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The human antimicrobial peptide LL-37 plays an important role in host defense against infection. In addition to
its antimicrobial action, other activities have been described in eukaryotic cells that may contribute to the
healing response. In this study, we demonstrated that in vitro human cathelicidin activates migration of the
human keratinocyte cell line HaCaT, involving phenotypic changes related to actin dynamics and associated to
augmented tyrosine phosphorylation of proteins involved in focal adhesion complexes, such as focal adhesion
kinase and paxillin. Other events involved in the LL-37 response were the induction of the Snail and Slug
transcription factors, activation of matrix metalloproteinases and activation of the mitogen-activated protein
kinase , and phosphoinositide 3-kinase/Akt signaling pathways. These signaling events could be mediated not
only through the transactivation of EGFR but also through the induction of G-protein-coupled receptor FPRL-1
expression in these cells. Finally, by in vivo adenoviral transfer of the antimicrobial peptide to excisional
wounds in ob/ob mice, we demonstrated that LL-37 significantly improved re-epithelialization and granulation
tissue formation. The protective and regenerative activities of LL-37 support its therapeutic potential to promote
wound healing.
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INTRODUCTION
Antimicrobial peptides have been described as mediators of
the body’s innate defense response. Among the different
families, cathelicidins include the human LL-37 peptide,
which is expressed in neutrophils and keratinocytes of
inflamed skin. Besides the role in host defense against
infection, other activities that appear to be receptor-mediated
have been reported for this antimicrobial peptide. LL-37

induces chemotaxis of immune cells (Agerberth et al., 2000;
Niyonsaba et al., 2002) and dendritic cell differentiation
(Davidson et al., 2004). It was previously shown that LL-37
induced the expression of chemokines and chemokine
receptors in macrophages, thus contributing to the immune
response against infection by indirectly promoting the
migration of immune cells (Scott et al., 2002). It also
increases the production of cytokines and chemokines such
as IL-6, IL-8, tumor necrosis factor-a, GM-CSF, IL-10,
interferon-inducible protein-10 (IP-10), monocyte chemotac-
tic protein-1 (MCP-1), macrophage inflammatory protein-3
alpha (MIP3a) and regulated upon activation, normal T cell
expressed and secreted (RANTES) by normal human keratino-
cytes (Braff et al., 2005; Niyonsaba et al., 2007). LL-37
stimulates IL-18 protein release in keratinocytes through
activation of p38 and extracellular signal regulated kinase 1
(ERK1)/2 pathways, either alone or synergistically with
antimicrobial peptides of the b defensin family (Niyonsaba
et al., 2005).

The chemotactic receptor expressed in monocytes, neu-
trophils and subsets of T cells that respond to LL-37 is formyl
peptide receptor-like 1 (FPRL-1), a seven transmembrane
pertussis toxin-sensitive G-protein-coupled receptor defined
as a low-affinity fMLF receptor. Apart from the chemotactic
response, the activation of this receptor leads to the initiation
of signaling events leading to enhanced phagocytosis, release
of oxygen intermediates, augmented bacterial killing and
increased adhesion (De et al., 2000). Mast cell chemotaxis
induced by LL-37 is also mediated through a G-protein-
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coupled receptor, but distinct from FPRL-1 (Niyonsaba et al.,
2002). Endothelial cells also express functional FPRL-1, and it
has been demonstrated that LL-37 mediates angiogenic
activity through the activation of this receptor (Koczulla
et al., 2003).

Cutaneous injury induces the expression of cathelicidins
in both human and mouse epidermis and these peptides have
been found in the wound fluid (Dorschner et al., 2001). Other
inflammatory stimuli have been shown to induce LL-37
expression (Frohm et al., 1997). Moreover, we have also
demonstrated that the expression of LL-37 might be involved
in the induction of other antimicrobial peptides, such as
human b defensins (Carretero et al., 2004). The role of LL-37
antimicrobial peptide in the re-epithelialization process was
previously suggested by using blocking antibodies against this
peptide in wounded skin equivalents (Heilborn et al., 2003).
It has also been demonstrated previously that LL-37 induces
the healing of airway epithelial wounds by stimulating
proliferation and chemotaxis of epithelial cells (Shaykhiev
et al., 2005). Evidence for a possible activity of LL-37 in
wound healing, mediated in part through induction of
keratinocyte migration via EGFR transactivation, was recently
provided (Tokumaru et al., 2005). Thus, therapeutic oppor-
tunities with LL-37 in the field of cutaneous repair may not
only rely on its antimicrobial activity but also on its putative
epidermal healing promoting effect. In a previous study, we
explored the idea of using LL-37, through gene therapy, as an
aid against infection during skin engraftment (Carretero et al.,
2004). In this study, we provide new supporting data for a

bonafide role of LL-37 in re-epithelialization and wound
closure processes. We demonstrate that LL-37 gene-trans-
ferred HaCaT keratinocytes undergo cytoskeleton reorgani-
zation leading to the acquisition of a migratory-like
phenotype and activate specific signaling pathways and
transcription factors that could influence this phenotypic
conversion. We also found that FPRL-1 induction in HaCaT
keratinocytes might contribute to the signaling events leading
to the activation of migration. In addition to the in vitro data,
we provide in vivo evidence, through adenoviral-mediated
local administration of the antimicrobial peptide to excisional
wounds in ob/ob diabetic mice, that LL-37 significantly
enhances wound healing. Our findings point to LL-37 as a
pleiotropic factor helping skin wound closure through
differential but cooperative responses.

