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Non-adiabatic dynamics in 10Be with the microscopic α + α + N + N model
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Abstract

The α + 6He low-energy reactions and the structural changes of 10Be in the microscopic α + α + N + N model are studied by the gener-
alized two-center cluster model with the Kohn–Hulthén–Kato variation method. It is found that, in the inelastic scattering to the α + 6He(2+

1 )
channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. In the positive parity state, the
enhancement originates from the excited eigenstate generated by the radial excitation of the relative motion between two α-cores. On the other
hand, the enhancement in the negative parity state is induced by the Landau–Zener level-crossing. These non-adiabatic processes are discussed in
connection to the formation of the inversion doublet in the compound system of 10Be.
© 2006 Elsevier B.V.
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In the last two decades, developments of experiments with
secondary RI beam have extensively proceeded the studies on
light neutron-rich nuclei. In particular, much efforts have been
devoted to the investigation of molecular structure in Be iso-
topes. Theoretically, molecular models with π and σ orbitals
along the axis connecting two α-particles have been success-
ful in understanding the low-lying states of this isotopes [1,2].
Experimentally, the molecular structures were mainly investi-
gated by the breakup processes [3,4] and the sequential decays
[5] using the high energy RI beams.

In recent experiments, furthermore, the low-energy 6He
beam becomes available. Low-energy reaction cross-sections
such as the elastic scattering with an α target [6,7] and the sub-
barrier fusions with heavy target [8] have been accumulated.
In future experiments, it will also be possible to investigate the
molecular states in Be isotopes through the reactions such as
α + 6He [9] and α + 8He [10] with low-energy 6,8He-beams.
Therefore, it is very interesting to study theoretically on the
low-energy scattering of 6He and 8He by an α target.

In studying reaction processes exciting the molecular de-
grees of freedom, it is very important to construct a unified
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model which is capable of describing both structure and re-
action on the same footing. For this purpose, we introduce a
microscopic model, the generalized two-center cluster model
(GTCM) [11,12]. In this model, it is possible to describe both
molecular and atomic limit of the system of C1 + C2 + N +
N + · · · where Ci is the ith cluster core and N is the nucleon.
In the region where two core nuclei are close, the total system
is expected to form the molecular orbital structure, while in the
region where two core nuclei are far apart, the molecular or-
bitals smoothly change into product wave functions consisting
of the atomic orbitals.

In this Letter, we apply the GTCM for the 10Be nucleus with
the α + α + N + N four-body model. We will analyze both
molecular structure in 10Be and the low-energy α + 6He scat-
tering. Besides the description of the α + 6He reaction, such
analysis will be useful to understand the breakup mechanism
of 10Be into clusters. In spite of many theoretical efforts in the
last decade [1,2,13–16], only Ref. [13] discusses the molecular-
orbital formation in 10Be and the α + 6He scattering problem in
a unified way.

Current experimental investigations are extended to the 12Be
and 14Be nuclei [4,6] and hence, theoretical studies extended to
such heavier systems are urged. The GTCM approach has a po-
tential to 12Be and 14Be as well as 10Be. On the other hand, the
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direct extension of the approach in Ref. [13] becomes quite dif-
ficult for systems with many valence neutrons, since it utilizes
the α + α + N + N few-body model.

One of the favorable features of our approach is that it is
possible to describe the nuclear Landau–Zener (LZ) transi-
tion microscopically [17–22]. The LZ transition is induced by
the avoided level-crossing of two adiabatic potential-surfaces.
When the avoided crossing occurs in the potential surfaces, the
adiabatic states drastically change their intrinsic character at the
crossing point. For large relative velocity, the colliding nuclei
follows not the adiabatic path but the diabatic one. This diabatic
motion was discussed by Landau and Zener for the atomic colli-
sion [23]. The nuclear analogue has been called the nuclear LZ
transition. In spite of long history on this issue, a clear evidence
of the LZ transition is still lacking in nuclear collision [24,25].
Our microscopic approach will indicate a possible nuclear LZ
transition in the collision of α + 6He.

First, we briefly explain the framework of GTCM [11,12].
The basis functions for 10Be are given as

(1)ΦJπK
m,n (S) = P̂ Jπ

K ·A{
ψL(α)ψR(α)ϕ(m)ϕ(n)

}
.

