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ABSTRACT

The paper attempts to solve a problem which was called a “challenge for the
future” in Linear Algebra Appl. We define and investigate a new quantity for real
matrices, the sign-real spectral radius, and derive various characterizations, bounds,
and properties of it. In certain aspects our quantity shows similar behavior to the
Perron root of a nonnegative matrix. It is shown that our quantity also has intimate
connections to the componentwise distance to the nearest singular matrix. Relations to
the Perron root of the (entrywise) absolute value of the matrix and to the u-number
are given as well. © 1997 Elsevier Science Inc.

1. NOTATION AND INTRODUCTION

We use standard notation from matrix theory; cf. [16, 18]. In particular,
Qxn denotes the set of k-tuples of strictly increasing integers out of {1, ..., n}.
For A € M (R) and u € Qy,, Al u] € M;(R) denotes the principal subma-
trix of A consisting of rows i € u and columns j € u. The adjoint is denoted
by adj A.

For u € Q,, we denote the number of elements of u by | ul. For vectors
and matrices we use comparison and absolute value always entrywise. In the
following, I denotes the identity matrix of proper dimension.

A signature matrix S is a diagonal matrix with diagonal entries +1 or
—1; in notation, |S| = I. The set of signature matrices with n rows and
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columns is denoted by .%,. If the dimension is evident from the context, we
simply write &

Componentwise distances, perturbation bounds, and error bounds have
received quite some attention in recent years (see, for example, [6], [15], and
the many references cited there). The componentwise distance o (A, E) of
A € M (R) to the nearest singular matrix weighted by some 0 < E € M, (R)
is defined by (cf. [23, 9, 25, 24])

(A, E) = min{@ € R|there is a singular A’ with| A" — A| < a|E[}.
(1.1)

If no such a exists, we define o(A, E) = ®. Remember that comparison
and absolute value for vectors and matrices is always used entrywise. An
explicit formula for this number uses the real spectral radius [23, Chapter 5]

po( A) == max{|Al| A a real eigenvalue of A}, (1.2)
where p,(A) == 0 if A has no real eigenvalues. Rohn [23, Theorem 5.1] has
shown

1
_max pO(SlA_lSzE) '

5.8, &

(A E) = (1.3)

The computation of (A, E) is NP-hard [22], which is reflected in the
exponential number of signature matrices in (1.3).

In [9], J. Demmel and N. J. Higham conjecture an upper bound for
a (A, E). In the course of extending and proving this conjecture [25, Proposi-
tion 7.3; 24, Proposition 2.6], the sign-real spectral radius p5(A) occurs.

DEFINITION 1.1.  For A € M, (R) the sign-real spectral radius is defined
by

pS(A) = max po( 54). (1.4
Se
With (1.3) we have

-1
g(AE ——( max S,A™'S, E )
( ) sl,szeypo( ! . F)

-1
- S(A7'SE)) <pS(ATE)
(gnea;;po( ) po )
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which means any lower bound on the sign-real spectral radius implies an
upper bound on the componentwise distance to the nearest singular matrix.
This was the original motivation for defining and investigating the sign-real
spectral radius pg( A).

It turns out that the sign-real spectral radius is interesting in itself and, in
certain aspects, shows similar behavior to the Perron root of a nonnegative
matrix: for example, the inheritance property on going to principal submatri-
ces (Corollary 2.4), the identical characterization of pg(A) = 0 and p(| A) =
0 (Theorem 2.7), and especially the max-min characterizations (Theorem 3.1
and following). The relation between pi(A) and p(] A]) is characterized in
Theorem 5.7, and the sign-real spectral radius is proved to be continuous
(Corollary 2.5). Moreover, p;( A) is proved to be always a simple eigenvalue
of some SA unless A is permutationally similar to a strictly upper triangular
matrix, in which case pj(A) = 0 and all SA have an n-fold eigenvalue zero
(Theorem 3.9). The case that p3(A) is a multiple eigenvalue of some SA is
characterized in Theorem 3.8.

Furthermore, bounds are derived, such as the determinant bound given
in Theorem 4.2. This bound is sharp, and it holds similarly for nonnegative
matrices (Corollary 4.3). The well-known lower and upper bounds by Collatz
for the Perron root of nonnegative matrices are generalized (Lemma 3.3).
This gives a simple sufficient condition for the fact that some orthant does
not contain an eigenvector of a real matrix (Corollary 3.4). We will prove

—3
0 E
o(AE) = [pg(Al 0)] (1.5)
(Theorem 2.8), displaying the intimate connection between o (A, E) and
pi(A). We also prove that computation of pj in NP-hard (Corollary 2.9), and
state a relation to the so-called p-problem' (see [8], [5], and the references
cited there). A special u-problem with only diagonal and no block perturba-
tions is

0 if det(1 — AD) # 0

forall |D| < D
ol A) = orall IDI <

-1
( min {||Dlly|det(1 — AD) = o}) otherwise,
IDI<D

(1.6)
where A, D € M,(R) and 0 < D diagonal.

"The author would like to thank Paul van Dooren for pointing out the u-problem to him.
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Although p;( A?) need not be equal to pj( A)?, Theorem 2.16 shows with
lim, _, [ p5(AF)]/* = p(A) another normlike behavior of the sign-real spec-
tral radius. Finally, in Section 5 we give bounds for the sign-real spectral
radius by means of the geometric mean of cycles. These lead to almost sharp
bounds for the componentwise distance to the nearest singular matrix [24].

2. BASIC PROPERTIES OF p;(A)

We start with some basic properties of the sign-real spectral radius pg( A)
as defined in (1.4).

LeEmMMA 2.1. Let A, B € M, (R), signature matrices S,, S, €., a per-
mutation matrix P, and a regular diagonal matrix D be given. Then

Po(A) = pi(8148;) = p5(A") = py(P'AP) = pj(D™'AD),
po(DA) = p5(AD),
ps(aA) =lalp;(A) for e R.