RESULTS
Recombinant or gene-transferred LL-37 induced a migratory
behavior in HaCaT keratinocytes

Proliferation and migration of human keratinocytes are
critical factors that contribute to efficient healing. Several
growth factors and cytokines have been shown to influence
these processes (Martin, 1997; Falanga, 2005). We have
observed previously that proliferation appeared to be
unaffected in HaCaT cells transduced with an adenoviral
vector encoding LL-37 (Carretero et al., 2004; Figure 1).
Moreover, increasing concentrations of the LL-37 synthetic
peptide ranging from 25 to 500 ng/ml did not appear to affect
HaCaT cell proliferation significantly (data not shown).
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Figure 1. Proliferation of HaCaT cells in the presence of the LL-37 antimicrobial peptide. (a) Phase-contrast photographs of adenoviral transduced HaCaT cells

after BrdU immunocytochemistry. Arrows point to BrdU-labeled cells 24 hours after infection. Quantification of BrdU-positive cells is shown. For each

condition, 10 different fields of 100–200 cells were counted and the mean values7SD were calculated. Bar¼ 50 mm. (b) HaCaT cell proliferation was quantified

24 and 48 hours after adenoviral infection using an XTT assay. Data are means7SD of each condition determined in triplicates. GFP, green fluorescent protein.
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However, when the LL-37 peptide was tested in an in vitro
wound-healing assay, a clear induction of migration either on
fibronectin or collagen type I was observed. A dose-response
analysis showed that LL-37 induced keratinocyte migration
on fibronectin at concentrations up to 500 ng/ml (Figure 2a).
We also tested the migratory activity of HaCaT cells that were
genetically modified using a retroviral vector to express
permanently the LL-37 antimicrobial peptide. These cells
showed an enhanced migratory activity either on collagen
type I (Figure 2b) or fibronectin (data not shown).

In addition to enhanced antimicrobial activity (Carretero
et al., 2004), Ad-LL-37-transduced HaCaT cells exhibited
cytoplasmic protrusions at the free edge of colonies (Figure
3a). We thus decided to study the changes associated with the
migratory phenotype in these cells. Phalloidin staining revealed
that LL-37 induced actin reorganization in these cells. In
contrast, a typical stationary phenotype associated with the
formation of marginal bundles of actin filaments was observed
at the edge of HaCaT cell colonies transduced with control Ad-
green fluorescent protein (GFP). The transition to a motile
phenotype observed in Ad-LL-37 transduced HaCaT cells
involved loss of marginal actin bundles and development of a
large leading lamella and formation of filopodial extensions
(Figure 3b, upper panels). The same phenotypic conversion was
observed in retrovirus-transduced HaCaT cells and in HaCaT
cells treated with different concentrations of the synthetic
antimicrobial peptide (Figure 3b, middle and lower panels).

LL-37 induced changes in focal adhesions

Immunofluorescence analysis using an anti- focal adhesion
kinase (FAK) antibody revealed increased levels of focal
adhesion kinase (p125FAK) at sites on the edge of the HaCaT
cell colonies expressing LL-37, where new focal contacts are
being formed (Figure 4a, upper panels). p125FAK is a non-
receptor tyrosine kinase that regulates the assembly of focal
adhesions promoting cell spreading on the extracellular
matrix. It can recruit p60c-Src to phosphorylate paxillin, a
critical step in focal adhesion assembly (Richardson et al.,
1997). Whole-cell phosphotyrosine (PY) immunofluores-
cence analysis of Ad-LL-37 transduced HaCaT cells demons-
trated a general increase in tyrosine phosphorylation that
was also apparent at the edge of colonies, at similar location
as FAK (Figure 4a, lower panels). Phosphotyrosine immuno-
precipitation followed by Western blot analysis using specific
antibodies showed that both p125FAK and paxillin presented
increased levels of tyrosine phosphorylation in the presence
of the LL-37 antimicrobial peptide, either in adenovirus- or
retrovirus-transduced HaCaT cells (Figure 4b). Very likely,
the augmented phosphorylation of FAK and paxillin accounts
for the general cellular PY increase observed.

LL-37 induced Snail and Slug transcription factors in HaCaT
keratinocytes

Considering that epidermal migratory leading edges during
skin wound healing are characterized by transient epithelial-
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Figure 2. LL-37-induced migration of HaCaT cells in an in vitro wound model. (a) HaCaT cells were grown to confluence on fibronectin-coated six-well tissue

culture plates. Cells were serum-starved for 12 hours. Different concentrations of the synthetic LL-37 antimicrobial peptide ranging from 25 to 500 ng/ml were

used in an in vitro wound assay, where half of each well was denuded from cells and then re-coated with fibronectin. Migration was monitored for up to

72 hours. Same fields were photographed immediately after wounding (wound margin depicted as black line) and 72 hours later (white line) and pictures were

superposed using Adobe Photoshop. Areas were measured using Scion Image. A representative experiment is shown. (b) Retrovirus-transduced HaCaT cells

were used in a similar assay. Cells were grown to confluence on collagen I-coated 24-well tissue culture plates. Cells were treated with mitomycin C to inhibit

cell proliferation and then an in vitro wound was produced using a sterile pipette tip. Wound margin at t¼ 0 hour is depicted as black line. Cell migration was

monitored for up to 48 hours (wound margin depicted as white line) and quantified by image analysis. The data represent the mean7SD of three experiments.

*Statistical significance (Po0.05). GFP, green fluorescent protein.
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mesenchymal transition (EMT) events and invasive pheno-
types (Escamez et al., 2004; Thiery and Sleeman, 2006), we
sought to determine whether LL-37 was also able to modulate
these phenomena.