The α-cluster wave function ψi(α) (i = L,R) is given by the
(0s)4 configuration in the harmonic oscillator (HO) potential.
The position of an α-cluster is explicitly specified as the left
(L) or right (R) side. The relative motion between α parti-
cles is described by a localized Gaussian function specified by
the distance S [26]. A single-particle state for valence neutrons
around one of α clusters is given by an atomic orbitals (AO),
ϕ(i,pk, τ ) with the subscripts of a center i (=L or R), a di-
rection pk (k = x, y, z) of 0p-orbitals and a neutron spin τ

(= ↑ or ↓). In Eq. (1), the index m(n) is an abbreviation of the
AO (i,pk, τ ). The intrinsic basis functions with the full anti-
symmetrization A are projected to the eigenstate of the total
spin J , its intrinsic angular projection K and the total parity π

by the projection operator P̂ Jπ

K .
The total wave function is finally given by taking a superpo-

sition over S and K as

(2)Ψ Jπ =
∫

dS
∑
iK

CK
i (S)ΦJπK

i (S)

with i ≡ (m,n). The coefficients CK
i (S) are determined by

solving a coupled channel GCM (generator coordinate method)
equation [26]. If we fix the generator coordinate S and diago-
nalize the Hamiltonian with respect to i and K , we obtain the
energy eigenvalues as a function of S, which we call the adia-
batic energy surfaces (AES).

In the present calculation, we used the Volkov No. 2 and the
G3RS for the central and the spin–orbit part of the nucleon–
nucleon (NN) interaction, respectively. The parameters in the
NN interactions are modified from those in Ref. [11] so as to
reproduce the threshold of α + 6Heg.s. and the excitation en-
ergy of the 6He(2+

1 ) state [12]. This is because the reproduction
of the threshold is essentially important in the treatment of the
scattering problem.

The Majorana (M), Bartlett (B) and Heisenberg (H) ex-
changes in the central part are fixed to M = 0.643, B = −H =
Fig. 1. Adiabatic energy surfaces for Jπ = 0+ . The lowest and third local min-
ima have a dominant configurations of (π−

3/2)2 and (π−
1/2)2, respectively, while

the second one has a configuration of the distorted (σ+
1/2)2 configuration (see

text for details). The lowest and the second surfaces with the double circles
are the dinuclear states of [α + 6He(0+

1 )]L=0 and [α + 6He(2+
1 )]L=2, respec-

tively, while those with the solid circles have the configurations of [5He(3/

2−) + 5He(3/2−)] with (IL) = (00) and (22), respectively.

0.125, while the strength of the spin–orbit force is chosen to
3000 MeV for the repulsive part and 2000 MeV for the attrac-
tive part. The radius parameter b of HO wave functions for α

clusters and valence neutrons is commonly taken as 1.46 fm.
We included all the AO configurations of two neutrons that can
be constructed by the 0p-orbitals.

The AES with Jπ = 0+ is shown in Fig. 1. There appear
three local minima at the short distance region of the AES. The
adiabatic states (AS) at the lowest and third minima have the
molecular orbital configurations of (π−

3/2)2 and (π−
1/2)2, respec-

tively [1,11,12]. The AS around the second minimum has a
dominant configuration of (σ+

1/2)2 [1,16], but the one particle

excited configuration, (σ+
1/2π

+
1/2), is also strongly mixed. The

latter configuration has a spin triplet structure and hence, the
coupling between them is induced by the two-body spin–orbit
interaction.

It is well known that the simple σ+
1/2 orbital is not sufficient

to describe both the 0+
2 state in 10Be and the 1/2+ state in 9Be

as discussed in Ref. [1]. Itagaki et al. shows that spin–orbit in-
teraction generates the strong coupling between the distorted
(σ+

1/2)2 configuration with the spin-triplet configuration and the

pure (σ+
1/2)2 one, which plays very important role for lowering

the 0+
2 state in 10Be [1]. Therefore, the present result is consis-

tent to that discussed in Ref. [1] and it is reasonable to describe
the intrinsic structure of 10Be(0+

2 ).
At the asymptotic region (S � 8 fm) where two α-cores are

completely separated, the valence neutrons are localized around
one of the α cores. The localization of the orbitals leads to the
formation of the dinuclear channels such as [4He + 6He(I )]L
(double circles) and [5He(I1) + 5He(I2)]IL (solid circles), in
which individual channels are specified by the intrinsic spin
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Fig. 2. The same as Fig. 1 but for the negative parity states (Jπ = 1−). The
dashed (thick-solid) surfaces has a dominant component of (π−

3/2σ+
1/2)K=1

((π−
1/2σ+

1/2)K=1) around the local minimum, while it is smoothly connected

to the dinuclear channel of [α + 5He(2+
1 )] with L = 1 (L = 3) at an asymp-

totic region. The surface with a solid circles has a dominant component of the
[α + 6He(0+

1 )]L=1 channel.

of the clusters (I1, I2), the channel spin I (I = I1 + I2) and
the relative angular momentum between clusters, L. The as-
ymptotic energy position of the lowest AES is higher by about
5 MeV than the α + 6Heg.s. threshold. This is because the rel-
ative motion between clusters in Eq. (1) is described by the
locally peaked Gaussian [26] and hence, its kinetic energy con-
tributes to the AES in the asymptotic region.