If there exists a matrix C € M (R), rank C = 1 with C;; == sign(A;)) for
A;#0and C; € {—L +1} for A;; = 0, then pS(A) = p(| AD.
For the Kronecker product ®, we have pS(A)ps(B) < ps(A ® B).
For lower or upper triangular A,

Pg( A) = m?“‘(|Aii|‘

If the permutational similarity transformation putting | Al into its irre-
ducible normal form is applied to A, and A, ,, are the diagonal blocks, then
p3(A) = max, pg(A(i‘i))‘

Proof. For S €% we have S™! = S; thus A has the same eigenvalues
as SAS; hence pS(A) = py(AS,) = p;(S, AS,). The eigenvalues of S, AS,
and S, A”S, are the same; therefore pJ(A) = pS(A"). The eigenvalues of
S - PTAP and PSP" - A are the same, and PSP’ is a signature matrix. The set
of eigenvalues of SA and D™'SAD = S- D™ 'AD are identical, as are those
of S-DA and D7 !'SDAD = S-AD. By definition, C = xyT for x,y €
R", |x| =yl = (1). Hence, S, = diag(x) €%, S, = diag(y) €., and
S, AS, = | Al yield ps(A) = pj(S, AS,) = p(| A]. The eigenvalues of (S, A)
® (S,B) = (8, ® S,) - (A ® B) are the products of the eigenvalues of S; A
and S, B. The other statements are obvious. ]
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For orthogonal Q € M, (R), in general p5(A) # ps(QAQ), and also, in
general, pj(AB) # pj(BA). For o denoting the Hadamard product, the
quantities p5(A%), p;(A° A) may be less than, equal to, or larger than
po(A)?. However, Theorem 2.15 implies, p5( ATA) > pS(A)>.

LEMMA 2.2.  For every orthant there exists some signature matrix S such
that SA has an eigenvector in that orthant corresponding to a real nonnega-
tive eigenvalue, i.e.,

VIie3S e 30 +#x € R*:

x20and SA-Tx = A-Tx forsome 0 < A € R.
For regular A one has p§(A) > 0.

Proof. Let T €% be given. If there exists 0 # x € R", x > 0, with
ATx = 0, the proof is finished. Suppose ATx # 0 for all nonzero x > 0.
Define E = {x € R" |[x > 0 and ||xl}; = 1}, which is a nonempty, compact,
and convex set. Then f(x):=|ATx|/| ATxll, is well defined on E, f is
continuous, and f maps E into itself. Due to Brouwer’s fixed-point theorem,
there is some x € E with f(x) = x, and for suitable S €.% we have

SA-Tx =T-|ATx| = || ATx||; - Tx.

For regular A we have ATx # 0 for all T €.% and therefore || ATx|l, > 0 for
all x € E. [ |

Lemma 2.2 shows in particular that there is always some S €.% such that
SA has a real eigenvalue, which means that pj(A) is always equal to a real
eigenvalue of some SA. Shortly, we will characterize the set of matrices with
p3(A) = 0.

The following theorem establishes connections between the sign-real
spectral radius and P-matrices. Moreover, it shows the inheritance property
of pj(A) on going to principal submatrices. In the proof and later on we use
(cf., for example, [25, Lemma 4.1])

AeM(R), uv,veR" = det(A+uv’) =det A+ UT(adj Au,

and for regular A, det( A + uv") = (det A)(1 + v"A7'u). (2.1)
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THEOREM 2.3. Let A € M (R) and 0 <b € R. Then the following are
equivalent:

) p5(A) <b.
(ii) For all signature matrices S there holds det(bl — SA) > 0.
(iii) For dall signature matrices S, the matrix bl — SA is a P-matrix, i.e.,
forall w € Q,, 1 <k <n, one has det{(bI — SA) nl} > 0.
(iv) For all diagonal matrices D with | D| < I, one has det(bI — DA) > 0.

Proof. (i) = (ii): Assume det(bl — SA) < 0 for some signature matrix
S. That means the characteristic polynomial Pg,(x) of SA at b is less than or
equal to zero. Now Pg,(x) —» + for x = + implies that Pg,(x) inter-
sects with the real axis at some x > b, which means pj(A) > b

(i) = Gii): Let p:=(1,...,n — 1), and an arbitrary signature matrix
S €. be given. Define T := S[u] €., and ', §" €%, to be the signa-
ture matrices with S, =S/, =T, for 1 <i<n-—1 and with S,=-1
S, = +1. By assumption,

det(bI — S’A) >0 and det(bl — S"A) > 0.
Furthermore, §” — §' = 2e¢,e!, and (bl — S’ A) — (bI — §” A) = 2¢,e! A.

n-n’

Together with (2.1), the linearity of determinants for rank-1 updates, this
implies

det(bI — S"A) > 0 for S”:=4(S" +S").

But S”, = 0, and the last row of bI — S” A is be]. Hence, by definition of
S’ S" we have 0 < det(bI — §” A) = b det{(hI — SA) u]}. This is true for
all $ €% and p = (1,...,n — 1). Renumbering and an induction argument
finishes this part of the proof.

(iii) = (iv): follows by applying a similar argument to that in (i) = (ii).

(iv) = (i): Choosing appropriate D proves that for all S €., every
principal minor of bl — SA is positive, which means bI — SA is a P-matrix
forall S €.%. Hence, forall b > b and all § €., we have det(bI — SA) > 0
(cf. [13, Theorem 5.22]). If A is an eigenvalue of SA for some S €.%, then
det{AI — SA) = 0 = detl(— A)I — (—S) A], and therefore |A| < b. [ |

From the proof we see that Theorem 2.3 remains valid on replacing
bl — SA by bl — AS, and bl — DA by bl — AD.

COROLLARY 2.4. The sign-real spectral radius has the inheritance prop-
erty, that is, it cannot increase on going to a principal submatrix:

BEQ, forl<k<n = pi(A[r]) <p5(A).
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In particular,

maxlAiiI < Pg( A)'

The real spectral radius p, of a matrix is, in general, not continuous in
the components of A, because the maximal real eigenvalue may be multiple
and may become complex for arbitrarily small perturbations. An example is

A(e)=(} ‘f) with €3 0.

Here p,( A(€)) = 0 for € > 0, whereas p,( A(0)) = 1.

Interestingly enough, the sign-real spectral radius is continuous in the
components of A, although SA may have a real eigenvalue |A| = p3(A) of
multiplicity greater than one. Nevertheless, I depends continuously on the
components of A. The reason for the continuity of ps(A) will be explained
again after Theorem 3.8.

COROLLARY 2.5. The sign-real spectral radius p3( A) depends continu-
ously on the components of the matrix A.

Proof. The quantity B:= infl0 < b € R| det(bI — SA) > 0 for all sig-
nature matrices S €.} is well defined, it depends continuously on the
components of A, and Theorem 2.3 implies p3( A) < B. On the other hand,
the continuity of the determinant implies the existence of some S €.% with
det( BI — SA) = 0. This includes the case 8 = 0. Hence, p5(A) > B, and
therefore pS(A) = B, and the continuity of the determinant proves the
corollary. [ |

The characterization in Theorem 2.3 shows
S _ .
ps(A) = min{0 < b € R|det(bl — SA) > Oforall S € A.