We examined different signaling cascades acting in the
EMT process that might be, to some extent activated, by the
LL-37 antimicrobial peptide. The Snail zinc finger transcrip-
tion factor is known to be involved in EMT during embryonic
development. It was demonstrated previously that stable
expression of Snail in Madin-Darby Canine kidney epithelial
cells (MDCK) epithelial cells induced a conversion to a
mesenchymal phenotype through loss of E-cadherin and the
acquisition of an invasive behavior. Interestingly, the
morphology of Snail-transfected cells showed abundant
membrane extensions and long filaments resembling filopo-
dia (Cano et al., 2000). Reverse transcriptase (RT)-PCR
analysis demonstrated that LL-37 was capable of inducing
Snail mRNA in cells permanently expressing LL-37 (Figure
5a) and also in adenovirus-transduced HaCaT cells at 24 and
48 hours after infection as well as in HaCaT cells treated with

different concentrations of the LL-37 synthetic antimicrobial
peptide (data not shown). LL-37 was also shown to induce the
expression of Slug mRNA (Figure 5a), a member of the Snail
family of transcription factors that was reported to be
upregulated in keratinocytes during wound healing (Savagner
et al., 2005; Turner et al., 2006). Immunofluorescence
analysis revealed increased Snail protein expression prefe-
rentially in cells at the edge of the colonies (Figure 5b, middle
panels). As predicted, all cells expressed Snail when HaCaT
cells were modified using a snail-encoding retrovirus (Figure
5b, lower panels). Conversely to other Snail overexpressing
epithelial cells, the LL-37-driven Snail increase appeared to
be insufficient for the downregulation of E-cadherin expres-
sion as assessed by either semi-quantitative RT-PCR or
Western blot analysis of total cellular lysates (data not
shown). However, in spite of this apparent lack of molecular
response to Snail induction, cell-cell contacts appeared to be
discontinuous at the edge of colonies expressing the LL-37
peptide as assessed by immunofluorescence analysis using
anti-E-cadherin and anti-Desmoplakin 1/2 antibodies (Figure
5c, upper and middle panels). These results indicate that the
upregulation of Snail transcription factor is taking place at
cells that undergo the phenotypic conversion. In this regard,
by double immunofluorescence analysis, we observed that in
cells located at the edge of the LL-37 expressing colonies
marginal bundles of actin disappeared (phalloidin labeled in
red), and microtubules extended to the cell periphery (tubulin
labeled in green) as it was observed in HaCaT cell colonies
expressing Snail by retroviral transfer (Figure 5c, lower
panels).

In addition to phenotypic changes related to actin/tubulin
filament redistribution, retrovirus-transduced HaCaT cells
constitutively expressing Snail exhibited an augmented
migratory activity as compared with control cells (Figure 5d),
suggesting that LL-37-mediated migratory activity may be
associated with Snail induction.

LL-37 induced the mitogen-activated protein kinase and
phosphoinositide 3-kinase /Akt signaling pathways in HaCaT
keratinocytes

Several kinases have been shown to be involved in the EMT
process. The mitogen-activated protein kinase (MAPK) path-
way mediates the induction of Snail transcription factor by
transforming growth factor-b in epithelial cell lines (Peinado
et al., 2003) and glycogen synthase kinase 3 (GSK-3) has
been shown to maintain the epithelial phenotype, as it
inhibits the transcription of Snail (Bachelder et al., 2005).
Other kinases promote the EMT, such as Akt (Grille et al.,
2003) and integrin-linked kinase (ILK) (Oloumi et al., 2004).
Phosphoinositide 3-kinase (PI-3K) also promotes EMT by
suppressing GSK-3 activity (Woodgett, 2001). Western blot
analysis demonstrated that LL-37 activated both the MAPK
and the PI-3K/Akt signaling pathways in both adenovirus- and
retrovirus-transduced HaCaT cells (Figure 6).

LL-37 enhanced proteolytic activities in HaCaT cells

As a consequence of an enhanced migratory phenotype, cells
may vary their expression of genes coding for cell adhesion
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Figure 3. LL-37 induced a migratory-like phenotype in HaCaT cells.

(a) HaCaT cells were transduced using either an adenoviral vector containing

the human LL-37 antimicrobial peptide together with an Ires-GFP expression

cassette or a control Ad-GFP. After 48 hours, HaCaT cells transduced with
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(b) After fixation, cells were stained for actin using phalloidin-TRITC. The
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Ad-LL-37-transduced HaCaT cells showing the formation of filopodial

extensions (white arrows). The same was observed in both

retrovirus-transduced HaCaT cells and in cells treated with the synthetic

antimicrobial peptide. Bar¼ 10mm. GFP, green fluorescent protein.
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molecules and intermediate filaments and, in some cases,
may synthesize extracellular matrix molecules and proteoly-
tic enzymes involved in matrix degradation (Boyer et al.,
2000). Zymography using 24 hours conditioned media from
HaCaT cells, plated either on fibronectin or collagen type I
and treated with increasing concentrations of the LL-37
antimicrobial peptide, revealed a dose-response induction of
gelatinolytic activity at B72 and B92 kDa, consistent with
the latent forms of matrix metalloproteinase-2 (MMP-2) and
MMP-9, respectively (Figure 7a). These results were also
confirmed by semiquantitative RT-PCR analysis using specific
oligonucleotides for MMP-2 (data not shown). In addition to
MMPs, the urokinase-type plasminogen activator receptor
(uPAR) signaling has been shown to modulate the migratory
activity of keratinocytes (Blasi and Carmeliet, 2002).
Although keratinocytes do not normally express uPAR in
skin, it has been reported that the protein is induced in the
epithelial leading edge during wound healing (Romer et al.,
1994). Semiquantitative RT-PCR analysis of both LL-37
adenovirus- and retrovirus-transduced HaCaT cells showed
increased uPAR mRNA levels, whereas uPA mRNA remained
unaffected (Figure 7b).