The structural changes occur smoothly between the molec-
ular orbital region and the dinuclear channels region in passing
through the intermediate region shown by the arrow in Fig. 1
[11,12]. In the intermediate coupling region, we can see the
level crossing between the surface of (π−

3/2)2 (dashed curve)

and the second one (σ+
1/2)2 (solid curve). The energy splitting

at the crossing point is about 1.5 MeV.
In Fig. 2, the AES for the Jπ = 1− state is shown. The

configurations of the valence neutrons smoothly changes in the
AES for the α–α distance parameter except for the curves with
the solid circles. The AS along this surface has an almost pure-
component of the [α + 6He(0+

1 )]L=1 channel. Thus, this AES
is not molecular orbitals but the dinuclear state in the whole
regions of α–α distance. Because of the different character of
the lowest two orbitals, the AES behaves different as a func-
tion of α–α distance. In contrast to the results of the Jπ = 0+
states shown in Fig. 1, this causes an clear avoided-crossing at
S = 6 fm as shown by the dotted circles in Fig. 2. The energy
splitting at the crossing point is about 0.5 MeV which is smaller
than that in Jπ = 0+ (∼1.5 MeV). This means that, in the neg-
ative parity state, the change of the intrinsic structure is much
sharper in the distance than the case of the positive parity state.

To take into account the excitation of the relative motions be-
tween two α-cores, we solve the GCM equation by employing
the AS from S = 1 fm to S = 70 fm with the mesh of 0.5 fm.
The calculated energy spectra of Jπ = 0+ and Jπ = 1− are
Fig. 3. Energy spectra for Jπ = 0+ . The error bar means the decay width of
the resonance states. The solid curve shown in the right part is the partial cross
section for the inelastic scattering [α + 6Heg.s.]L=0 → [α + 6He(2+

1 )]L=2
with a respective scale at the up-most axis. The AES in Fig. 1 are shown by the
dashed curves.

shown in Figs. 3 and 4, respectively. In solving GCM, we ap-
ply the absorbing-kernels in the generator coordinate method
(AGCM) in which the absorbing boundary condition is imposed
outer region of the total system [27]. Due to the absorbing
boundary, the resonance poles can be clearly identified in the
complex energy plane.

In the positive parity, the 0+
1 , 0+

2 and 0+
4 states are the poles

corresponding to the respective local minima in the AES, hav-
ing the molecular orbital structures. Therefore, we should call
these states the “adiabatic poles”, because they can be realized
as the local minima in the AES. On the other hand, there is no
local minimum corresponding to the 0+

3 state and it is gener-
ated by the radial excitation on the distance parameter S. Thus,
the 0+

3 state should be called as the “radially-excited poles”, al-
though it is the pole generated by a linear combination of the
AS. The structure of 0+

3 is very different from other lower adi-
abatic poles, because it is orthogonalized to the adiabatic poles
and is spatially extended. The wave function in 0+

3 has an en-
hanced component of [α + 6He(2+

1 )]L=2 at the surface region
and hence, it is different from the molecular orbital configura-
tion.

In Jπ = 1−, we have identified two adiabatic poles corre-
sponding to the two local minima of (π−

jz
σ+

1/2)K=1. The lower
pole (jz = 3/2) is generated from the linear combination of
the AS around the lowest local minimum, while the higher one
(jz = 1/2) is originated from the minimum in the third AES as
indicated by the arrow in Fig. 4.

In the present calculation, we identify no resonance corre-
sponding to the α + 6Heg.s. AES, although its appearance is
discussed within the bound state approximation in Ref. [11].
Therefore, the α + 6Heg.s. cluster configuration will not be sta-
bilized as a resonance pole under the present condition repro-
ducing the respective threshold energy. Since the α + 6Heg.s.
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Fig. 4. The same as Fig. 3 but for Jπ = 1− . In the right part, the partial cross
section for the inelastic scattering of [α + 6Heg.s.]L=0 → [α + 6He(2+

1 )]L=1
is shown by the solid curve.