Using a bisection scheme, this offers a possibility to calculate pg(A) to any
desired accuracy without eigenvalue computation. The exponential behavior
is reflected by the fact that computation of the sign-real spectral radius is
NP-hard (see Corollary 2.9). Following are more properties of p5(A) show-
ing similarities to Perron-Frobenius theory.
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LeEmMa 2.6, For A € M,(R), there exist signature matrices S,, S, and
0+#x € R" withx >0 and

S| ASy - x = pJ(A) -x. (2.2)
For B(A) = adj(AI — S, AS,) one has B(pj(A)) > 0.

Proof. According to Lemma 2.2, p§( A) is an eigenvalue of SA for some
signature matrix S. Hence SAx = Ax with 0 # x € R", |Al = pj( A). Proper
choice of 8, and §, yields (2.2).

Set B := B(pj(A)). Then BadjB = (det B)I = 0, and any column of
adj B is a (possibly zero) multiple of the nonnegative eigenvector x. But
Theorem 2.3(iii) with a limit argument implies det B[ n] > 0 forall & € Q.
and therefore in particular diagadj B > 0. Hence x > Oyieldsadj B > 0. ®

Note that in general we do not have adj B(A) > 0 for A > p;(A) as for
nonnegative matrices (cf. [3, Theorem 3.1]). Unlike Perron-Frobenius theory,
the eigenvector X may consist of zero components, even if A has no zero
entry. Consider

3 3 4 3
A=| 4 -1 3| with pj(A) =5 and x=1{2]. (2.3)
08 -—-12 1 0

There is no § €% such that SA has an eigenvector corresponding to an
eigenvalue +5 or —5 without zero component, and the eigenvalue +5 or
—5 is always simple. However, p5(A) = pSC(Al u)) for p = (1,2). We will
come to this again in Lemma 3.7.

For b > p3(A) and any S €.%, bl — SA is a P-matrix. However, this
does not necessarily imply positive stability. Consider

A=
—-0.01 0 1

1 -1 0
0 1 -1]. (24)

Then p;(A) < 1.07, but A has eigenvalues 1.1077 + 0.187i with real part
greater than pS( A); thus pj(A) -1 — A is not positive stable.

Theorem 2.3 allows us to characterize the set of matrices with sign-real
spectral radius zero.
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THEOREM 2.7. Let A € M, (R) be given. Then the following are equiva-
lent:

() poCA) = 0.
(ii) The matrix A is permutationally similar to a strictly upper triangular
matrix.

Proof. By Corollary 2.4 and Lemma 2.2, pj(A) = 0 is equivalent to
poCALuD) =0 =det Alulforall 1 <k <nandall p € Q,.If A had two
distinct nonzero full cycles, this would imply existence of a nonzero nonfull
cycle (cf. [12, Lemma 2.1]). Thus, an induction argument shows that A has at
most one nonzero full cycle, and det A = 0 proves A to be acyclic. [ |

Theorem 2.3 allows us to prove the relation (1.5) between the componen-
twise distance to the nearest singular matrix as defined in (1.1) and the
sign-real spectral radius. Together with Corollary 2.5 this gives a simple proof
of the continuity of the componentwise distance to the nearest singular matrix
o (A, E) (see also [25, Lemma 6.13]).

THEOREM 2.8. Let A, E € M (R), A regular and E > 0, be given. Then

=[]

This includes 0(A, E) = © & pg(AO_l E): 0.

0

Proof. Applying a Schur-complement argument shows

xl -S,E
det = det(x*I — S, A7'S, E).

-S,A°! xl

That means the eigenvalues of S, A7'S,E are exactly + VA for A an
eigenvalue of

0 S,E
;A7 0
Using % = —% and Rohn’s characterization (1.3) proves the theorem. [ |
0 A\
Note that p; B o) = maxs poCASB) = max p;(BSA), but, in gen-

eral, p5(AB) # ps(BA).



10 S. M. RUMP

As a corollary we note that computation of pj(A) for A € M, (Q) is
NP-hard. For ¢ € R" denoting the vector of all ones and E = ee’, Poljak
and Rohn showed in [22] that for rational A computation of o (A, E) is
NP-hard. By (1.3) and Theorem 2.8,

c(AE)' = max S AIS E
( ) Sl,Szey’pO( 1 2 )
2
0 E
= TS, A™!S,e = ps ,
B L P

which is a rational number for rational A and E = ee’. Since matrix
inversion is polynomially bounded, we have the following corollary.

COROLLARY 2.9. For A € M (Q) computation of the sign-real spectral
radius py(A) is NP-hard. More precisely, if for A € M (Q), E being the
matrix of all ones, there exists a polynomial-time algorithm for calculating the
rational number

(0 EY
pO A 0 )
then P = NP.

Moreover, Theorem 2.3 allows to state the connection with the w-num-

ber.

CoroLLARY 2.10. Let A, D € M, (R) with 0 < D diagonal. Then for
wp(A) defined in (1.6) we have

up(A) =0 o pi(AD) <1,
and
pS(AD)-IDI" < mp(A) <pi(A)  for pS(AD) > 1.
Proof. By Theorem 2.3(v) and the remark after Theorem 2.3, we have

pS(AD) <1 <« V|Al < D:det(I — AA) >0,
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which is equivalent to p,(A) = 0. For b := pj(AD) > 1 we have
p3(b1AD) = 1, and we have det(I — S-b"'AD) = det(1 — A-b~'DS) =
0 for some S €.%. From pj( AD) > 1 we get || Dl # 0, and by the definition
(1.6), it follows n,(A) > 1b~'DSI" L= pO(AD) ||D|| . Let ;LD(A)
DI for some diagonal ID| < D. Then det{(I — AD) = 0 = det[ ps(A) -

1-A-p3(A)- D], and Theorem 2.3(iv) implies p( A)+|D,;| > 1 for some i.
Hence pp(A) = [IDI7" < p3(A). u

The inverse p-number minimizes ||A|| = ogfA) for [A| < D and I — AA
singular. This explains the factor IDII™". In connection with the g-number
the following observation may also be useful.

