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Abstract

We study Hardy spaces on the boundary of a smooth open suli&taod prove that they can be
defined either through the intrinsic maximal function or through Poisson integrals, yielding identical
spaces. This extends to any smooth open subdkf eésults already known for the unit ball. As an
application, a characterization of the weak boundary values of functions that belong to holomorphic
Hardy spaces is given, which implies an F. and M. Riesz type theorem.

0 2004 Elsevier Inc. All rights reserved.

0. Introduction

The real Hardy spacH”(RY), 0 < p < oo, introduced in 1971 by Stein and Weiss [16],
is equal toL” (RV) for p > 1, is properly contained i, }(RV) for p = 1 and is a space
of not necessarily locally integrable distributions foeQ < 1. Forp < 1, H?(RV) is an
advantageous substitute fbf (RV) [15], as the latter is not a space of distributions and
has trivial dual if p < 1 while for p = 1, LY(R") is not preserved by singular integrals.
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Let us choose a functio® € S(RV), with [ ®dz+#0 and write®,(z) = e No(z/¢),
zeRY, and

Mo f(z)= sup |(®.x f)(2)|.

O<e<oo

Then [15]
HPRV)={feS'RY): Mo f e L RM)}.

An obstacle to the localization of the elementgdf(RV), 0 < p < 1, is thatyu may not
belong toH ” (RY) for ¢ € C°(RY) andu € HP(RY). In particular,H?(RV),0< p < 1,

is not preserved by pseudo-differential operators and is not well defined on manifolds,
a fact that hinders applications to PDE with variable coefficients. On the other hand,
HPRN) is preserved by singular integrals with sufficiently smooth kernels, which implies
that it islocally preserved by pseudo-differential operators of order zero (anddypé,

8 = 0). This fact was used by Strichartz in 1972 [17] who defifigt X) for a compact
smoothN-dimensional manifold as the space of alf € L1(¥) such thatl f € L1(X)

for all pseudo-differential operatofs of order zero. Then Peetre [14] proposed in 1975 a
more elementary definition aff ?(X), p > 0, in terms of an intrinsic maximal function.
More precisely, he set

HP(2)={feD(X): M,feLP (%)},
M f(x)=sup [(f.9)

PeK (x)

where K (x) is the space of smooth functiogse C*° (%) such that there is ah > 0
such that supp C B(x, h) and SUB<k<s rV*K ¢k < 1. HereD'(X) is the space of dis-
tributions in X', suppp denotes the support gf, B(x, i) is the Riemannian ball centered
atx of radiush (assume a Riemannian metric is given B, ||¢||x denotes the norm in
Ck(¥) ands is a conveniently large integer that dependspotit turns out that forp = 1
the space$/1(X) defined by Strichartz and Peetre coincide.

Away around the problem tha&t” (R") is not localizable for O< p < 1 is the definition
of localizable Hardy spacdg’ (RV) [9,15] by means of the truncated maximal function

me f(z)= sup |[(Pe* f)(2)

0<e<1
PRV ={f eSS ®RY): mo f € LF(RY)}.

3

’

It follows that the spacé” (R") is stable under multiplication by test functions as well
as by change of variables that behave well at infinity and alsdith@®”") = L? (R") for
1 < p < oo. This opens the doorway to a definition of Hardy spaces on smooth manifolds
through localization. Namely, Uy, @4} is a family of local charts andl;} a partition
of the unity subordinated to the coveridf then we say thaf € h”(X) if, and only if,
foi o @1 e hP(RM). Itis known thath” (X) = HP (X)) (see, e.g., [4]).

Consider now a bounded open subsetc R” with smooth boundarys2 = ¥ and
given f € D'(X) letu € C*(£2) be the solution of the Dirichlet problem

{Au:O ons2,

il 1 (0.1)
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Thenu gives rise to two maximal functions:
(i) If vy is the outer normal unit vector field definedwat X', the normal maximal func-
tion is

uL(x) = sup ‘u(x —1vy)
O<r<rtg

, xeX,

whererg is chosen small so, in particular—tv, € 2 and distx —tv,, X) = ¢ when-
everx € X and O< r < 1p.
(i) Forfixeda > 1, the nontangential maximal function is

uy(x)= sup |u(z), xex,

z€ly(x)
where I, (x) ={z € £2: |z — x| < adist(z, X)} is thern-dimensional analogue of a
Stolz region, heré¢- | denotes the Euclidean norm Rt and distz, X) the distance
fromzto X.

Whens2 = B c R", n > 2, is the unit ball andC = §"~1, it is known thatf € H?(s" 1),

0< p < oo, ifand only if u* € LP(S"~1) or, equivalently, if and only it € LP($"~1).

This is classic for the unit circle [7] and due to Colzani [5] fop 3. A relevant fact in the
proof is that explicit formulas are known for the Poisson kernel that furnishes the solution
of the boundary problem (0.1) whem is a ball. In particular, these formulas show that if
P(z,x):2 x 082 — R is the Poisson kernel of the domaih then there exist constants
Cup > 0 for every multi-indexes, g € Z" such that

|DYDEP(z,%)| < I Cop

W, (z,x) €2 x 082, (Ko:ﬂ)

at least when2 = B. For @ = 0 and 8 = 0 estimate(Kp) is well known for general
smoothly bounded domains (actually, clag$ suffices). A proof of this fact was given
by Kerzman in an unpublished set of notes [12] and can be found in [13, p. 332]. In this
work we prove Kg) for all « andg. This is the key to the characterization of the spaces
HP(3£2), 0 < p < 00, in terms of the maximal functions™ and u’. Since this charac-
terization is well known forp > 1, we are mainly concerned in this paper with the case
0 < p < 1 although the proofs work as well for apy

The paper is organized as followis Section 1 we prove estimateK {g) by locally
flattening the boundary and constructing a pseudo-differential approximation of the Pois-
son operator following the method of Treve®] to construct a parameterization of the
heat equation. The pseudo-differential approximation gives a wealth of information about
the Poisson kernel and in particular shows the required estimates for its derivatives. In
Section 2 we study approximations of the identity that are obtained from the Poisson op-
erator but converge faster to the identity. In Section 3 we prove several technical lemmas
about these approximations that are instrumental in the proof of the equivalencd df the
“norms” of the different maximal functions defined in terms of Poisson integrals—the
equivalence of different Poisson’s maximal functions is discussed in Section 4—uwith the
intrinsic maximal function, which is the subject of Section 5. Finally, in Section 6, we dis-
cuss holomorphic Hardy spacgg’ (§2), £2 C C"*, and prove that every € H”(£2) has a
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weak boundary valubf € H?(352) of which it is its Poisson integral. This establishes an
isomorphism of topologial vector spaces betwe@t? (£2) and the subspace &f”(352)

of distributions that are boundary value of some holomorphic functigp.ikVe also prove
an “F. and M. Riesz theorem,” showing that if a measuréshis the boundary value of
a holomorphic function defined of? it must be absolutely continuous with respect to
Lebesgue measure.

We use the standard notatia fistributional spaces, 90” denotes a Lebesgue space,
S(R™) denotes the Schwartz space, its d§alR”) denotes the tempered distributions,
D'(X) denotes the space of distributions on a manifbldC” denotes the space of con-
tinuous functions with continuous derivatives up to orddrr is a positive integer and the
corresponding Hoélder spacerit> 0 is not integral. Different Hardy spaces are denoted by
HP,H?P andh?. We also denote by¢ a positive constant that may change from one line
to the next.