LL-37 upregulates the expression of its putative receptor FPRL-1
in HaCaT keratinocytes

Both cell motility responses and the possible underlying
activation of signaling pathways such as those described here
will likely depend on receptor-mediated signals. FPRL-1 has
been postulated as the natural receptor for LL-37, at least in
neutrophils. The expression of FPRL-1 was determined in
both control and Ad-LL-37 or retro-LL-37 transduced HaCaT
cells. Semiquantitative RT-PCR analysis revealed that FPRL-1
mRNA was clearly upregulated in HaCaT cells expressing the
LL-37 peptide (Figure 8a). To investigate the functional
implication of this receptor in the LL-37-mediated activation
of keratinocyte migration, we took advantage of the use of
chemical inhibitors of specific signaling pathways in the
above-mentioned in vitro wound-healing assays. As shown in
Figure 8b, the Gi protein-coupled signaling inhibitor pertussis
toxin inhibited the LL-37-mediated HaCaT cell migration to
collagen type I. In contrast, the specific EGFR tyrosine kinase
inhibitor AG1478 did not affect the LL-37-mediated cell
migration. Although we cannot rule out a general involve-
ment of G protein-coupled receptor signaling in HaCaT cell
migration (Figure 8b, retro-GFPþpertussis toxin), our results
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suggest that the LL-37-mediated activation of HaCaT keratino-
cyte cell migration involves signaling events distinct to the
transactivation of the EGFR.

LL-37 enhanced wound healing in diabetic mice

To address whether LL-37 could serve as a beneficial tool in
gene therapy protocols for wound repair, we performed

excisional wound-healing experiments in the healing
impaired ob/ob mouse model. We performed adeno-
virus-mediated LL-37 gene transfer by dermal injection
around 4-mm flank wounds that was confirmed by detection
of green fluorescence after 3 and 6 days (Figure 9a). The
effect of Ad-LL-37 treatment was assessed by histologic and
immunohistochemical examination of epithelial gap closure
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and granulation tissue formation. The measurement of the
distance between epithelial tongues revealed a clear en-
hancement of the re-epithelialization process in most of the LL-
37-treated wounds at days 3 and 6 post-wounding (Figure 9d).
The percentage of re-epithelialization was improved by
19.7277.04% after 3 days, and by 20.5078.67% after 6
days of treatment with Ad-LL-37. At day 3, an increase in the
lengths of the tongues of new migrating epithelium was
clearly observed in LL-37-treated wounds. At day 6, a similar
increase was observed, as in most cases the epithelial tongues
had converged to completely cover the wound when the Ad-
LL-37 was applied, whereas in the corresponding Ad-GFP
control wounds the epithelial gap was still evident (Figure
9b). An immunohistochemical analysis of GFP expression
revealed the presence of GFP-positive dermal cells with
fibroblast morphology, not only at the site of the injection but
also in the center of the wound area in Ad-LL-37-treated 3-
day wounds (Figure 9c). In contrast, GFP-positive cells
remained close to the edge in Ad-GFP- treated wounds,
indicating that a more active migratory process occurred in
the Ad-LL-37-treated wounds. Granulation tissue developed
more slowly in control wounds, as the cell density in the
central area of the 3-day LL-37-treated wounds was higher
than that of control wounds (Figure 9b). At day-15 post-
wounding, although the number of myeloperoxidase-positive
inflammatory cells appeared to be augmented in some of the
LL-37-treated wounds, the collagen deposition and remodel-
ing was similar to control wounds as assessed by picrosirius
red staining and visualization under polarized light (data not
shown).

DISCUSSION
We have demonstrated previously the feasibility of using an
adenoviral vector to overexpress LL-37 in a skin equivalent to
prevent bacterial infection (Carretero et al., 2004). Others
(Jacobsen et al., 2005) have also demonstrated the efficacy of
a transient cutaneous adenoviral delivery of this antimicro-
bial peptide in the infected rat burn model. In addition to its

antimicrobial activity, several reports indicated that LL-37 is
also able to mediate cellular responses that contribute to the
immune response and might enhance the wound-healing
process (Bals and Wilson, 2003; Bardan et al., 2004).

Migration of keratinocytes into the wound bed is one of
the main factors contributing to epidermal wound healing.
Several soluble factors have been shown to influence
keratinocyte migration, as in the case of TGF-b and cytokines
(GM-CSF, IL-1b and IL-6) (Martin, 1997). LL-37 was shown
previously to induce migration of epidermal cells by
transactivating the EGFR (Tokumaru et al., 2005). It was also
shown to stimulate bronchial epithelial cell migration and
proliferation (Shaykhiev et al., 2005). It has been shown
previously that re-epithelialization of organ-cultured skin
wounds is inhibited by antibodies against LL-37 in a dose-
dependent mode (Heilborn et al., 2003). That study suggested
that LL-37 might affect proliferation of epithelial cells, based
on the lack of Ki67-immunoreactive cells in the epithelium of
the wound samples treated with LL-37 antiserum. Although
we have been unable to demonstrate the involvement of the
LL-37 antimicrobial peptide in the proliferation of the human
keratinocyte cell line HaCaT, this peptide clearly induced a
conversion of HaCaT cells to a migratory phenotype showing
numerous filopodia-like protrusions of the plasma mem-
brane, which resulted in an enhancement of cell migration
onto different matrices. The interaction with extracellular
matrix proteins is essential in the wound-healing response.
After wound healing, keratinocytes migrate onto a provi-
sional matrix that contains several extracellular matrix
proteins, the more abundant being type I collagen and
fibronectin. We have demonstrated that the LL-37 peptide
induced cellular migration when both substrates were used.

