/2)

∣∣f (w)
∣∣p dV (w)

� Ct−n

3t/2∫
t/2

ds

∫
Σ

f ⊥(y)p dσ(y) � Ct1−n = C dist(z,Σ)1−n.

Thus f (z) has tempered growth asz → ∂Ω and possesses a weak boundary va
bf = f0 ∈ D′(Σ). The Poisson integralU of f0 and the holomorphic functionf are both
harmonic and have the same boundary value sof is the Poisson integral off0. Hence, (6.2)
may be rewritten as

U⊥(x) � u⊥(x)2/p

showing thatU⊥ ∈ Lp(Σ) sof0 ∈ Hp(Σ) by Theorem 5.1.

(iii) ⇒ (iv) It is enough to writef as the Poisson integral ofbf .

(iv) ⇒ (i) Let f = U be the Poisson integral off0. For t > 0 small we have|f (x −
tνx)| = |U(x − tνx)| � U⊥(x) so∫

Σt

∣∣f (z)
∣∣p dσt (z) � C

∫
Σ

U⊥(x)p dσ(x) < ∞

which shows thatf ∈Hp(Ω). �
Corollary 6.3. If f ∈Hp(Ω), the “norms” ‖f ‖Hp , ‖f ⊥‖Lp , ‖f ∗

a ‖Lp are all comparable.

Although the usual product of functions cannot be extended to distributions pres
the associative property, it is possible to define the product of two distributionsf0, g0 ∈
Hb(Ω) asf0g0 = b(fg) wherebf = f0 andbg = g0, turningHb(Ω) into an associative
algebra. A more precise version of this fact is given by

Corollary 6.4. If f0, g0 ∈ Hp(Σ), the productf0g0 ∈ Hp/2(Σ).

Proof. Let f andg be respectively the Poisson integrals off0 andg0, sof,g ∈ Hp(Ω)

by Theorem 6.2. Hence, Schwarz inequality gives

∫
Σt

∣∣fg(z)
∣∣p/2

dσt (z) �
(∫

Σt

∣∣f (z)
∣∣p dσt (z)

)1/2(∫
Σt

∣∣g(z)
∣∣p dσt (z)

)1/2

� C

showing thatfg ∈Hp/2(Ω). Thus,f0g0 = b(fg) ∈ Hp/2(Σ). �
A simple consequence of the Poisson representation forH1(Ω) functions is the follow-

ing version of the F. and M. Riesz theorem.



L.A. Carvalho dos Santos, J. Hounie / J. Math. Anal. Appl. 299 (2004) 465–493 493

s a
ct

-

ue to

rs,

ana 5

Car, DM,

mática,

.

32)

ton

1.
Theorem 6.5. LetΩ ⊂ Cn be a bounded open subset with smooth boundary∂Ω = Σ and
assume thatf (z) is holomorphic inΩ with tempered growth at the boundary and ha
measureµ ∈ M(Σ) as weak boundary value. Thenµ is absolutely continuous with respe
to dσ .

Proof. SinceM(Σ) ⊂ Hp(Σ) for p < 1, Theorem 6.2 shows thatf is the Poisson inte
gral of its boundary valueµ. Moreover, the Poisson representationf (z) = 〈µ(y),P (z, y)〉
shows that|f (z)| � 〈µ|(y),P (z, y)〉 where|µ| is the variation ofµ. Interchanging the
order of the integration we see that∫

Σt

∣∣f (z)
∣∣dσt (z) �

〈
|µ|(y),

∫
Σt

P (z, y) dσt (z)

〉
� C|µ|(Σ).

Thusf ∈ H1(Ω) and Theorem 6.2 implies thatµ = bf ∈ H 1(Σ) ⊂ L1(Σ), as we wished
to prove. �
Remark 6.6. Theorem 6.5 also follows from an analogous and stronger local result d
Brummelhuis [3] according to which if a measureµ is defined on an open subsetV of Σ

and is the boundary value of a holomorphic functionf defined on one side ofΣ thenµ is
absolutely continuous with respect todσ onV .
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