1. Pointwise estimates for the Poisson kernel

The following theorem is the main result of this section. It gives estimates that we shall
later need to characterize Hardy spaces on the boundary of a smooth dorR&in of

Theorem 1.1. Let P(z, x) be the Poisson kernel of a bounded dom@ic R” with smooth
boundaryX. For every multi-indexes € Z, andp e Z'jr‘l there exist a constar@,g =
Cup($2) > O such that

C
[DEDLPE | < = (z.X) €2 x X, (Kop)

X — g |- L+l

Proof. Fix a > 1 and consider the nontangential region insi2igvith vertex atx given by
Ia(x) ={z € Q: |z — x| <adistz, £)}.

For fixedrg > 0 consider the set
X={(z.,x) €2 x X! |z—x| > ro}

and observe thgt — x| l*I+1FI=1 po D? P(z, x) is continuous, thus bounded, on the com-
pact setX, becauseP(z, x) is smooth on2 x ¥ \ ¥ x X. Therefore, there is no loss of
generality if we prove K,g) assuming thakz — x| < rg and we shall do so. The proof is
divided into two cases.

Casel.z ¢ I,(x)

By the compactness @ it is enough to prove the estimate wheis in a small neigh-
borhood of an arbitrary pointy € X. Since|z — x| < ro we may assume that bathandz
belong to a small neighborhood &f. The initial step is to fitten the boundary in that
neighborhood. Thus we consider a diffeomorphism that takes a neighboioafdxg
onto a neighborhood of the closure of the cube Rﬁ*l x Ry, givenby|x| <1, |t <1
so thatxg is mapped tq0, 0), 2 N W is mapped toQ+ = {(x,1) € Q: t >0} and X is
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flattened tofr = 0}. Using (x, ¢) as new coordinates the Poisson kernel may be expressed
asP(y,t,x)withz=(y,r) € 0 andx = (x1,...,x,_1) € 90T N{r=0}. If a >0 is

large enough, the condition¢ I';(x) implies |x — y| > ¢. Notice that for|x — y| > ¢,

(|x — y|2 4 12)Y2 is comparable tgx — y|. Thus, it will be enough to prove that for any
lx],]yl]<land O< ¢ < |x — y|

- C
o B nk afk
|D¢DEDfP(x,t.y)| < T TR (1.1)
Recall that in the original coordinates
u(@) =Pe(z) = / P(z,y)¢(y)do(y), (1.2)
P
wheredo indicates the volume element K, solves the Dirichlet problem
A =0, €S2,
u(2) ¢ (1.3)
ux)=¢x), xe.
In the new coordinates, (1.3) becomes, with some abuse of notation,
{L(tsst)th)M:Ov (14)
u(x,0) =¢x),
where
82 n—1 82 82
L(t,x,Dy,Dy)=—4+2) bjx,t ik(x,t 1.5
(1.3 De. D) =55+ ]Z_l i )ax,afr;qk(x Vo on (1.5)

is an elliptic differential operator with real coefficients and principal symbol

n—1
oL(t,x,7,6) =—12 =2 t&bj(x, 1) — Y cjx(x, D&,

and the dots in (1.5) denote terms of order one. We now follow the approach of Treves [19,
Chapter 3] to construct parameterizationité heat equation. We will apply the machinery
of pseudodifferential operators to find a family of pseudodifferential operatarsc, D),
acting on the variable and depending smoothly an> 0 as a parameter, that solves the
problem

Lo H~0 moduloasmooth kernel,

H@O,x,Dy)=1.
The symboloy (¢, x, £) of H is identically equal to 1 for = 0 and has orderoco for
t > 0; furthermore| Jy_, _1{ou(t, x, &)} is a bounded subset ch_O, the symbol class of
order zero and typg = 1, § = 0, defined forix| < 1 andé € R*~1. We denote bwf,o the
space of operators of ordarand typep = 1, § = 0. Since the integral operat®r defined
by (1.2), which in the original variables is given by integration against the Poisson kernel,
solves (in the new variables) (1.6) exactly, we may redéras an approximation ¢ by
pseudo-differential operators. To firfl we first construct an operatdr e ﬁio’ such that

n n
0 a _
Jj=1 ’ j=1 :

(1.6)
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We begin by choosing a pseudo-differentiperator induced by the homogeneous function
of order one,

n 2\ 1/2
dl(r,x,s)=(Zc,-k(x,wsjsk—(Zb,-(xx)é;) ) :

J.k j=1

The ellipticity of L implies thatd (¢, x, &) > c¢|&| for somec > 0. Thus,d; is an elliptic
homogeneous symbol of degree one. Even thatigis not a symbol insio because it

fails to be smooth at the origin, we proceed as usual and after multiplication by a cut-off
function that vanishes fgé| < 1/2 and is identically equal to 1 fa€| > 1, we can obtain

a symbol inS%_0 that we still denote byi;. If D1 = Op(d1) then we want to check that

n n
d d 1
L~ (a, + Zb,g —~ Dl) (a, + Zb,g + Dl) mod L] . (1.8)
j=1 / j=1 /
SetRy =L — (3 + Y j_1 bj5: — D1 (@ + X j_1 bj5; + D). Then, the symbolic calcu-
lus of pseudo-differential operators shows after a simple computation that the sygbol
of Ry belongs taS7 .
The next step consists in finding a symbglk 5?,0 such that the operatddy = Op(do)

satisfies

L~ (3 +¢— (D1+ Do) (3 + €+ (D1+ Do)) modLY,
where we have written

Now let Q1 and Q2 denote respectivel§; + ¢ — D1 andd; + £ + D1 and setRo = L —
(Q1— Do)(Q2+ Dg). Then,Rg =L — 0102 + (Q2 — Q1) Do + DoDo + [Do, Q2], and
observing thatD, — Q1 = 2D; and L ~ Q10> mod £ because of (1.8) we havy =
DoDo + 2D1Dg + R1 for someR; € £1. Then, if r1 is the symbol ofR; andd; is the
symbol of D1, we may takeDg with symbol

1ri(t,x,7,8)

2d1(t,x,7,§)
and obtain thaRg has order zero. Keeping up this process we may define a sequence of
symbols

do(t,x,7,6) =

1 I’]_,j

d_ ] = — = € 57]
' 2di+do+-+diy MO
so that their associated operatérs= Op(di), k = 1,0, ..., —j, satisfy
L~(@+¢=Di—Do—--—D_j)(3+C+Di+Do+---+D—j) modly

Since the order of_; goes to—oo asj — oo, we may find a symbal Sio such that

dt,x,£)~ Y dij(t,x.§) mods~>
j=0
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in the sense that — Z’;zodl,j € Si’é oranyk=0,1,2.... Hence, the operatad =
Op(d) satisfies (1.7). If we call

n n
a a
j=1 / j=1 J

we may rewrite (1.7) as
L~ @ +A)@0;+A) modL~°.

Hence, in order to obtain (1.6) it will suffice to find a family of operatéfé, x, Dy, ),
0<t <1, suchthat

(0 +A)o H(t,x, D) ~0 modulo a smooth kernel (1.9)

with the additional propertyH (0, x, D) = identity. Note that the symbak(z, x, &)
of A has principal symboh(z, x,&) = d1(z,x,&) + iZ’};ébj(x,t)éj. To construct
H(t,x, D) with symboloy (¢, x, £) = h(t, x, £) we propose

h(t,x, ) ~ e AN e 1(1,x,8) + k2t x, &) + ) (1.10)
with x_; € Sié. An important point here is that, becausgr, x, &) > ¢ > 0 for |£] > 1,
e(t, x, &) = exp(— [y ai(s, x, ) ds) satisfies the following estimates
kf
| DYDY Dfe(t, x, §)| < Capre(1+ 151)* 7!

expressing the fact thdd*e e S]I,o uniformly in ¢. The proof of [19, Theorem 1.1] shows
thatk_1,x_o, ... satisfyingx_; (0, x, £) = 0 may be inductively determined by a process
similar to the construction oD so that ifi(z, x, &) is given by (1.10) therd = Op(h)
satisfies (1.9). Furthermore,

o k—
| D2 Df DER(t, x,6)| < Caprc(1+161)7. (1.11)
Consider the kernel of the pseudo-differenfi&(t, x, D,)

(zn)n_l/e“x—”fh(t,x,g)dg.