Cell migration is a complex process that involves the
continuous formation (at the leading edge of protrusions) and
disassembly (at the cell rear and at the base of protrusions) of
adhesions. Several kinases and adaptor molecules, including
FAK, Src, p130CAS, paxillin, ERK, and myosin light chain
kinase have been shown to be critical for adhesion turnover
at the cell front, a process central to migration (Webb et al.,
2004). We observed a general increase in tyrosine phosphory-
lation in HaCaT cell colonies expressing the LL-37
antimicrobial peptide. In particular, the cathelicidin induced
an increase in the tyrosine phosphorylation of FAK and
paxillin in these cells. Increased FAK tyrosine phosphoryla-
tion was previously shown to correlate with the level of
human keratinocyte motility (Yurko et al., 2001). Cell
invasion is linked to transient accumulation of FAK at
lamellipodia, which can activate different signaling pathways
(Hsia et al., 2003). We have shown that FAK expression is
increased at the new protrusions formed in edge colony cells
in the presence of the peptide. It has been demonstrated that
a cross-talk between integrin and growth factor signaling
pathways may be coordinated through the actin cytoskeleton,
and may converge at FAK (Boudreau and Jones, 1999).

Some of the events involved in the EMT process are
observed in the presence of the LL-37 antimicrobial peptide,
such as induction of the Snail transcription factor. Snail was
previously shown to induce the EMT process in epithelial
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Figure 6. LL-37 induced activation of the MAPK and PI-3K signaling

pathways in HaCaT keratinocytes. Whole cell extracts from either adenovirus

or retrovirus-transduced HaCaT cells expressing the LL-37 antimicrobial

peptide were obtained and analyzed in Western blot for total protein levels

and phosphorylated forms of ERK1/2 and Akt. a-Tubulin served as a control

for the amount of protein in each sample. ERK1, extracellular signal regulated

kinase 1; GFP, green fluorescent protein.
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cells, leading to the loss of E-cadherin expression, acquisition
of a fibroblast-like morphology, and upregulation of vimentin
expression. Snail represses the E-cadherin promoter activity
by binding to the E-box sequences (Cano et al., 2000). We
could not observe a downregulation of E-cadherin expression
in the presence of the LL-37 peptide possibly due to a dilution
effect of using whole-colony mRNA and protein. However,
by immunofluorescence analysis using antibodies against
E-cadherin (adherens junctions) and Desmoplakin1/2 (desmo-
somes) cell-cell contacts appeared to be discontinuous at the
edge of colonies expressing the LL-37 peptide. It is clear that
LL-37 did not lead to a complete EMT conversion in HaCaT
keratinocytes, as the Snail induction and cell-cell contact
disruption is only evident at the edge of the colonies. There
are other cell movement processes in which Snail is involved
and that do not require a full EMT, such a mesoderm
formation in anamniote vertebrate embryos or gastrulation in
Drosophila. Snail participates in these processes in which
cells maintain contact with each other as they move
(reviewed in Barrallo-Gimeno and Nieto, 2005). Alterna-
tively, in some cell systems, several growth factors have been
reported to require cooperation with H-Ras activation to

induce a complete EMT process (Gotzmann et al., 2002;
Janda et al., 2002).

Snail may also act as a transcriptional activator affecting
the expression of genes involved in the control of motility and
migration. Among them, MMPs are augmented in the EMT
process and are expressed during the wound-healing
response (Mott and Werb, 2004; Thiery and Sleeman,
2006). It has been demonstrated previously that Snail induces
MMP-2 expression in squamous-cell carcinoma cells
(Yokoyama et al., 2003) and MMP-9 expression in the MDCK
epithelial cell line (Jorda et al., 2005). Here we showed that
MMP-2 (gelatinase A) and MMP-9 (gelatinase B) appeared to
be augmented in the presence of the LL-37 peptide. It has
been shown that MMP-2 plays an important role during
granulation and early phases of the wound-healing process,
and localizes mainly in fibroblasts and endothelial cells.
MMP-9 is stimulated in response to injury and is expressed in
migrating keratinocytes (Salo et al., 1994). Makela et al.
(1999) have shown the role of MMP-2 produced by oral
mucosal and skin keratinocytes in activating cell migration.

Another protease-mediated signaling system, uPAR, is
induced by LL-37 in HaCaT cells. It participates in the control
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of cell motility through the activation of the proteolytic
cascade initiated by the conversion of plasminogen into
plasmin. It has been shown to be highly expressed in
migrating keratinocytes during wound repair (Solberg et al.,
2001). Because uPAR lacks an intracellular domain, several
transmembrane mediators have been identified as mediators
of the signaling response to uPA, such as integrins and FPRL-
1. They are involved in uPA-mediated regulation of cell
adhesion and migration through the activation of several
signaling pathways (Blasi and Carmeliet, 2002).

Herein we demonstrated the involvement of both MAPK,
and PI-3K signaling pathways in the LL-37-mediated signal
transduction in HaCaT cells. The MAPK cascade has been
shown to participate in cell migration by inducing phosphory-
lation of the myosin light chain kinase (Klemke et al., 1997)
or by the activation of calpain (Glading et al., 2000). PI-3K
has also been shown to regulate actin cytoskeletal reorgani-
zation through the small GTPase Rac (Nobes and Hall, 1995;