LeEMMA 2.11. For A, D € M (R), A regular, 0 < D diagonal, one has
(A, D) =pj(a"'D)"
This includes
g(A, D)= e pi(A'D)=0.
In particular,
pi(A) =a(a. D)
Proof. Rohn’s formula (1.3) and Lemma 2.1 yield
o(A,D) ' = maxpS( A 'SD) = maxp3(A~'DS) = pi(A"'D). m
ses ses

Another view of the componentwise distance to the nearest singular
matrix is the following. For A AEM JLR), A>0,theset[A — A, A+ A]

={AeMR|A-A<A<A+ A} is called an interval matrix. An in-
terval matrix is called regular 1f all A€[A— A, A + A] are regular. Then
o(A, E) = supla|[A — aE, A + aE]regular}. In [23, Theorem 5.1], Rohn

gave fourteen equivalent formulations for [A — A, A + A] being regular,
among them [condition (C4)] in our notation

[A—A, A+ A]regular

VS, S, e Vk:[A-(A-5A8)7"] > (25)



12 S. M. RUMP
(to simplify the formulation, here and in the following Theorem 2.12, inverse
matrices are always assumed to exist when spoken of). If pj(A) < b, then we

know by Theorem 2.3 that all 51 — DA are regular for | D| < I. Following we
give a characterization of ps(A), which is similar to (2.5).

THEOREM 2.12. For A € M (R), 0 <b € R we have
p(A) <b = VSeLVk:b-[(bI-5A)7"],>1 (26)
Proof. We start with a general statement. Let S, T €. differ exactly in
the kth component, that is, T = S — 25, ¢, e}, and assume det(bl — SA) >
0. Then by (2.1),
det(bI — TA) = det(bl — SA) - [1 + 25, ef A~ (bI — SA) " ¢,].
(2.7)
Furthermore
Seceb A« (bl — SA) ' e
= S, el - {S(SA — bI) + bS} - (bl — SA) ™' - ¢,
= skk{—skk + S [(bI - SA)“]kk} =b-[(b1-54)7"],, - L.
Together with (2.7), this implies
det(bI — TA) = det(bI — SA) - {2b[(bI — 54)"'], - 1}

Summarizing, for S,7 €%, T = S — 25,,¢,¢{, and det(I — SA) > 0, we
have

det(bI —TA) >0 = b-[(bI —54)""] > 1. (2.8)

Now assume p5(A) < b. Then det(bI — SA) > 0 for all S €., and (2.8)
proves “= .” To prove “ <" we assume ps(A) = b. By Theorem 2.3, there
is some S’ €.% with det(bI — S’ A) < 0. Furthermore,

Y det(bI — SA) = 2"b",
Ses”
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and b > 0 shows that there exists some §” €.% with det(bl — S” A) > 0.
Hence, there are S, T €.% with det(bI — SA) > 0 and det(bI — TA) < 0,
such that S and T differ in exactly one component. Then (2.8) implies that
the right-hand side of (2.6) is not valid, and this finishes the proof. [ |

Another formulation of Theorem 2.12 is
po(A) <b
Ve € Q,_, , VS € :det(bl — SA) < 2bdet{(bI — SA)[ n]}. (2.9)

Note that p3(A) <b implies 0 < det{(bI — SA)[ n]} for all S €. and all
[J,EQk",lngn,

There is another characterization of the sign-real spectral radius without
the use of signature matrices. The proof uses geometrical properties of the
system of cones spanned by the columns of two matrices [26, 17].2

THEOREM 2.13. For A € M, (R) and 0 <b € R the following are
equivalent:

(i) (bl — A)"Y(bI + A) is a P-matrix.

(i) py(A) <b.

REMARK. For simplicity of notation, inverse matrices are assumed to
exist when spoken of.

Proof. We have
(bI = A) Y(bI+A)=-U"'V with U=A-bl, V:=A+Dbl

Denote the columns of U,V by u,, v, According to [26] (see also [17,
Theorem 6.6]), consider the system of cones €(U, V) spanned by all n-tuples
of column vectors ¢y, ..., c, with ¢, € {u,, v;}. Then —U 'V is a P-matrix if
and only if for any choice of ¢; € {u;, v;} the vectors ¢,,...,c, are linearly
independent, and for 1 < j < n the hyperplane spanned by 0 and ¢;, i #j,

separates u; from v;. This means

(i) < det(A+bS)det(A+bS") <0

forall §', 8" €.% differing in exactly one component.

*The author wishes to thank L. Elsner for pointing out to him the paper by Kuhn and
Lowen.
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The linearity of the determinant for rank-1 updates, b > 0, and det S’ det S”
= —1 imply (similarly to the argument used in the proof of Theorem 2.3)

(i) < det(bl +SA) >0 foral S e

Now Theorem 2.3 finishes the proof. ]

For nonnegative A, Theorem 2.13 implies that p(A) <b iff (bI —
AM(DI + A) is a P-matrix. Note that A is (negative) stable if and only if
(I — A)"'(I + A) is convergent (see, for example, Theorem 7.21 in [13].

Theorem 2.13 also shows similarities to Theorem 2.12. For pj(A) < b it
implies for all S €.% that (bI — SA)~'(bI — SA) = (bl — SA) " '(—bI +
SA + 2bI) = 2b(bI — SA)™' — I is a P-matrix. This implies in particular
the right-hand side of (2.6).

Theorems 2.3, 2.12, and 2.13 together with the continuity of pS (Corollary
2.5) yield different characterizations of the sign-real spectral radius.

COROLLARY 2.14. For A € M, (R),

inf{0 < b € R|det(bI — SA)

po(A)
> 0forall $ €}

inf{0 < b € R|b[(b1 - 54) 7],

> L forall 1 <k <nandall § €5 }

inf{0 < b & R|(bI — A) " '(bI + A) is a P-matrix}

max{p,( DA)|ID| < I}.

The first characterization uses determinants of certain n-by-n matrices for
all signature matrices, the second the diagonal elements of the inverses of
certain n-by-n matrices for all signature matrices, and the third the minors of
one matrix.

Next we give the sign-real spectral radius for symmetric matrices together
with norm bounds, and give a maximum characterization.

THEOREM 2.15. For A € M, (R),

pS(A) < LAl for 1 <p <. (2.10)
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Furthermore,

A=A" = pi(A) =llAlL,
and

max_pS(QA) = Il Alls.
T:Q—l

Proof. For py(A) an eigenvalue of SA we have
po( A) = po(SA) < p(SA) < IISAll, < IISll, - All, = Il All,.
This implies for A = AT
llAllz = po(A) < p3(A) < lAlls.