It follows from standard estimates for the kernel of pseudo-differential operators (see,
e.g., [1,18]) that estimates (1.11) imply the estimates

bz, x,y)=

Ca/fik

X — y|n71+k+\a|+\ﬂ\ : (1'12)

|DYDD b x. )| <

Notice that estimates (1.12) forare analogous to the estimates (1.1) that we wish to prove
for P. Thus, to obtain (1.1) it will be enough to find smooth functipris, x, y), p(z, x, y)
defined for|x|, |y| <1, 0< t < 1 such thatP (x, 1, y) = u(h + p)(t, x, y). Letp(x, 1, y)

be the kernel of the integral operatBrexpressed in the new coordinates: its expression
is readily obtained from (1.2) (which givé3 in the original coordinates) by reverting to
the new coordinates. We then see fhat, 7, y) = P(x, 7, y)/u(y) whereu~1(y) dy is the
expression of the area elemefat of X in the new coordinates, in particular> 0 and is
smooth. Therefore, we need only show that p — f is smooth up to the boundary. This
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follows from the fact that the operatofsand H, whose kernels are respectivelyandb,
satisfyL o (P — H) ~ 0 modulo smoothing operators a(#d — H)|;—o = 0. That this is so

is already a consequence of the “uniquengsst of [19, Theorem 1.1] but here it seems
simpler to give a direct argument. By returning to the original coordinates, let us transfer
the operatot to the initial neighborhoodV > xo € X obtaining an operator that we still

call H. Using a cut-off functiony that is identically 1 in a neighborhoaad of xg such

w C W, itis easy to construct an operatér: xHy:C®(X)— C*(£) such that

(@ Afl is regularizing when acting on distributions compactly supported in
(b) Ho|x = ¢ if ¢ is supported ino N 2.

If ¢ € D'(X), we have thai\(Pp — Hep) = v, whereys is smooth in2 Nw in view of (a).
Furthermore, (b) implies th&¢ — H¢ vanishes om N . By boundary elligic regularity
we conclude thaP¢ — H¢ € C*®(22 N w) and since this holds for any distributigne
D'(X) we conclude that the kernel & — H is smooth when restricted to N 2) x (wN
), which proves, as we wished, that- h is smooth up to the boundary. The proof of
Case 1is complete.

Case2.|x —y| <t
For|x — y| <t, (Ix — y|? + %)2 is comparable to. Thus, it will be enough to prove
that for any|x|, [yl <landO< |x —y| <t <1

Copk

=Tl Bk (1.13)

|DYDEDfP(x,t.y)| <

As before, it is enough to prove analogous estimates for the kigtnel, y) of the pseudo-
differential approximationd of the Poisson kernel. This leads us to look more closely
to its symboli(z, x, y) = exp(— fé ai(s, x,&)ds)k(t, x, &) given by (1.10). We recall that
a1 is defined byas1(t, x, &) = d1(t, x, &) + i Z’};(l)bj(x, 1&; wheredy(t, x, £) > c|&| for

|€] > 1 andk (¢, x, &) has order zero uniformly in, furthermore the functions; (x, r) are
real. Thus

|h(t,x,y)| < Cexp(—tcl€]), &eR"™ 0<r<1,

and

(2;1;—1 / TR, x, £)dE (1.14)

is easily seen to satisfy the estimate

bz, x,y)=

/

b, x, »|<C / exp(—tclé|) d& <

Rn—-1

tn—l :

Similarly, we see that fof e R*"1and 0<r <1

|DEDFR(t,x,8)| < Car(1+ ISI)WW‘ exp(—tcl€|)

which implies, after differentiation of (1.14), that
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k
DY DE Db (1, %, )| < Cup f (1+ 1&1)“ P exp(—rclg]) de
Rn—l

Cozﬁk

S =Tl HIBHK (1.15)

Reasoning as in Case 1, we see that the estimates (1.15310@th imply the analogous
estimates (1.13). The proof of Theorem 1.1 is complete.

Coroallary 1.2. Let P(z,x) be the Poisson kernel of a bounded dom&inc R” with
smooth boundary'. There exist a constagt= C(£2) > Osuch thatforall(z, x) e 2 x ¥

1 1
pe < Coiste 2y minf | ' 11
[P0l < Cdistz )mm(dlst(z,Z)” Ix—zl”> o

Proof. It is enough to prove (1.16) whelp — x| is small using local coordinates, 7).

As in the proof of the theorem, we work in a thin tubular neighborhood~ofWe
first point out that ifz = (y,1), (1.13) fora = g = k = 0 gives|P(z,x)| < Ct1™" <
C'dist(z, )", sincer ~ dist(z, X). This gives (1.16) when € I',(x), in which case

|z — x| ~ dist(z, ). Whenz = (y,1) ¢ I',(x) we use the mean value theorem to get
|P(z,x)| < sup|V,P(z,x)|dist(z, ), where the supremum is taken along the segment
that joinsz to the point; € X such thatiz — ¢| = dist(z, X). Using (Kqg) with « =0,

|B| =1 we obtain P(z, x)| < Clx — z| " dist(z, ). The corollary easily follows. O

Remark 1.3. The proof of Theorem 1.1 shows that the Laplacian may be replaced for
any second order elliptic operator with smioogal coefficients defined in a neighborhood
of 2. In this case, the Poisson kernel must bplaced by the kernel of the operator that
solves the Dirichlet problem.

Remark 1.4. Estimates for the Poisson kernel caroiained from estimates on the Green
function. However, we point out that classical estimates for the Green function of the
Laplace—Beltrami operator on compact nfalds with boundary are interior estimates,

in the sense that constants blow up when approaching the boundary [2, p. 112], so they do
not seem to imply Theorem 1.1.

2. Approximationsof the identity

Assume without loss of generality th& is such thatz; = x — tv, € 2 andr =
dist(z;, X) if x € ¥, 0 <t < 1. We may then shrink2 along the normal direction for
0 <t < 1 and obtain the open set

2, ={z e 2: dist(z, X) > 1}
with boundary

5 =02 ={x—1v,(x): x e X}
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Clearly, | Jy_, -1 $2: = £2. The mapX > x > x — tv, is a diffeomorphism for fixed &
t < 1 and thus we may identify eacty with X'. With this identification, the operator

D'(X) 3¢~ Pols, € C(Z1)

may be regarded as an operator fr®f{Y) into C*°(X) that we denote b{P,. The fact
thatPo(z) - ¢(x) as2 3z — x € X wheng¢ € C(X) implies that the regularizations
P:¢ converge tap ast — 0, i.e.,P; may be regarded as an approximation of the identity.
Let0O<r < 1. The Holder spac€” (X) is defined as

C'(2)={ueC(X), |ul, <oo},
where
llwll, = |ulr + lulo,

|ulo = sup|u(x)
xeX

)

u(x) —u(y)
Iulr: Sup %
x,yex d(x,y)
XF#Yy

andd(x, y) denotes the geodesic distancelin|If k > O is an integer and = k + y, for
some O< y < 1,C"(X) is defined as