AES has a flat shape over the wide range of the distance [11],
the stability of this configuration becomes quite sensitive to the
energy position of the threshold.

Let us consider the difference in the Jπ = 0+ and 1− in
relation to the inversion doublet structure. The (π−

3/2)2 AES

in Jπ = 0+ and the α + 6Heg.s. AES in Jπ = 1− originally
form the inversion doublet of α + 6Heg.s. with Kπ = 0±. The
Jπ = 0+ partner couples to the symmetric 5He + 5He configu-
ration and hence, it is strongly distorted to the molecular orbital
as the distance S gets closer. In the Jπ = 1− surface, however,
the dinuclear configuration of α + 6Heg.s. is well developed,
which is similar situation to the 20Ne = α + 16O system [28].
Therefore, the appearance of the avoided crossing in the nega-
tive parity has a close connection to the formation of the inver-
sion doublet in the compound system of 10Be.

We next discuss how the AES profile and the level scheme
appear in the low energy reactions. We show the partial
cross section for the inelastic scattering to 6He(2+

1 ) excita-
tion. In solving the scattering problem, we employ the Kohn–
Hulthén–Kato (KHK) variation method [29] where the AO
basis in Eq. (1) are transformed to the asymptotic channel
wave function. The present calculation is equivalent to the
usual coupled-channels calculation including the channels of
α + 6He(0+

1 ,0+
2 ,2+

1 ,2+
2 ,1+) and 5He(3/2−,1/2−) +5He(3/

2−,1/2−). Our calculation thus includes much more chan-
nel components than the previous studies of α + 6He cluster
model [14]. In this calculation, the maximum S is changed
from 70 fm to 12 fm and the channel wave function is matched
to the scattering Coulomb wave function at a matching radius
RC = 11.7 fm.

The calculated partial inelastic cross sections are shown in
the right part of Figs. 3 and 4. In Jπ = 0+, a strong peak ap-
pears at Ec.m. ∼ 3 MeV, although there is no definite avoided
crossing in the AES. This is due to the effect of the radially-
excited pole, 0+
3 , which include the large component of the

exit 2+
1 channel. We can also see the enhancements at Ec.m. ∼

7 MeV, which nicely coincident to the adiabatic pole of (π−
1/2)2,

0+
4 , but it is much smaller than that generated by the radially-

excited poles.
In Jπ = 1−, the strong enhancement can also be seen at

Ec.m. ∼ 6 MeV, nevertheless there is no pole in the incident
and exit channels. The energy of the enhancement is quite close
to that of the avoided crossing at S = 6 fm. To investigate the
origin of this enhancement, we have solved the coupled-channel
problem between the lowest two AS by employing the adiabatic
Kohn–Hulthén–Kato method that will be explained in the next
paragraph. In such calculation, we have confirmed that this peak
is generated by the coupling between the lowest two AS, nev-
ertheless there appears no poles. Therefore, we can conclude
that this inelastic peak is due to the LZ transition at the avoided
crossing. Though the (π−

1/2σ
+
1/2) resonance is located close to

the cross section peak, it weakly couples to the incident and
exit channels. This pole is found to just generate the kink at a
slightly lower energy than the peak position.

To see the connection between the AS and the scattering
process in a transparent way, we formulate the adiabatic KHK
(AKHK) method in which individual AS are employed as the
basis functions in solving the scattering problem. In the follow-
ing, we briefly explain the formulation of the AKHK. First, we
define the ath AS at a distance S by

Ψ Jπa
AS (S) ≡

∑
iK

Da
iK(S)ΦJπK

i (S)

(3)=
∑
β

F a
β (S)Φ

Jπβ

CH (S),

Φ
Jπβ

CH (S) =A
{[[

ϕ1I1(ξ1) ⊗ ϕ2I2(ξ2)
]
I
⊗ YL(R̂)

]
Jπ

(4)× χL(R,S)
}

(β ≡ I1I2IL),

where ΦJπK
i (S) is the AO basis given by Eq. (1). In the sec-

ond line, the AS is expanded in terms of the channel (CH)
wave function, Φ

Jπβ

CH (S). Eq. (4) shows the explicit expression

of Φ
Jπβ

CH (S) which is constructed from the angular momentum
coupling among the internal states of ith nucleus ϕiIiMi

(ξi) and
the spherical harmonics YLM(R̂) with the relative coordinate R.
In the last line of Eq. (4), χL(R,S) denotes the locally peaked
Gaussian with the peak position of R ∼ S.