Finally, for the singular-value decomposition A = U2V T and Q:=VU T we
have (QA)" = QA and therefore p3(QA) = l|QAll; = || Alls. [

The bound (2.10) can be arbitrarily weak, as is seen by

A=(8 (1)) with  ps(A) =0 and [[All, = 1.

However, in this case also pi(| A = 0. In Section 5 we will see that in any
case py(A) and p(] A]) must not be too far apart.

Note that neither pj(A) < p(A) nor pS(A) < r(A) (the numerical
radius) need to be true in general. For example, for

=1 3

one has pj(A) = 2, whereas p(A) =0, r(A) = 1. However, pS(A) <
2r( A) is always true, because || All, < 2+(A).

Theorem 2.15 implies pg( A)* < pi(ATA), whereas pj( A)* can be less
than, equal to or greater than pj( A%). Nevertheless, the following theorem
holds, which has a well-known counterpart for norms. We state the result and
defer the proof to Section 5.

THEOREM 2.16. lim, [ pS(A)]/* = p(A).
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3. MAX-MIN AND FURTHER CHARACTERIZATIONS OF pg(A)

We start with the following max-min characterization of py(A), which is
almost identical to the well known formula by Collatz for nonnegative
matrices (cf. [7] or [16, Corollary 8.3.3)).

THEOREM 3.1. Let A € M, (R). Then

s . | (Ax);
po(A) = max min . (3.1)
reR" x;#0 X;
x+0
Proof. Define
| (Ax),
¢4(x) == min . (3.2)
x;#0 xX;

By Lemma 2.6, there is a signature matrix S with SAz = pg(A)z for some
0 # z € R", and hence pj(A) = @(2) < sup, cg» @A(x). Let 0 # x € R"
be given, and for the purpose of establishing a contradiction suppose b :=
@,(x) > pi(A). Then |Ax| > blx|, and with suitable S,, S, €.% we have
S AS, -y = b-y for y = S,x = |x|. Hence for all k, [(bI — S, AS,)y], y,
< 0, and the well-known characterization by Fiedler and Ptak [14, Theorem
1.1] implies that bI — S, AS, is not a P-matrix. But this contradicts Theorem
2.3, because b > pi(A). Hence, pi(A) = ¢,(z) = max, cg» @,(x). The
theorem is proved. u

The function ¢,(x) in (3.2) is basically the Collatz-Wielandt function (cf.
[20, Chapter 1.3]). Theorem 3.1 gives a convenient tool to obtain lower
bounds for the sign-real spectral radius. As for (reducible) nonnegative
matrices, the corresponding min-max equality does not hold. In fact, it
cannot, because p;(A) = p(A) for nonnegative A. But even pJ(A) <
max, , ol Ax), /x| is not true, as every singular matrix which is not permuta-
tionally similar to a strictly upper triangular matrix shows (cf. Theorem 2.7).

If we just exchange max and min in (3.1), we arrive at
min, . g« max, , o Ax),/x;,| = M. Without proof we mention that M is
equal to the minimum absolute value of the real eigenvalues of (SA) ],
where the minimum runs over all S€% and all p€ Q,,, 1 <k <n.In
particular, M = 0 iff some A[ u] is singular.

For nonnegative matrices, Perron-Frobenius theory offers a min-max
characterization for irreducible matrices complementing the max-min charac-
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terization. Our next aim is to derive a similar characterization for the sign-real
spectral radius, which is complementary to Theorem 3.1. For this purpose we
need two preparatory lemmas, the second one being of interest by itself.

(ASx),

X.

1

LEMMA 3.2, maxg. o inf, . , max, < piA).

Proof. Let fixed but arbitrary S €% be given. We show that for £ > 0
there exists some x > 0 with max|( ASx),/x,| < p5(A) + O(¢), which proves
the lemma. By Lemma 2.2, there exists 0 < z € R", 2 # 0 with | ASzM)
= Az with 0 < A, € R. We have A, < pg(A). If 2V > 0, the proof is
finished. Denote the index set of nonzero components of z) by a, ie.,
i€a oz 0. Applying the same argument to (AS) u], p = {1,..., n}
\ @,, and filling the eigenvector with zeros yields existence of some 0 < z®
e R", z® # 0 with (ASzP)N ull = 2,z®[ ul, 0 < A, € R. By Corollary
2.4, A, < pg(A). Denoting the index set of nonzero components of z® by
@, and continuing with this process we obtain a splitting {1,...,n} = a,
U -+ U a,, with the following properties.

2D 20 o ieq for 1 <k<xm,
k—1
[(ASz®) p]l = A, z®[p] for w={1,....,0\ U a, I<k<m,
v=1
(ASz) e, ] =0 for v <k,
A8z [ ap]] = A =L a
Define
m
x= ) &'z for £>0. (3.3)
v=1

Then x > 0, and for 1 < k < m,

((aso) )l =| & (ASs)[ @] e*| < A z®[a]- ek + O(e5).

rv=1
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For i € a; we have x; = 25X, and hence for all i € e,

(ASx);

X

A 2Rk + 0k

LRk =X +0(e) < PO(A)+O(3)

Applying this for 1 < k < m and using A, < p3(A) shows max,( ASx),/x;|
< pa(A) + O(e) for the x defmed in (3.3), and proves the lemma. ]

The next lemma gives lower and upper bounds for a real eigenvalue of
A € M (R), A not sign-restricted, provided the sign pattern of the corre-
sponding left eigenvector is known.

LeEmMMA 3.3. Let A € M (R) be given with real eigenvalue A € R and
left eigenvector 0 + z € R", i.e. A’z = Az. Then for any vector x € R",
x; # 0 and z;x; 2 0 for 1 <i < n, we have

Proof. Set u, = (Ax),/x; then

Z(A—,'Li)xizizZ[(ATZ)ixi—(Ax) ]—x Az —z"Ax = 0.

i

; can be strictly less than or stictly greater than A. m

By assumption, not all x;z; can be zero. Hence x,z; > 0 shows that not all

The proof is almost the same as the one by Collatz for his Satz in Section
2 of [7]. We mention that Lemma 3.3 can be used to prove that a specific
orthant {x € R" | Sx > 0}, S €.% does not contain an eigenvector (to a real
eigenvalue).