C'(5) = lu e ). |0, D], <oc]

for all differential operatorg) (x, D) of order< k with smooth coefficients defined on.
Sinceu = P¢ solves the Dirichlet problem with boundary valge it turns out that if
$peC’(X),0<r <1, thenP¢ e C"(£2) [8]. It follows that [ (x) — P (x)| = O(t")
uniformly in x € X, so this gives an estimate of approximation spee®@f to ¢ for

0 < r < 1 which increases with. However, if we take > 1 the exponent will not increase
beyond 1. Thus, it is convenient to replg@geby another approximation of the identity that
yields a faster approximation. This can be obtained by linear combinatidAsavfaluated
at different times. If f(s), s € R, we recall that the difference operator with step 0 is
defined asA; f(s) = f(s +1) — f(s). ThenA,zf(s) =AA )s)=f(s+2t)—2f(s +
t)+ f(s) and if L > 1is an integer

L L
Al ()= (-1t (j)f(s +Jj).
j=0

Let £L) denote the derivative of ordérof f. Taylor’s formula forAL £ (s) when &) is
continuous is given by

AL f(s) =1* / fE(s+t(r+ - +1))dr. (2.1)
0.1
If feC"R),r=L+y,0<y <1,wehave
AR () =1t / AcfP(s + (x4 -+ 1)) dr
[0.1)
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which gives the estimate
|aE )| =1 F Py <N (2.2)

Next we define
L /L
sk = Z(—l)L‘-’( ,)Pj,, 0<t<1/L,
, J
j=0

where it is understood thaPy; = I = identityoperator. For = 0 we see thatSé =
1-1Er=o0,so

L
; L
= Z(—l)”l(j)% =1—(D"s}
j=1

is an approximation of the identity. The nextlemma shows ftfap approximateg faster
thanP; ¢ is ¢ is sufficiently regular.

Lemma 2.1. Let 0 < r < L not be an integer. There exist > 0 such that for every
¢peCl(x)anda e 27, 0< ol <,

sup| D% (I p(x) — p())| = | DESF ] oo < CH7 NI (2:3)

xeXy

Proof. Consider first the case = 0, so we wish to show thas ¢ (x)| < Ct"|¢|,. Let
u =P¢, sou is harmonic in2 and has the boundary valge Since¢ € C"(X), standard
Holder boundary estimates [8] imply that C"(£2) and|u|, < C|/¢|,. Then

L
SEp(x) = Z(—l)l‘_j (F)u(x —tvy)
j=0 /
=it / ADF u(x —t(ti+ -+ T1)vy) dT. (2.4)
[0,1]L—1

We may majorizeA, DX~ tu| by 17 | DF1u|, wherey =r — L + 1. Writing

D,L_lu(x —t(t1+---+ TLfl)vx)

= Z (—t(rr+ -+ 12-0)vy) Dlu(x —t(t1+ -+ 12-1)Vy)
la|=L—-1

as a sum of derivatives afof orderL — 1 we have1|DtL*1u ly < Cllull—114y = Cllull, <
C'|l¢l-, so we getA,DtL‘lzu < CtY| ¢l . Plugging this estimate in (2.4) yields (2.3) for
a=0.

For |a| = 1 we write D¥SE ¢ = SLD%¢ + [D%, SE1¢. The estimate already proved for
a = 0 with » — 1 in the place of gives

|SED2|| oo < CETHID Gll,—1 < CE L, (2.5)
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and we need only show a similar estimate for the commutator & S’- 4. We saw in
the proof of Theorem 1.1 how to find family of pseudo-differential operatbrdepending

on a parameter differing from P by a smooth kernel. That was a local construction but
using a finite partition of unity in a tubular neighborhood®fwe can make it global and
find a family of pseudo-differentiall; € [,(1)’0(2), 0 <1t <1, such that

(i) foranyk=0,1,..., the sef{ D} H}o~, <1 is a bounded subset @ ,(X);
(ily P, —H;is regulanzmg more precisely, there exists, y, 1) € COO(E x X x [0, 1))
such that

(7’:—Hz)¢(X)=/V(x,y,t)¢(y)d0(y), ¢ € D'(D).

)

Notice that (i) follows from estimates (1.11) and (ii) from the fact that the kegnelh

is smooth up to the boundary as shown in the proof or Theorem 1.1. $inge> ¢
ast — 0 by construction it follows that(x, y, 0) = 0. Consider the pseudo-differential
approximation ofS; for0 < < 1/L,

S = Z( i f( ) =1t / ADE Y Hy (o1 y_p T
[O,l]L_l
By (i) DF71H, € [,fo which implies thatA, D/ ‘H, € L,". It follows that [D¢,
A,D,L‘lH,] € E . Hence,[Dx,A D, Ht(,1+...+,kl)] maps continuously” (X) to
crltl(x) = C”(Z) C L*°(X) (for the continuity of pseudo-differential operators in

R"~1 see [15, p. 253]; these results are extended to smooth compact manifolds by local-
ization). We conclude that

sup|[DY. Si]o )| < Ct¥ gl < Mgl ¢ eCT(D). (2.6)

xeX,

Since the kernel 6P, — H, isr(x, y, t) it follows that the kernel of; — S, is

Z( L= ]( )r(x y, jt) =1t / DtLr(x,y,t(r1+---+tL))dt

[0,

which easily implies

sup|[ D2, (S; — S0]p )| < Cel gl < Lol (2.7)

xeX;

Now (2.6) and (2.7) imply
sup\[ S o] < gl

xelX

which together with (2.5) prove (2.3) fo®| = 1. Keeping up this process we may prove
(2.3)forall|je| <r. O
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3. Definitions and technical lemmas

In this section we keep the notation of the previous one, in particar, R” is a
bounded open set with smooth boundary and we denote its boubtaby 3. We con-
sider in X' the Riemannian structure inherited frd@@ a denote by/o its volume element.
We recall that the Poisson integualz) = P¢(z) = fz P(z, x)¢(x)do (x) which is ini-
tially defined forg € C(X) and solves the Dirichlet problem @a with boundary value
has a natural extension @' (X). For fixedz € 2, ¥ 3 x — P(z,x) € C*®(X) and we
set

u@=Pf@)=(f P& feD (), (3.1)
where the brackets denote the pairing betwB&L') andC > (X) that extends the bilinear
form

C®(X) XC°°(2)9(¢,¢)+—>/l/f(X)tb(X)dG(X).
)

If u is given by (3.1) them is harmonic inf2 and its weak boundary value: is f. That
means that for ang € C*°(X)

jim / u(x — v () do(x) = (. ),
t\0

X
wherev, is the outer normal unit vector field. Since our conclusions are invariant under
dilations of Euclidean space, we will assume without loss of generality2hatsuch that
foranyx € X and O< 7 <1z, =x —1v, € 2 andr = dist(z;, ). To simplify the notation
we will often write in the sequel

d(z, X) =dist(z, )= inf |z — x|.
xeX

We consider now three different maximainfctions associated to three different ways
of approaching the boundagy.

(1) The normal maximal function:

’

ut(x)= sup u(x — evy)
O<e<1

wherev, is the outer normal unit vector field.
(2) The nontangential maximal function:

ui(x)=sup |u(z)
z€ly(x)

’

where for a giver > 1 the region
Ix)={zeR: |z—x|<ad(z X), dz ¥) <1}

is then-dimensional analogue of a truncated Stolz angle.
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(3) The tangential maximal function:

d(Z, 2))/‘"

|z — x|

wF(x)=sup |u(z)|<
ZER

d(z',2)<l

wherem is a positive integer.