The mixing coefficients in the ath AS, Fa
β (S), satisfies the

following relation

(5)lim
S→∞Fa

β (S) ∼ δβ,α.

Eq. (5) means that the ath AS becomes a specific channel α

at an asymptotic region (S → ∞), although a various chan-
nel components are strongly mixed in the internal region (S ∼
small). In solving the scattering problem with the basis of the
AS, therefore, only a specific channel α satisfying Eq. (5)
should be transformed into the scattering basis function, be-
cause the respective radial function χL(R,S) do not satisfy the
scattering boundary condition.
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Fig. 5. The partial cross section of the α + 6Heg.s. elastic scattering. The left and right panels show the results for Jπ = 0+ and Jπ = 1− , respectively. The dotted
curve shows the result of the adiabatic approximation, while the solid and dashed ones show that of two AS coupled-channel and that of the full coupled-channels,
respectively.
The transformation can be done by utilizing the KHK
method, in which the localized basis functions are smoothly
connected to the scattering Coulomb wave function at a match-
ing radius RC [29]. The RC should be taken to be sufficiently
large value where all the channel components except for α are
completely damped. The calculation of the matrix element for
the AKHK basis can be easily done by the similar procedures
shown in Ref. [29]. The details of the AKHK method will be
shown in a forthcoming paper.

In order to discuss the gross features of the non-adiabatic
effects, we calculate the partial cross sections of the elastic scat-
tering. In two panels of Fig. 5, the results calculated from the
AKHK method are shown. In this calculation, the Smax and the
RC are taken to be the same values in calculating the inelas-
tic cross section. In both panels, the dotted curves show the
pure adiabatic approximation. That is, only the AS along to the
lowest AES is employed in solving the scattering problem. The
solid curves show the solution of the full coupled channel (CC)
in which all the AS are included.

In the result of Jπ = 0+, the adiabatic approximation quite
nicely simulates the full CC solution in the low-energy region.
Furthermore, the adiabatic approximation simulates the gross
behavior of the full CC solution up to about 4 MeV except for
the kink just below 2 MeV. This means that the elastic scat-
tering mainly proceeds along to the lowest AES. The dashed
curve shows the result in which the lowest two AS are coupled.
The coupling effect improves the adiabatic approximation. The
dashed curve deviates from the solid one in the higher energy
than 3 MeV, but the difference is not so large.

The results of Jπ = 1− is drastically different from those
of Jπ = 0+. The validity of the adiabatic approximation is
limited only in the region of the small cross section. Further-
more, the non-adiabatic coupling between the lowest two AS
strongly reduces the cross section of the adiabatic approxima-
tion, which amounts to about one order reduction. Therefore,
the adiabatic approximation is quite poor for describing the
scattering process. The main contribution of the non-adiabatic
coupling is from the first excited AS, because the dashed curve
is similar to the solid one. This is due to the appearance of the
avoided crossing which can be clearly seen in Fig. 2.

In summary, we investigated the adiabatic properties of the
10Be = α + α + N + N structures as well as the α + 6Heg.s.
low-energy reactions, especially the non-adiabatic dynamics in-
cluding the Landau–Zener (LZ) transition. We achieved such an
unified study of the structures and the reactions in the general-
ized two-center cluster model (GTCM). The scattering prob-
lem in the GTCM is solved by applying the Kohn–Hulthén-
Kato (KHK) variation method and the adiabatic KHK (AKHK)
method proposed in the present study. We have found the non-
adiabatic enhancements in the inelastic scattering cross-section
to the α + 6He(2+

1 ) in both the Jπ = 0+ and Jπ = 1− states.
However, their origins are very different to each other. In the
Jπ = 0+, the enhancements is due to the appearance of the
radially-excited pole in the 10Be system. This is realized by
the radial excitation of the α-core’s relative motions. In con-
trast, the enhancement in Jπ = 1− is originated from the LZ
level-crossing between the lowest two adiabatic energy sur-
faces. Such a difference of the non-adiabatic dynamics also
affects the elastic scattering process. In the positive parity, the
adiabatic approximation is good for describing the collision
process, while it becomes wrong approximation in the negative
parity.

Next important step is to compare our result with recent ex-
periments [6,7,9,10] by extending the present application to the
higher partial waves. In a comparison with experiments, we
should be careful to optimize the nucleon–nucleon interaction
so as to reproduce the observed energy spectra in 10Be together
with the threshold of α + 6He and 5He + 5He. Such extended
studies are under progress.
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