Reif et al., 1996). It has been demonstrated previously that LL-
37-mediated EGFR transactivation in airway epithelial cells
leads to activation of the MAPK signaling pathway (Tjabringa
et al., 2003). Thus, the observed LL-37-mediated activation of
MAPK in HaCaT cells would conceivably occur by a
mechanism involving the shedding of heparin-binding
epidermal growth factor (HB-EGF) that was described
previously in keratinocytes (Tokumaru et al., 2005). It
remains to be determined whether EGFR transactivation is
involved in the different signaling events analyzed here as we
have also demonstrated that LL-37 was able to induce the
expression of the FPRL-1 receptor. In this regard, the LL-37-
mediated HaCaT cell migration appears to involve a G
protein-coupled receptor but not the activation of the
EGFR, as deduced for the use of specific chemical inhibitors
in in vitro wound-healing assays. The FPRL-1 receptor
shows high level of homology to FPR, which has been
shown to activate protein kinase C, phospholipase A2 (PLA2),
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D, MAPK and PI-3K in neutrophils (Selvatici et al., 2006). It
was demonstrated previously that fibroblasts express
FPRs (FPR and FPRL-1), and that fMLP induces actin
polymerization in these cells as well as calcium mobilization,
adhesion and directed migration (VanCompernolle et al.,
2003). The human lung epithelial cell line A549 also
expresses functional FPR (Rescher et al., 2002). Thus, the
LL-37-mediated activation of the MAPK and/or PI-3K
pathway in HaCaT cells might be at least in part a
consequence of the signaling through FPRL-1. Moreover,
preliminary evidence suggests that FPRL-1 expression might
be activated in wound edge keratinocytes (M Carretero,
unpublished results), suggesting that LL-37 could signal
through this receptor in migrating keratinocytes. The in vivo
functional relevance of this activation for tissue repair
remains to be determined.

In a previous study (Carretero et al., 2004), we demons-
trated that a genetically modified cultured skin equivalent
expressing the LL-37 human antimicrobial peptide in the

epidermal component exhibited microbicidal activity against
pathogens frequently isolated from burn wounds. We
proposed LL-37 as a good candidate for a transient
antimicrobial skin gene therapy in severe burn patients, not
only to prevent infection but also in the definitive coverage.
Herein, we provide early evidence that in vivo delivery of an
adenoviral vector containing the human LL-37 antimicrobial
peptide improves wound healing by increasing the re-
epithelialization rate and granulation tissue formation in
diabetic wounds. In normal wound healing, the resolution of
inflammation is crucial for the progression of the wound to
matrix deposition and remodeling phases. As LL-37 is known
to exert a potent proinflammatory activity by recruitment of
granulocytes (De et al., 2000), it would be expected that a
sustained activity of the antimicrobial peptide would hamper
the final phases of the wound-healing process. However, this
is not the case as inflammatory cells present in the 15-day LL-
37-treated wounds did not impair collagen deposition and
remodeling.
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Overall, our results shed new light on the pleiotro-
pic responses elicited by the LL-37 cathelicidin and fur-
ther support its potential therapeutic applications for skin
regeneration.

MATERIALS AND METHODS
Cells

The human keratinocyte cell line HaCaT was grown in DMEM with

Glutamax (Gibco-BRL, Gaithersburg, MD), supplemented with 10%

fetal bovine serum.

Animals

Female C57BL/6J-ob/ob mice were purchased from Janvier Labora-

tories (Le Genest, St Isle, France) and maintained under a 12 hours

light-dark cycle at 221C until they were 8–10 weeks of age. Mice

were housed for the duration of the experiment at the CIEMAT

Laboratory Animals Facility (Spanish registration no. 28079-21 A) in

pathogen-free conditions using micro isolators type IIL (16 air

changes per hour) and 10 kGy g-irradiated soft wood pellets as

bedding. All handling was carried out according to European and

Spanish laws and regulations (European Convention ETS 1 2 3, about

the use and protection of vertebrate mammals used in experimenta-

tion and other scientific purposes and Spanish R.D. 1201/2005 about

the protection and use of animals in scientific research). Procedures

were approved by our Animal Experimentation Ethical Committee

according to all external and internal biosafety and bioethics

guidelines.

Antibodies and chemical compounds

Anti-pTyr PY-20 monoclonal antibody, anti-Akt1/2, anti-ERK1/2,

anti-pERK and anti-Snail rabbit polyclonal antibody were purchased

from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Anti-FAK, anti-

paxillin, and anti-E-cadherin monoclonal antibodies were from BD

Transduction Laboratories Inc. (Franklin Lake, NJ) and anti-pAkt (Ser

473) rabbit monoclonal antibody and anti-Desmoplakin1/2 mono-

clonal antibody were purchased from Cell Signaling Technology Inc.

(Beverly, MA) and Chemicon International (Temecula, CA), respec-

tively. Anti-a-tubulin monoclonal antibody and phalloidin-tetra-

methyl rhodamine isothiocyanate (TRITC) was from Sigma (St Louis,

MO). The rabbit polyclonal antibody was against GFP from

Molecular Probes (Eugene, OR). All secondary antibodies were

purchased from Jackson ImmunoResearch Laboratories Inc. (West

Grove, PA). The EGFR tyrosine kinase inhibitor AG1478 and

pertussis toxin were purchased from Sigma.

Adenoviral vectors

Adenoviral vector containing the human LL-37 antimicrobial peptide

together with an Ires-GFP expression cassette was described

previously (Carretero et al., 2004). Control vector Ad-GFP was

kindly provided by Dr David T. Curiel (University of Alabama,

Birmingham, AL). Adenoviruses were propagated in 293 cells,

purified by double CsCl density centrifugation and stored at �701C

in 10 mM Tris-HCl pH 7.8/1 mM MgCl2, containing 10% glycerol.

Viral titers were determined by end-point dilution assay by applying

serial dilutions of the purified viruses to 293 cells. The tissue culture

infectious dose 50 (TCID 50) was calculated by evaluating the

cytopathic effect after 14 days (violet crystal). For in vitro studies,

cells were infected at a multiplicity of infection of 100 pfu/cell.

In vivo adenoviral transfer was performed via intradermal injection

of a volume of 50 ml containing 109 pfu.