We will make use inX of both the geodesic distandéx, y) and the Euclidean distance
|x —y|. Sinceci|x — y| < d(x,y) < c2lx —y|,x,y € X, for some positive constants, c2,
switching from one distance to the otheran inequality will cause no trouble. We denote
by B(x, r) the ball of centex and radius- > 0 in R"” and byBy (x, r) the geodesic ball
in X. We shall also consider a special family of smooth functions definet.on

Definition 3.1. For everys € Z, andx € X let K;(x) denote the set of alb € C*°(X)
such that for somé > 0 the conditions below are satisfied:

(i) suppp S B (x,h),
(i) SURcres W lIlk < 1.

Definition 3.2. For f € D'(X) we define the grand maximal function by

M f(x)= sup |[(f, )|

$eKs(x)

The spaceH?(X), p > 0, is the subspace @' (X) of thosef such thatM; f € L? for
s2[(n—1)/pl+2.

Although the definition ofH”(X) seems to depend onit does not as long as is
sufficiently large § > (dim X)/ p suffices). That this is so for> [(n — 1)/ p] + 2 follows
also from Theorem 5.1 below.

If T:C®(X)— C*®(X) is a continuous linear operator, we denote' by D'(¥X) —
D'(X) the transpose operator, defined(byv, ¢) = (v, Tp), v € D'(X), p € C®(X). In
particular, we denote by}, 0 < i < 1, the transpose of the approximation of the identity
discussed in the previous section (from now on, in order to alleviate the notation, we often
write I, rather thathL unless there is a need to stress the rold pfBy Lemma 2.1,
I — ¢ in CP(X) if ¢ € C®°(X). Furthermore! I, is bounded inC” (X) for every
nonintegralr > 0. Indeed, this is clearly so if we repladg by its pseudo-differential
approximation/j,, which is a pseudo-differential of order zero, and the conclusion fol-
lows because the difference between twe bperators has a smooth kernel. Hence, if
¢ eC®(X), ' T — ¢ in C®(X) ash \ 0. Thus, ifp € C*(X) and 0< h <1 we
have the following representation:

o
¢="TiIh¢+ Y (‘Tyj1, i1y — " Top-iy i1 ) $- ()
j=0
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Definition 3.3. Let m, L be positive integer numbers arfde D’(X). We define onX a
tangential maximal function associated to the approximation of ideftits

d
[ fx)= sup |nf<y)|(1+ r, y)) ,
yeX
0<I<1/L

whered(x, y) denotes the geodesic distancein

Lemma 3.4. For all f € D'(X), the following pointwise inequality holds
Ly f(x) < Cupf(x), xeX. (3.2)

Proof. We recall thai:* (x) is given by
d(z, ¥ ))

— x|

Hx) = sup|u(z)\(

whereu(z) = (f, P(z,-)). We have

d(x,
I f) = sup |1“rf(y)\(l+ ( y))
yeXx
0<r<1/L
L _
L dx, )\ ™"
<Z<.) sup |u(y—1tv})|(1+ a
1 J yeXx t
7= 0<r<1/L

Notice that forz; =y — jtv, we have, becausg =d(z;, ¥) whentj <1,

<1+d(x,y)> <<1+d(x.,y)> <<d(z,,',2)>
t jt lzj — x|

so that

L

rrrm<y <L) sup|u(z)|<d(z’ fi) <2hurr(v)

=] J/ ze9

which proves (3.2). O

We now recall the operator

L L
S = ZH)”( .)P,t
j=0 J

defined in Section 2 and denote &y(x, y), x, y € X, its kernel. The next lemma depends
strongly on the estimate{(,z) proved in Theorem 1.1.

Lemma 3.5. There exist€, > 0 depending only of. andn such that for allx # y in X

Cqtt
o
\on,(x,y)\ < |x_y|n——1+L+\06|’ 0<r<1/L.
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Proof. Notice that the first term in the sum that defirfgss -7 so its kernel is supported

in the diagonak = y. Hence, in the proof of the lemma we need only look at terms with
Jj = 1. We prove the estimate for= 0, the proof forje| > 0 is similar and will be left to
the reader. We consider two cases.

Casel. Letx, y € X be such that # y and|y — x| < 2L¢. Then

1 n—1+L tn_1+L
<_> <—— it (3.3)

2 Ty =yt
sinceL > 1. Taking account ofK,g) with « = g = 0 we get
L L
L L C
forx-) ; j ! ; ) 1x = jivg =yt
Lo/
g C2L<C/t |x_y|7n+lfL’
> (<7

where the last inequality is a consequence of (3.3).

Case2. Letx, y € X such thaix — y| > 2L¢. Then, using Taylor's formula, we get

(Lt)LZ /—P x—t(s1+-- —l—SL)vx,)

loe|=L

ot (x, y)| <

[0,1]L

<oty /‘—Px—t(sl-i- SL)Vx, )‘ds

lee]=L [0,1)L

< / C(L,n) ds.

|x —t(s1+---+sp)vy — y[nHL

[0.1-

where we usedK,g) to obtain the last inequality. Since; — y| > 2Lt and|t(sy + - - - +
sp)vy| < Lt it follows that

1
5|x—y|<|x—t(s1+---+sL)vx—y|

which gives the desired estimate also in this cage.
Lemma 3.6. Let1 <m < L be integers an@® < s < L. Let¢ € C*°(X) be such that

(1) suppp S By (x,h) and
) lIpllre <h¥ ™ and|pllce < HE.

There exists a positive constant c(n, X, L, m, s) independent o and¢ such that ifk
andth € (0,1/L)

/ \sth¢(y)\(1+ d();l’ y )) do(y) < cf’ (3.4)
)
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and

d m
f\Fhab(y)\(H (xh’ y)) do(y) <c. (3.5)
P

Proof. Since (3.4) for a given value ofimplies the same estimate for smaller values of
we may assume thdt— 1 < s < L. Interpolating the estimates (2) we have, with- s /L,

lolls < C||¢|Ii;pII¢IIZL <cnts (3.6)
Note that (2) also implies thédp| ;1 < C. Let

B={yeX:dx,y)<h}, B'={yeX:id(x,y) <2hn}.
Let us write the integral on the left hand side of (3.4) ds= I1 + I> where

d , m
11=/\sth¢(y)\<1+ (’; ”) do (y)
B*

and
d m
= / |Sm¢(y)|(1+¥) do ().