COROLLARY 34. Let A€ M, (R), S €%, and x, y € R" be given with
Sx > 0, Sy > 0, and

(A'x), (ATy),
min > max .

i X i Y;

Then there is no eigenvector of A in the orthant {x € R" | Sx > 0}.
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In particular, if AT has two eigenvectors with no zero components
corresponding to distinct eigenvalues in the same orthant, then this orthant
contains no eigenvector of A.

We will apply Lemma 3.3 to the eigenvalue A = p5(A) of S, AS,, where
S, S, €.% are chosen according to Lemma 2.6. If A is a simple eigenvalue of
S, AS,, then according to Lemma 2.6 S, AS, has a left and right eigenvector
corresponding to A where none of the corresponding components are of
opposite sign.

We are now ready to prove the following theorem, a duality theorem very
much in the spirit of the corresponding assertion in Perron-Frobenius theory.

THEOREM 3.5. For A € M (R),

max max min
$e¥ x>0 x,#0
x+0

po(A) = max inf max

3.4
SeF x>0 i ( )

Xy

(ASx); ‘ B ’(ASx),-‘

Proof. The left equality follows by Theorem 3.1. Using Lemma 3.2, it
remains to show maxinfmax > p3(A). Using Lemma 2.6, let S, A”S, -z =
po(AT) -z = p3(A)-z with z > 0, z # 0. Then for all x > 0, Lemma 3.3
implies

Sy AS x),
mgx(z—l) > p3(A).
Hence
(4S%), (45,%),
max inf max > inf max
SeF x>0 i X; >0 i X;
S, ASx),;
> in max—(—-g- 10). > p5(A).
x>0 i i
n
The matrix
(1 o0
4 (0 2)

and x = (1,0)7 show that in the right-hand side of (3.4) the inf . , max,
cannot be replaced by a min, , , max, ..
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The sign-real spectral radius and the componentwise distance to the
nearest singular matrix are in a sense inversely proportional (see Theorem 2.8
and Lemma 2.11). The validity of an upper bound b for o (A, E) is verified
if a matrix A is known with |A — A| < bE and det Adet A < 0. Similarly,
any nonzero vector x together with Theorem 3.1 provides an easy-to-calcu-
late lower bound for pj( A). Conversely, it is comparatively difficult to prove
b to be a lower bound of o(A, E), because this includes the proof of
regularity of all A with |A — A| < bE. Similarly, according to Theorem 3.5,
we have, for some vector x, to calculate the ratio ( ASx),/x,| for all § €. to
obtain a valid upper bound for pj(A).

We note the similarity to the corresponding result for nonnegative matri-
ces. For any A € M (R), A > 0, we have

- (Ax), _ (Ax);
max min = p(A) = inf max .
x>8 x;#0 xi x>0 i X,
X%

(3.5)

As in Perron-Frobenius theory, replacing inf by min in (3.5), we find that

. (Ax);
min max
x20 x;#0 X;
x#0

is, in general, even not an upper bound for p( A).

The following bounds for pj( A) under operations with diagonal matrices
are straightforward implications of Theorem 3.1 and pj(AD) = pi(DA) (cf.
Lemma 2.1).

LEMMA 3.6. Let A € M, (R) and D be a diagonal matrix. Then

P()(A) - de|D PO(A + D) < PO(A) + m?XIDnl

11|

and

pS(A) mmlD pS(AD) < pi(A) max|D

u| ,,l

Some properties of the spectral radius of nonnegative irreducible matrices
do not (immediately) carry over to the sign-real spectral radius, even when A
has no zero component. For example, if A = pj(A) is an eigenvalue of some
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SA, then
it may hold that A < p(SA), (3.6a)
it may hold that A = pJ( A[ n]) for some p € Q;,, k <n, (3.68)
A may be a multiple eigenvalue of SA. (3.67)

The matrix in (2.4) is an example for (3.6a). However, Theorem 5.7 will
show that the ratio p(SA)/pg( A) is bounded for every § €., namely,
p(SA)/p3(A) < p(IAD/pS(A) < (3 + 2vV2)n. 1f(3.68) or (3.67) holds true,
the matrix A has spe(nal properties. If (3.68) is true, then by Corollary 2.4
one has pj(Al u'D = pj(A) for every index set u' 2 p.

If an eigenvector x of some SA, corresponding to the eigenvalue pj(A),
has zero components, then py(A[ u]) = py(A), where u is the index set of
nonzero entries in x. The converse is not true: If pS( Al u]) = p;(A), there
need not exist an eigenvector correspondmg to p(,( A) of some SA with a zero
entry. An example is

51 60 2
A=|8 75 -2 (3.7)
38 76 47

for which p5(A) = pf(Al uD = 135 for p = (1,2), but p;(A) is a simple
eigenvalue of SA for all § €., and no eigenvector corresponding to p;( A)
has a zero component. However, every left eigenvector of SA to a real
eigenvalue A with |A| = pj(A) has a zero component.

Following we will see that this is true in general. The conditions for
(3.68) and (3.6) can be characterized as follows.

LEMMA 3.7. For A € M (R) the following are equivalent:

(i) There exists p € Q,_, , with pJ(Al n]) = pJ(A).
(ii) There exists some S € % such that SA has a left or a right eigenvector
to the eigenvalue A = p3( A) with a zero component.

Proof. (i) = (ii): There is S €.% with det{( p3(A)-I — SAN ul} = 0.
The linearity of the determinant (2.1) subject to rank-1 perturbations, the
inheritance of p§, and Theorem 2.3 imply det{ p;(A)-I — SA} = 0. Now,
every matrix C € M (R) such that C and C[ul, p € Q,_, ,, have an
eigenvalue A in common has a left or right eigenvector corresponding to A
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with a zero component. This is seen as follows. For B := adj(AI — C) we
have B, = 0 for k = {1,..., n} with k & u. If B =0, then all (n — 1) X
(n — 1) minors of AI — C are zero, and the kernel of AI — C is at least of
dimension 2. If B # 0, there is a nonzero row or column of B that is a left or
right eigenvector of C, respectively, and it has a zero component, because
By, = 0 and B is of rank 1.

(ii) = (i) follows by Theorem 3.1, Corollary 2.4, and p3( A) = p5(A"). m

THEOREM 3.8. For A € M, (R) the following are equivalent:

(i) For some S €.%, pS(A) is an eigenvalue of SA of multiplicity greater
or equal to m.