Retroviral-mediated gene transfer to HaCaT cells

The packaging cell line PA317, obtained from ATCC, was used to

generate stable cell lines to produce amphotropic retroviral particles

containing either the pLZR-ires-EGFP, the pLZR-LL-37-ires-EGFP, or

the pLZR-Snail-ires-EGFP sequence. HaCaT cells were genetically

modified by retroviral gene transfer following a procedure that was

previously applied successfully to human primary keratinocytes (Del

Rio et al., 2002). Cells were analyzed for EGFP expression and

selected by fluorescence-activated cell sorting on a FACStar PLUS

flow cytometer (Becton Dickinson, San Jose, CA).

Detection of HaCaT cell proliferation by BrdU

For BrdU incorporation analysis, 105 cells were seeded in 24-well

plates. After 24 hours, cells were transduced with adenoviral vectors

for 6 hours at 371C in a humid atmosphere containing 5% CO2.

Adenovirus-containing supernatants were then discarded, and fresh

medium was added to each well. After 24 hours medium was

changed and after additional 24 hours BrdU incorporation analysis

was performed. BrdU (10 mM) was added 2 hours before fixation in

cold methanol for 3 minutes. Cells were then processed for BrdU

immunocytochemistry and subsequent quantification. For each

condition, 10 different fields of 100–200 cells were counted and

the mean7SD were calculated.

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-
amino)carbonyl]-2H-tetrazolium hydroxide colorimetric
assay
Different numbers of HaCaT cells were plated in 96-well tissue

culture plates. After 24 hours, cells were transduced with adenoviral

vectors for 6 hours at 371C in a humid atmosphere containing 5%

CO2. Adenovirus-containing supernatants were then discarded, and

100ml fresh medium was added to each well. At 24 and 48 hours

post-infection, cells were incubated with 2,3-bis(2-methoxy-4-nitro-

5-sulfophenyl)-5-[(phenyl-amino)carbonyl]-2H-tetrazolium hydro-

xide (XTT) (Boehringer Mannheim GmbH, Mannheim, Germany)

and absorbance at 450 nm (cell number) was measured. Triplicate

experiments were performed.

In vitro wound assay

For wound assays in the presence of LL-37 synthetic peptide, HaCaT

cells were seeded to confluence onto fibronectin-coated six-well

tissue culture plates in DMEM supplemented with 10% fetal bovine

serum. Cells were serum starved for 12 hours and then half of each

well was denuded from cells by using a sterile rubber policeman.

The cultures were washed twice with phosphate-buffered saline, and

re-coated with fibronectin (10 mg/ml) for 1 hour at 371C. At this time

point (t¼ 0 hour) wound margins were photographed. Then, cells

were treated with different concentrations of the synthetic LL-37

antimicrobial peptide for up to 72 hours at 371C and 5% CO2 in the

absence of serum, and the same fields of the wound margin were

photographed at different time points. Pictures were superposed

using Photoshop (Adobe) and areas were measured using Scion

Image (Scion Corporation, Frederick, MD) software.

For wound assays using retrovirus-transduced HaCaT cells, cells

were seeded to confluence onto collagen type I-coated 24-well
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tissue culture plates in DMEM supplemented with 10% fetal bovine

serum. Cells were treated with mitomycin C (5 mg/ml) to inhibit cell

proliferation for 2 hours at 371C and 5% CO2 and then an in vitro

wound was produced using a sterile pipette tip. Then wells were re-

coated with collagen type I (10 mg/ml). At this time point (t¼ 0 hour)

wound margins were photographed and migration was monitored

for up to 48 hours. Same fields of the wound margin were

photographed at different time points. Pictures were superposed

using Photoshop (Adobe) and areas were measured using Scion

Image software. For wound assays in the presence of inhibitors, cells

were pretreated with the indicated compound for 2 hours before

wounding.

In vivo wound-healing experiments

The backs of mice were shaved, and four full-thickness wounds were

created on each animal using 4-mm biopsy punches (Stiefel

Laboratories, Offenbach, Germany) after 1% mepivacaine local

anesthetic injection. In vivo adenoviral transfer was performed via

intradermal injection of a volume of 50 ml containing 109 pfu of

either Ad-GFP or Ad-LL-37-iresGFP applied via three separate

injections around the wound edge. Gene transfer was confirmed

by detection of green fluorescence by illuminating the animal with

blue light under a fluorescence stereomicroscope (Olympus,

Barcelona, Spain).

Histological and immunohistochemical analyses

At days 3, 6 and 15 after wounding, mice were killed (four animals

in each group, two paired wounds per animal), and rectangular

samples of skin containing complete wounds were harvested, fixed

in 3.7% formaldehyde and paraffin embedded. To determine the

center of the wound and adequately monitor the healing process, the

whole sample was serially cross-sectioned (4mm) and 1 of every 10

sections was stained with hematoxylin-eosin (Gill-2 hematoxylin

and alcoholic eosin Y; Thermo Shandon GmbH, Darmstadt,

Germany). The percentage of re-epithelialization was calculated

by measuring the linear distance between epithelial tongues and

dividing it by the distance between the original wound edges.

Studies were performed in informative wounds (B50%). Paraffin

sections were dewaxed by melting for 30–60 minutes at 601C,

cleared in xylene three times for 5 minutes, and re-hydrated in water

solutions containing decreasing percentages of ethanol. Collagen

fibers were stained with picrosirius red and viewed under polarized

light. Immunohistochemistry was performed following standard

procedures and using specific antibodies against GFP (Molecular

Probes, Eugene, OR). Immunoperoxidase staining was developed

using the Vectastain ABC kit (Vector, Burlingame, CA). Images were

taken using an Olympus Bx41 microscope and digital camera.