Z\B*

To estimatel/1 note that for every € B* we have(1+d(x, y)/h)™ < 3™ so
dx, y)\" .
[Isuol (1+ Ty) do ) <3" [ |s160)|do ) (37)
B* B*

Recalling estimate (2.3) in Lemma 2.1 wit| = 0 and (3.6) we have

/|Szh¢(y)|d6(y) < C/(th)5||¢||5d(r(y) < C/(th)shl_"_s do(y)
B* B* B*

<Cr Rt / do(y)<Ct', (3.8)
B*
with the constan€ depending only of, L, n, X. Thus, (3.7) and (3.8) give < Ct*. To
estimatel, observe that

d m
<1+ OZ”) <2"h"d(x,y)", ye X\ B

Hence, using Lemma 3.5 with= 0 to estimate the kerne};, of S;;, we get

L <2mh™m / (C(th)L/de) d(x,y)"do(y)

d(y, w)nfl+L
X\ B* B

<CE Pl s f d(x, )" " do (y)
X\B*
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< CtLthmhme :c//tL < C”ts,

which concludes the proof of (3.4).
To prove (3.5) we note thal 7, ¢ (y)| < [Spd (¥)| + o ()], so (3.4) withr = 1 implies

d m d m
f|Fh¢(y)|(1+ %) do(y) <c+ /|¢(y>|<1+ %) do(y)
) )

and the last integral is majorized b§s (x, h)|h1"2" <c. O

In the next lemma we recall a standard majorization-ofx) by the Hady-Littlewood
maximal function off

1
Mf(x) =§Egm / | f )| do ().
By (x,r)

Lemma 3.7. There exist&” > 0 such that
ut(x) <KCMf(x), felLYX). (3.9)

Proof. We decompose the integral

u(x—tvx)sz(x—tvx,y)f(y)da(y)
)
as
/: / + / 4 / PR A A
Y  Bx(x,2t) Bx(x,4)\By(x.2t) By (x,8)\Bx(x.4t)

By Corollary 1.2,|P(x — tv,, y)| < Ct1™" so

|| < Crt / |f()|do(y) <C'Mf(x).
Bs(x,21)
To estimatel;, j > 2, we recall that
t
P(x —tv,, <C——,
|P(x —tvy, )| dG.y)
again by Corollary 1.2, which implies

[f (I P
|1j] < Ct / (tzj)ndfr(y)<C2 TMf (x).
B);(x,Z-/t)

Hence,

uCx — 1) | < IS CMF()Y 27T <CMF(x)

J j=1
and taking the supremum inwve get (3.9). O
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Since the Hardy-Littlewood nximal operator is bounded ih? we have

Corollary 3.8.If f € L2(X),
lut Nl L2y < CULF 2z (3.10)

4. Equivalence of Poisson’s maximal functions

In this section we show that the three maximal functions defined through the Poisson
integral—the normal, nontangential and tangential maximal functk%nm;’; andu—
have equivalent.” norms for fixedn > (n — 1)/ p and aperture > 1. As before2 c R”
is a bounded open set with a smooth boundaeydenoted byX'.

Theorem 4.1. Let f € D'(X) be a distribution and let u denote its Poisson integral. Let
O<p<oo, l<a<ooandm > (n—1)/p be an integer. The following conditions are
equivalent

(i) ut e LP(D);
(i) uf e LP(Y);
(iii) uX* e LP(X).

Moreover, theL ”-norms of the three maximal functions involved are equivalent.
Proof. The proof has three steps.

(i) = (ii) We recall the generalized mean valproperty for harmnic functions due to
Hardy and Littlewood [10]:

Lemma4.2. Let B C R" be a ball centered af and suppose that is harmonic ons and
continuous on its closur@. Then for allg > 0 there exists a constaiit = C(n, ¢) such
that

‘u(z)|q < %/‘u(w)‘qdw. 4.1)
B

Following [6], we apply (4.1) to obtain for a fixeg> 0 the estimate
wi() <CM[ut?)0Ye, xe,

where M denotes Hardy—Littlewood maximal function. It is a classical result Mat
bounded inL2(R"). This remains true iR” is replaced by a compact Riemannian manifold
such as¥. Choosingy = p/2 we have

f\u;’;(x)|”da(x) < cf{M[u”]}”/q(x)da(x) < Cf|ul(x)|”da(x),
X b b
which shows that (i) implies (ii).
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(if) = (i) The control ofu* by u follows from very generaarguments. Consider the
sets

Ao={z€ ! |z—x|<ad(z, X)}
and
Aj={ze2: 27 d(z, D) < |z — x| < ad(z, D)}, j=12,....

Since the collectiofA -}‘?020 is a covering of2 we have

d@z, ¥ Az 5
(x)<sup{|u()| 4z %) ) }+Zsup{|()| @, )) }

It now follows from the definition of:}; that

wyt(x)? <u (x)P—i—ZZ(l Dmpys, ()P
j=1

Integrating overX’ we obtain

o0
/uii"(x)”da(x) </ui‘,(x)”do(x)+22‘1‘”’""/u;-a(x)”da(x). (4.2)
b b j=1 b
We now use a variation of a useful lemma that relates maximal functions defined with
respect to different apertures [15, p. 62]:

Lemma 4.3. There exists a positive constafitdepending on¥' such that ifa andb are
real numbers satisfying < b < a then the following estimate holds

2a n—1
/uZ(x)pda(x) < C(1+ 7) /uLb(x)de(x).
b b

Invoking Lemma 4.3 wittu = 2/« andb = o — 1 we get

/ugja(x)l’da(x) <C(Z, ) 2f<”*1>/u;(x)1’ do(x),
X X
which combined with (4.2) yields

a3 HLP(Z) ||ua“Lp(£)+C22/(" v mp)““a“Lp():)
j=1

<C(X¥,n,p,m, a)”u

because —1— mp <O.

alLrs)

(i) = (i) This implication follows trivially from the obvious pointwise inequality
ut(x) wi*(x). O
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5. Comparison with theintrinsic maximal function

We now compare Poisson’s maximal functions with the intrinsic maximal function. As
always, 2 Cc R”" is a bounded open set with a smooth bounda®ydenoted byX with
the property that for any & r < 1 andx € ¥ the pointz; = x — tv, belongs tos2 and
d(z;, ¥) =t. First we see that the normal maximal functioh(x) is dominated pointwise
by M; f(x) for anys € Z,.. We may find a finite partition of unitj/,ok(x)},’(‘/:l in X such
that for j =1,..., N, suppp; is contained in a ball with radius; < rx, wherery is
the injectivity radius of=. If f e D'(X) we write f = Y1, p; f = 3I_, f;. Since
M (pj (x) < CM; f(x), itis enough to prove that*(x) < C M, f(x) when suppf
is contained in a ball with a radius smaller than. That means that in the definition
of M, f(x) = SURyek, (v [{f> @)1 We may consider test functions i (x) supported in
By (x,rx) and we shall do so. To estimaie-(x) we findz; =x — v, € 2,0<¢t <1,
such thai (x) < 2|u(z,)|. Next we splitP(z;, x) as a sum of elements &, (x). Consider
the finite covering oByx (x, rx),

Bx(x,26)U (Bx(x,4)\ Bx(x,1))U (Bx(x,8)\ By (x,2))U---,
and find a partition of unityy; (x)};":0 subordinated to this covering that satisfies the
estimateg| DYy || 1 < C(12/)71%, & € Z"72, |a| < 5. We know from Theorem 1.1 that

C < C
2o — y[r el S (¢ |y — y)yn—Ttlel”

|D§ Pz, y)| < | lor| <s.

Hence,
C
|D;‘(1/f0()7)P(Zr,)’))| < PrESERPT loe| <5,

sincelx —y| <2t on the support ofyo, showing thatC ~1yo(y) P(z;, y) belongs tok (x).
Forj>1,|x —y| >t2/~1 on suppy;, which leads to

| DS (¥ ()P, )| < el <s+lL
This already shows thziIflt/fj(y)P(zt, y) € K;(x) but we need a better estimate to com-
pensate for the possibly large number of terms in the sum. Thus, invoking Corollary 1.2,
we have

Ct c27/

[V 0P,y < Qinn @it

Summing up, we know that

[P )| < C277 QT

and
|DE (v ()P y)| < C@™@n~t"1 for|pl=L+1.