(i) For all p€ Q,, 0 <k<m—1itis py(A(p)) = py(A), where
ACp) = Al 'l with w' ={1,... n}\ p

Proof. Let S €.%,set B == pj(A)-I — SA, and denote the characteris-
tic polynomial of B by X' ; p;x". Then |p,| =1L, _, det B(p)l; see for
example [27, (6.2.9)]. By Theorem 2.3(iii), det B( ) > 0 for all u. Therefore,
we have the following equivalences: (i) < [B has an eigenvalue 0 of
multiplicity greater or equal to m] < [p,=0for 0<i<m—-1] «
[det B(u) = 0 for all 0 < |p| < m — 1]. By the inheritance property of the
sign-real spectral radius (Corollary 2.4) this is equivalent to (ii). [ |

In classical Perron-Frobenius theory the spectral radius is a simple
eigenvalue for irreducible matrices. We may ask whether something similar is
true for the sign-real spectral radius. The answer will yield another way to
explain its continuity. It may happen that A == pJ(A) is a multiple eigenvalue
of some SA, and &-perturbations move A into the complex plane. However,
the following theorem proves that pg(A) is always a simple eigenvalue of
some SA, unless A is permutationally similar to a strictly upper triangular
matrix, in which case all SA have the n-fold eigenvalue zero.

THEOREM 3.9. For A € M,(R), n > 2, exactly one of the two following
statements is true.

() py(A) is a simple eigenvalue of SA for some S € 7.

(i) A is permutationally similar to a strictly upper triangular matrix (and
therefore p3(A) = 0).

Proof. Let A be an eigenvalue of SA with [A] = po(A). If A is simple,
we use SA or —SA and we are finished. Suppose the multiplicity of A is
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greater than one. By the proof of Theorem 3.8 we know det(AI — SA) = 0
= det{(AI — SAY u]} forall p € Q,_, . Define diagonal S', S” with S, =
S; =8, for 1<i<n-—-1 and S, =0, S, = —S,,. Then for p:=
{1,..., n — 1} we have det(A] — S’ A) = Adet{(AI — SA) u]} = 0, and the
linearity of determinants subject to rank-1 perturbations (2.1) implies det(AI
— 8" A) = 0. The signature matrix $” differs from S in exactly one compo-
nent, and A is an eigenvalue of SA and of S” A. Repeating this argument, we
either arrive at some S €. with a simple eigenvalue A, or else det(AI —
SA) = Oforall S €.%. In the latter case, (2.1) implies det{(AI — SA) n]} = 0
forall u € Q,,, 1 <k < n, and therefore A = 0. For p;( A) = |Al, Theorem
2.7 finishes the proof. [ ]

Set r == pJ( A). Note that it may happen that det(rI — S, A) = det(+] —
Sy A) = 0, but r is simple eigenvalue of S, A and S, A, and py(Al u]) <

py(A) forall p € Q,_, . An example is
2 8 2 2
_|1 4 5 2
A 05 1 -7 1)
1 2 5 4

for which pj(A) =10,and S, =1, S, = diag(—1,1, —1,1).

Corollary 2.4 tells us that p§( A) cannot increase on going to a principal
submatrix. The corresponding property for individual elements of nonnega-
tive matrices does not carry over. That means there are matrices A € M, (R)
such that increasing the absolute value and preserving the sign of an
individual element A;; may decrease the signature spectral radius. This is
because in Perron-Froi)enius theory the “direction” is evident from the fact
that A is nonnegative; for the sign-real spectral radius there is no such
generic “direction.”

However, we have the following property of pS(A), which shows its
behavior in certain “directions.”

THEOREM 3.10. Let A € M,(R) and J {1,...,n} X {1,...,n} be an
arbitrary set of index pairs. Then there exists a matrix % € M (R) with the
following properties.

G) IE,.J.I =1 for (i,j) € ], and 2,.]- =0 fori,j)&].

(ii) For every matrix B € M, (R) with sign(B;;) =3, for 1 <i,j <n,

po(A) < pj(A+ B).

In words: For every set | of index pairs there exists a “direction” 3, in which
the sign-real spectral radius cannot decrease below p§( A).
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Proof. According to Lemma 2.6, there exist signature matrices S, T with
SAT -x = p5(A) "x forsome 0 +#x & R" with x > 0.

Define %, == ST, for (i, j) € ], and %, == 0 otherwise. Any B € M (R)
with 31gn(B = E] satisfies SBT > 0, and hence

S(A+ B)Tx = pS(A) x + SBT-x > pS(A) x>0

Using Theorem 3.1 and Lemma 2.1, this yields pj(A + B) = pj(S(A +
B)T = p*(A). (]

Regarding the perturbation of an individual component, this means that
towards +% or —o, the sign-real spectral radius can never fall below the
current value. Using (2.1), this observation can be generalized to the follow-
ing corollary.

CoROLLARY 3.11.  For A € M, (R) and u,v € R" the following is true:
There exists s € {—1, +1} such that forall 0 < a € R,

po( A+ sa-uv’) > pi(A).

Proof. For r = pO(A) and det(rI — SA) = 0, (2.1) implies det[+] —
S(A+ a-ue)] = —av adj(rI — SA)Su, which is nonpositive for all « >
or for all @ < 0. The assertion follows. l

Theorem 3.10 and Corollary 3.11 offer p0551b111t1es to find, for a given
matrix A, another matrix A with p3(A) < pS(A). The following theorem
shows that with a certain Gauss transforma.tlon we may construct a matrix A
with pO(A) p3CA).

THEOREM 3.12. Let A€ M (R) and 1 <k <n, p={1,...,n}\ {k}.

For o€ R with ¢A, =20 and lel pi(A) < 1, define B=(I+ ¢-
Aege] ) A. Then

pi (Bl 1]) < p5(A).