Fluorescence microscopy

Cells were plated on coverslips to 40% confluence, and where

indicated either transduced with adenoviral vectors for 6–12 hours at

371C in a humid atmosphere containing 5% CO2 or treated with

different concentrations of synthetic LL-37 antimicrobial peptide.

Cells were fixed at 24 hours post-adenovirus infection or peptide

treatment, using either 4% paraformaldehyde in phosphate-buffered

saline for 10 minutes at room temperature (for actin staining, PY-20

and Snail immunofluorescence) or methanol for 3 minutes at �201C

(for FAK immunofluorescence). After fixation with paraformalde-

hyde, cells were permeabilized with 0.1% Triton X-100 for

5 minutes. The cells were mounted on Mowiol (Calbiochem)

containing 40,60-diamidino-2-phenylindole (DAPI) (Sigma) and the

preparations were visualized with an Axioplan 2 imaging fluore-

scence microscope (Zeiss, Jena, Germany).

Western blot

Cells were lysed in lysis buffer (1.5% Triton X-100, 50 mM Tris–HCl,

pH 7.5, 150 mM NaCl, 1 mM EDTA, 100 mM phenylmethylsulfonyl

fluoride, 1mg/ml aprotinine, 1mg/ml leupeptine, 20 mM NaF, 10 mM

sodium PPi, 200 mM sodium orthovanadate). Total protein was

measured using Bradford’s reagent (Bio-Rad, Richmond, CA). For

total lysate analyses, each sample (30 mg) was denatured at 1001C for

5 minutes and separated by 10% SDS-PAGE. For immunoprecipita-

tion studies, 5� 106 cells were lysed using 500 ml of 1.5% Triton X-

100 lysis buffer, and incubated with 2mg of PY-20 anti-phosphotyr-

osine antibody for 4 hours at 41C. Then, complexes were recovered

using protA/G agarose (Santa Cruz Biotechnology). Immunoprecipi-

tates were separated by 8% SDS-PAGE. Transfer to a nitrocellulose

membrane (Bio-Rad Laboratories Inc., Hercules, CA) was performed

at 100 mA for 90 minutes in transfer buffer containing 20%

methanol. Membranes were blocked in 10% non-fat dry milk in

TBS (150 mM NaCl, 20 mM Tris-HCl, pH 7.5) for 2 hours, and then

incubated with primary antibodies diluted in 1% non-fat dry milk in

TBS-T (0.1% Tween-20/TBS) either for 2 hours at room temperature

or at 41C overnight. Membranes were washed three times with TBS-T

and incubated for 45 minutes at room temperature with horseradish

peroxidase-conjugated secondary antibodies diluted in TBS-T. After

washing with TBS-T, bound antibodies were visualized by using an

enhanced chemoluminescence SuperSignal Solution (Pierce Bio-

technology Inc., Rockford, IL) and exposure to X-ray films.

Densitometric analysis of bands was performed using Scion Image

software.

Semiquantitative RT-PCR
Total RNA was isolated using TRIzol (Gibco-BRL) and incubated

with Turbo DNase (Roche Applied Sciences, Indianapolis, IN). Total

RNA (1 mg) was reverse-transcribed using random hexamers and

SuperScript reverse transcriptase (Invitrogen, Carlsbad, CA) in a

Vf¼ 20 ml. Then, 1ml of the RT reaction was employed in PCR using

the following pairs of specific primers: Snail (forward primer: 50-

CACTATGCCGCGCTCTTTC-30; reverse primer: 50-GGTCGTAGGG

CTGCTGGAA-30), Slug (forward primer: 50-ATGAGGAATCTGGCT

GCTGT-30; reverse primer: 50-CAGGAGAAAATGCCTTTGGA-30),

uPA (forward primer: 50-GACTCCAAAGGCAGCAATG-30; reverse

primer: 50-CGATGGTGGTGAATTCTCC-30), uPAR (forward primer:

50-ATTGCCGTGTGGAAGAGTG-30; reverse primer: 50-GGTGTCGT

TGTTGTGGAAAC-30), FPRL-1 (forward primer: 50-GAGAAAAATGG

CCTTTTGGCTG-30; reverse primer: 50-CATTGCCTGTAACTCAGTC

TCTGC-30), GAPDH (forward primer: 5-ATCTTCCAGGAGCGAG

ATCC-3; reverse primer: 5-ACCACTGACACGTTGGCAGT-3). PCR

products were subjected to electrophoresis on a 1.5% agarose gel

and visualized by ethidium bromide staining. Densitometric analysis

of bands was performed using Scion Image software.

Zymography

HaCaT cells were grown to 40–60% confluence on either fibronectin

(10 mg/ml) or collagen type I (10mg/ml) coated plates. Cells were
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treated with different concentrations of the LL-37 synthetic

antimicrobial peptide for 24 hours in the absence of fetal bovine

serum. Conditioned medium was collected and concentrated using

Microcon YM-10 devices (Millipore, Billerica, MA) following the

recommendations of the manufacturer. An aliquot of each sample

was mixed with Tris-glycine SDS sample buffer and separated on

10% SDS-PAGE co-polymerized 0.1% gelatin. Following electro-

phoresis, gels were washed with 2.5% Triton X-100 for 1 hour and

incubated for 48 hours in enzyme assay buffer (50 mM Tris–HCl, pH

7.5, 10 mM CaCl2, 150 mM NaCl, 0.1% Triton X-100, 0.02% Na3N)

for the development of enzyme activity bands. After incubation, the

gels were stained with 0.25% Coomassie brilliant blue and de-

stained in 4% methanol with 8% acetic acid. Densitometric analysis

of lytic bands at B72 kDa was performed using Scion Image

software.
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