For 0< k < L and|a| = k we derive by interpolation
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o _ Pk
D29 (0 P, v)| < Cwy (P, )| 12 (Wrggiln DEY; PGz -0 )

< CQ Hlre2ip)=n=D (i)~ L+Dnx
<C@HHEINTTHO Co@ ) @ T,

wherepr = k/(L + 1) ands = 1/(L + 1). The estimates show that dy (x, rx) we may
write

N
Pz, x)=CY 27%¢;(x), ¢j(x)eK).
j=0
It follows that

N
u(z)| = |(f. Pzi.0))] C Y 277°|(f. ¢, (x0))] < C' M, f(x).
j=0
Thus
ut(x) < CM, f(x) (5.1)

which may be viewed as a sharper version of Lemma 3.7.
The next step is the control d¥1; f (x) by u}"(x) whens > m. We will need to write
the identity

o
¢="Tnlip+ Y (‘Tyi-1, i1y = Ty Tpip) b, ¢ € C(D), ()

j=0

already discussed in Section 3, in a convenient way. Higee I'L, 0 < ¢ < 1, is chosen

with L > s.

Setting
we may write
1

1
Iijp2= E(F’++F’_)’ I = E(F’+ -I7), O<r<l

Substitution of these formulas ir) gives after some simplifications

1N, _
¢ = chFh¢ + E Ztrz—j—lhrz—tj—lhqb +trz—tj—lhrz—j—lh¢ (**)
=1

forany¢ € C*°(X). Thus, if f € D'(X) we have

1N, _
(F.8) = Thf D) + 5 D ATy Ty @) AT, £ Ty, 8)
j=1
We must estimate each term in the expression above wherk;(x). Assuming that
suppp C By (x,h) andthatO< 2 < 1/L, we have

(I'n f, Fh¢)=/Fhf(y)Fh¢(y)dG(y).

X
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Taking account of Definition 3.3 and Lemma 3.4 we get

d(x, y))’"

|Thf ()| < Cu**(x)<1+ -

SO

) |Thep ()| do (y) < Cuyr (x), (5.2)

(13 gl curco [ (1 202
X

in view of (3.5) in Lemma 3.6. To study the terrt@ztj,lhf, I';”; 1, ¢) We point out that
sincel’t =1 — (1)t Sk we have

I 2-i-1p O| <1S3-i-1,0| + [So-i-2, B
Then, (3.4) in Lemma 3.6 gives

d , m _ L
/ <1+ .y )> 15,2, 60| do(y) < €277,
)

h

On the other hand, using once more Lemma 3.4, we have

d(x, ) m R d(x, ) m
|Fh2—./—1f()’)| < Cuyf(x) <1+ ZJ'i]h) < Cul¥(x)2/™ 1+ Ty

SO
d(x,y)

Ty £ Ty 1, @) < C27Mut (x) f (1+ ) 1[0 do ()
< C2M= ¥ (x) < C27 uk (x). (5.3)

To handle the termél,", . f, I, 1, ¢) we write I,7, 1 ¢ = 2¢ — (=1)"(Sp-j-1,6 +
So-j—2,¢) which leads to

(ry- i o T 2 - 1h¢> <in./—1hf’ ¢)+R; (5.4)
with
\Rj| < (T o1y o Sami=1n®)| + (T oy £ Sa-i-2n#)]-

The terms on the right hand side can be estimated using Lemmas 3.4 and 3.6—in the same
fashion used to obtain (5.3)—in order to get

IR;| < C277ulk (x). (5.5)
Since
2 (I, [ ) =2(f — T2 f. ¢) = 2= (Sus2f. ¢).
j=1

we obtain, in view of (5.2)—(5.5), that
|(f2&)| < Cupt ) + [(Sny2f. )|
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In the proof of this inequality we assumed for simplicity and ease of notation the small
restriction thatp was supported in a ball of radis< 1/ L, which was useful for technical
reasons (the relevant operators in all termsta) Gatisfied the hypotheses of Lemma 3.6).
In the general case, if is the diameter of, we may findx > 0 so thatAd < 1/L and
replace §x) by

o

t
¢="Lulond+ Z AT BTN AR PN 2

Carrying out the proof Wlth this representation we get

[, )] S COupt ) + [{f." Sanj29) |
forany¢ € K(x), so taking the supremum ih e K, (x) we obtain

M f () < Cup(0) + (£, Sunj29) |- (5.6)
The operatofS;, has similar properties t§,. In fact, the latter is related to

82 2
L= +22b (x, t) +chk(x t)8 8xk+ .,

in the same wa§/Sh is related to

2

. d
L:— 2217 (1) —i—Zc]k(x N anJr...,

which is elliptic if and onlyL is. From the analog of Lemma 3.5 for the keréglx, y) of
Sy (notice thats, (x, y) vanishes for = 0 andx # y) we get for allx # y in ¥

- Cctt
|Da0t(X,Y)|<W, 0<t<1/L, (5.7)

for someC > 0 depending only oL andn. Set® ='S;,,2¢. By Lemma 2.1
ID*@ |z < CORY ], < Cant—n—1 (5.8)

for |a| < r < L. Assuming without loss of generality thatis smaller that the injectivity
radiusrz we find a partition of unity{y; (x)} _o Subordinated to the covering

By (x,2h)U (Bx(x,4h)\ Bx(x,h)) U (Bx(x,8h) \ Bx(x,2h))U
of By (x, rx) that satisfies the estimatg® v/} || .« < C(h2/)"%, @ € 271, ja| < s and
write

QM =YiMPy) =1, (y)/fhh/z(y, YY) do(y)

S0P = Z;V:o @ ;. Choosingr > s, (5.8) and the fact that sugp C Bx(x, 2h) allows us
to write ®o = CAWo with ¥ € K (x). Forj > 1,y € suppy; andy’ € supps, d(y, y') ~
d(y,x)~ 2/h, so for those values of, y’ we have

|DSGans2(y. y)| < CO27HE@ T pyr -1t
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which shows thatp; = ca2-7 W; with W; € K, (x). Thus, takings sufficiently small we
may assume thas,, 2¢ = (1/2) Z?’zo 2—-/—1\11]- with ¥; € K, (x). Now (5.6) gives
1
M f(x) < Cupyl(x) + EMsf(x)
which shows that
M f(x) < Cupy(x) (5.9)

if M; f(x) < oo. For arbitraryx € X we may reason with an approximation.®; f (x).
Set

M f(x)= sup [{f ¢)

PeK(x)

bl

wherekK; (x) is the space of smooth functioiss C*°(X) such that there is aln> ¢ such
that supg C B(x, h) and supg;« WV ¢llx < 1. Reasoning as before witht? f (x)
which is always finite in the place o¥1; f (x) we get

MEf(x) < Culf(x)

and lettinge — O we obtain (5.9) in general.
Summing up, (5.1) and (5.6) show that fox m we have the pointwise inequalities

wh(x) < CM f (x) < C2ujf(x)
which trivially imply

lub e sy < CIM; fllrcs) < C2|ugy

LP(X)"

However, ifm > (n — 1)/p, Theorem 4.1 asserts that tfi¢ norms ofu® and ure are
comparable. We have proved

Theorem 5.1. Let f € D'(X) be a distribution and let u denote its Poisson integral. Let
O<p<oo l<a<oo, and assume > m > (n — 1)/p are integers. The following
conditions are equivalent

() feHP(X);
(i) MyfelLP(X);
(i) ut eLP(X);
(iv) u} e LP(X);
(V) u*eLP(X).

Moreover, thel.”-norms of all maximal functions involved are comparable.

6. Complex Hardy spaces

In this sections2 will denote a bounded open subset of complex sfizitwith smooth
boundaryds2 = X'. Denote byp a smooth real function that vanishes precisely Xn
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such thatdp # 0 on X andp > 0 on £2. For ¢ > 0 sufficiently small the seE? = {z €
2 p(z) = €} is a smooth embedded orientable hypersurface with a Riemannian structure
inherited fromC”" ~ R?",

For 0< p < oo, the complex Hardy spack?” (£2) is defined as the space of all holo-
morphic functionsf defined on2 such that

sup [ |f(@]|"dof(z) < oo. (6.1)
O<e<ep
z¢
Since| f|” is subharmonic, the independence of condi(i®.1) from the particular defining
function p follows from the following lemma of Stein [13].

Lemma6.1. Let p and p’ be two defining functions fa2 and letu be a positie subhar-
monic function orf2. Then

sup [ u(z)def(z) < oo
O<e<ep
o4

if and only if

’
sup u(z)dof (z) < oc.
O<e<ep ,
x?

We may take ap the functions2 > x — tv, — ¢, defined forx € X' and O< ¢ < 19, and
set

If 15 = sup | |f(@)]"doi(z) < oo

O<t<tg
t

for f € HP(£2). With this choice ofp, the level setg = const> 0 are the submanifolds
X; already considered in Section 2.

We recall that if f (z) is holomorphic on2 and has tempered growth at the boundary,
i.e.,|f(z)] < Cdist(z, ¥)~" for some positive constants and N, then f(z) has a weak
boundary valuéf € D'(X) [11, p. 66]. This means that if we regard the restrictighs-
flx, as distributions defined o via the identificationX; > x — tv, > x € X, then
(fi, @) — (bf, ¢) for any ¢ € C>*(X) ast — 0. Conversely, ifbf exists, f must have
tempered growth at the boundary. We denoté#pys2) the space of holomorphic functions
on £2 with tempered growth at the boundary.

Theorem 6.2. Let 2 C C" be a bounded open subset with smooth bounds&y= X Let
0 < p < oo and let f(z) be a holomorphic function og2. The following properties are
equivalent

(i) feHP($2);
(i) |f|? has a harmonic majorant of®;
(i) feHp(2)andbf € HP(X);
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(iv) f isthe Poisson integral of somfg € H? (X).

Proof. Whenp = oo (ii) has to be understood a§ f || . has a harmonic majorant ¢n”;
the proof of this case is simpler and will be left to the reader, so from now on we assume
that 0< p < oo and prove the theorem in four steps.

(i) = (i) Let G(z, w) be the Green function aR. Fix a pointzp € £2 and consider the
function w = G(zo, w). Since the normal derivativev,,(D)G(z0, w) = P(z0, w) > 0
for w € X andG(zo, w) > 0 for w € £2, we may use a defining functign(w) for £2 that
coincides withG (zg, w) whenw € £2 is close toX. Fore > 0 and small sef2, = {z €
£2: p(z) > ¢}. Thenthe Green functio@. (z, w) of £2; is given byG.(z, w) = G(z, w) —¢
and writing the Poisson kerné} (zo, w) of 2., w € 352, as the normal derivative of the
Green function it follows thaP, (zog, w) — P(zo, w) uniformly onw € X ase — 0 if we
identify points ind$2, with their normal projections ont&'. Let f € H?(£2). Then the
restriction of| £|? to 352, belongs toL1(32;) uniformly in ¢ \, 0. By our identification
we may think oﬂf|m as bounded subset af(X) and find a sequenesg such thab; =
|f|m converges Weakly to a positive Radon measure M(X). Letu; be harmonlc
functidn ons2.; with boundary value); = |f|m Since| f|7 is subharmonicy; < u;

on £2;;, so for Iarge] we havel f(z0)|” < u(z0). We may write

uj(z0) = / Pe, (0. )v; () do, ()
3!251.

and lete; — 0 to get

|f@o)|” < (. P(z0. ) = u(z0)

sou(z), the Poisson integral qf, is the required harmonic majorant.

(i) = (iii) Since| f|? has a harmonic majorantf|?/? < 1+ | f|? also does. Reasoning
as before, we may find a functiane L2(X) which is the weak limit of the restrictions of
| £1P/?t0 9%2¢ ;. Hence, ifu(z) is the Poisson integral afwe have f|7/%(z) <u(z),z € 2.
Then

fr = sup [ fx— v Sut )P, (6.2)

O<r<tg
By Corollary 3.8,u~(x) € L2(X) because: is the Poisson integral af € L2(X), which
implies that

/ fr(»mPdo(y) <C.

Consider; = x — tv, € £2 lying at a small distance=d(z, X') < go/2 from the boundary
and consider the balB(z,1/2) C 2. Forw =y — sv, € B(z,t/2) we have|f(w)| <
f1(»). Hence,
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1

p —_—
lf@|" < BG.1/2)

/ | f)|”dV (w)
B(z,t/2)
3t/2

<cr™ / ds/fi(y)l’da(y) <t = Cdist(z, Z)1".
t/2 X

Thus f(z) has tempered growth as— 9£2 and possesses a weak boundary value
bf = foe D'(X). The Poisson integrdl of fy and the holomorphic functioyi are both
harmonic and have the same boundary valug sothe Poisson integral gb. Hence, (6.2)
may be rewritten as

Ut(x) <ut@o)??

showing that/+ € L?(X) so fo € H?(X) by Theorem 5.1.
(iif) = (iv) Itis enough to writef as the Poisson integral 6f .

(iv) = (i) Let f = U be the Poisson integral gf. Forr > 0 small we have f (x —
)| = U —tv)| <UH(x) s0

/|f(Z)|dez(Z) < C/Ul(x)pda(x) < 00
2

X
which shows thaff € H7(£2). O
Corollary 6.3.1f f € HP(£2), the “norms” || fll¢r, Il f L lzr, | £]l » are all comparable.
Although the usual product of functions cannot be extended to distributions preserving
the associative property, it is possible to define the product of two distribufigng <
Hyp($2) as fogo = b(fg) wherebf = fo andbg = go, turning;(£2) into an associative
algebra. A more precise version of this fact is given by

Corollary 6.4. If fo, go € H?(X), the productfogo € HP/?(X).

Proof. Let f andg be respectively the Poisson integralsfofand go, so f, g € H”(£2)
by Theorem 6.2. Hence, Schwarz inequality gives

12 12
/\fg<z>|”/2dat(z) < (/\f(z>|”dat(z)> </|g(z)\"da,(z>) <cC
5, 5, 5,

showing thatfg € HP/2(£2). Thus, fogo = b(fg) € HP'A(X). O

A simple consequence of the Poisson representatiok0£2) functions is the follow-
ing version of the F. and M. Riesz theorem.
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Theorem 6.5. Let 2 ¢ C" be a bounded open subset with smooth bound&ry= X and
assume thaif (z) is holomorphic in2 with tempered growth at the boundary and has a
measurew € M(X') as weak boundary value. Tharis absolutely continuous with respect
todo.

Proof. SinceM(X) c HP(X) for p < 1, Theorem 6.2 shows thétis the Poisson inte-
gral of its boundary valug.. Moreover, the Poisson representatjo@) = (u(y), P(z, y))
shows that 1 (z)| < (|(y), P(z,y)) where|u| is the variation ofu. Interchanging the
order of the integration we see that

/\f(z)\do,(z>< |u|(y),/P(z,y>dot(z) < Clpl(2).
2

oY

Thus f € H1(£2) and Theorem 6.2 implies that=bf € HY(X) c L1(¥), as we wished
to prove. O

Remark 6.6. Theorem 6.5 also follows from an analogous and stronger local result due to
Brummelhuis [3] according to which if a measytds defined on an open subsétof ¥

and is the boundary value of a holomorphic functjodefined on one side of thenp is
absolutely continuous with respectde on V.
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