Proof. For pj(A) = 0, by Theorem 2.7 the matrix A, and by definition
also B are permutationally similar to a strictly upper diagonal matrix. There-
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fore, we may assume r := p3(A) > 0, and by Corollary 2.4 we may assume
¢ ¥ 0. We will show det(rI — SB[ u]) > 0forall S €% _ |, from which the
assertion follows by Theorem 2.3. Let S €.%,_, be given, define diagonal
S’ € M_(R) by

S =

it

wme »
g
-

l=
i—1i-1 for i>

end set D=8 +ro- ekek Then Dkk =re, |ID| < I, and D is regular. In
the following we use ef DD = r%?®-¢[, (2.1), and (adj C)C = (det C)I, and
we set d = det(r] — DA). Then

rdet(rI ~ SB[ ,u])
= det(r1 — S'B)
= det[rl — (D ~ re-eel (I + ¢ Aeyel ) A]
=det|rl — DA + ¢ (1 — DA)eyel A + re? - Ay - epel A
= det(rl — DAY + el Aadj(rl — DA) - [¢- (r] — DA)e, + re® - Age]
=d+ ¢-ef Aadj(rl — DA) - (rl — DA)e,
+r A - efD-DA-adj(rl — DA) - ¢,
=d+ @d-Ay +r Ay el D[( DA — rI) adj(rl — DA)
+radj(rI — DA)]e,
=d+ @d Ay —r 'd Ay Dy + Ay Dy det{(r] — DA)[ r]}
=d+ro-Ay det{(rl — DA)[ ]} =0

The last term is nonnegative because by Theorem 2.3 and |D| < I we have
d > 0 and det{(+I — DA) n]} = 0, and by assumption @A > 0. |

For A;; = 0, the sign of ¢ is not fixed. From the last line of the proof it
follows that for A,, =0 we have p3S(B[ul) = p3(A) for B==[I+s"
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po(A) ' -Ac,el]A and s = +1 or s = —1. For any A and any ¢ with
PAg = 0, pi(Bl D > ¢~ implies p§(A) > ¢~ '

4. LOWER AND UPPER BOUNDS USING DETERMINANTS

The absolute value of the determinant of a matrix is, in general, neither a
lower nor an upper bound for the sign-real spectral radius. However, using
the determinants of all principal submatrices, we can derive a lower and an
upper bound on pJ(A). In a way this generalizes Corollary 2.4. The new
bounds are shown to be sharp. Corresponding bounds for the Perron root of
a nonnegative matrix, which are sharp as well, follow as a corollary.

DEFINITION 4.1. Define

8( A) = max|det A[ ,u]|l/|“|, (4.1)

where the maximum is taken over all p € Q,,, 1 <k < n.

THEOREM 4.2. For A € M, (R) we have

—1

5(A) < pi(A) < 8(A4) (2" - 1) (4.2)

The inequalities are sharp in the sense that for each n € N, left equality and
right equality can be achieved. One has

(2" — 1) ' < 1.443n. (4.3)

Proof. Denote &= {S &|detS = +1} and ¥ :=S\". The
characteristic polynomial P, of A satisfies (cf. [18, 2.15])

P,(x) = det(xI — A) = i x""‘(——l)ktraceCk(A). (4.4)
k=0
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For 1 < k < n — 1 there holds

Y traceCi(SA) = Y. Y det(SA)[ u]

sest sest lul=k

)» ( > detS[;L])det Alp] =0,

ful=k ‘S5

and therefore

Y det(xl — SA) = 2" Yx" + (—1)"det 4], (4.5)
sest
and similarly
Y det(xl — SA) = 2"~ [x" — (—1)"det A]. (4.6)
Ses”

For x :=|det A", the value of at least one of the two sums (4.5)
and (4.6) is zero. Hence there exists a signature matrix S €.% with det(xI —
SA) < 0. Using det(xI — SA) - + for x = + implies the existence of a
real eigenvalue A of SA with pS(A) > A > |det A]"/". The inheritance
property (Corollary 2.4) implies the left inequality in (4.2).

Another way of writing (4.4) for § €.% is

det(xl — SA) =x" + ¥ (=1)"'det{(SA)[ ]} -x"" ¥, (4.7)

[ul=1

where the sum is taken over all u € Q;,, 1 <k < n. Setting a == 8§(A) =
8(SA) implies

< X |det A[p]]- ="

fplz1

T (~1"-det{(sA)[ u]} -xn M

lul=1

A

Z (n)ak|x|n—k
k=1 k

(Ixl + )" = |xI™.
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For |xl = a(2"/" — 1)7! it follows that
(Ixl + @)" = [xI" < (Ix] + 2" = Dixl)" = lxl" = 1=I".

Together with (4.7) this shows that the value of the characteristic polynomial
of SA is nonzero for all real x with |x] > a(2'/" — 1)7'. This proves (4.2).

The left inequality in (4.2) is an equality for the identity matrix. Consider
the circulant A € M, (R) with

1 a a? .
an¥1 1 (12
n—2 n—1 .
A=|¢ a 1 a .| and a:=2Y". (4.8)
. . . 1 .
Define D = diag(a" ..., a” a,1). Then
1 1 1
BN PR
D 'AD = 9 9

a matrix with 1’s on and above the diagonal and 2’s below. Subtracting the
second row from the first row of D'AD and using an induction argument, it
follows that all principal minors of D~'AD and hence of A are of absolute
value 1. Therefore 86(D 'AD) = 8(A) = 1. All row sums of the positive
matrix A are equal, and therefore they are equal to its Perron root, which is

n—1 a” —

1
p(A)=p3(A)=Ea"= — =@ -1

-1

Hence the right inequality of (4.2) is sharp. Finally,

1 n
gl/n _ ] =/Mh2 _ 15 _In2
n

implies (4.3). The theorem is proved. ]
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We mention that for polynomials an inequality in the spirit of (4.2) has
been given by Birkhoff [4]; see also Marden [19].

COROLLARY 4.3.  For nonnegative A € M,(R) we have

1

8(A) <p(A) <8(A)-(2V"—-1)

The inequalities are sharp in the sense that for each n € N, left and right
equality can be achieved.

COROLLARY 4.4.  For orthogonal Q € M, (R) we have
p3(Q) = L.

Proof. Theorem 4.2 implies p3(Q) > 1, and Theorem 2.15 yields
po(Q) < lIQllz = L. [

Orthogonal matrices map the unit ball into itself. With Q also SQ is
orthogonal, and Corollary 4.4 states that there exists a signature matrix S and
real x € R" with [|x|l; = 1 and SQx = x.

COROLLARY 4.5. For A € M (R) with singular values o(A) > -+ >
a(A),

(ﬁai(A))V" < pi(A) < y(A). (49)

i=1

Proof. Follows by Theorem 2.15, Theorem 4.2, and |det Al = ITo,(A).
|

The geometric mean on the left of (4.9) cannot be replaced by an
arithmetic mean, as any nonzero strictly upper triangular matrix shows.

Definition 4.1 of 8(A) together with Theorem 4.2 yields a number of
interesting properties of the #-number. For example, for signature matrices
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81, 8, €%, regular diagonal matrix D, and permutation matrix P,

8(A) = B8(A") = 8(S,4AS8,) = 8(D'AD) = 8( PTAP),
8(AD).= 8(DA),  8(A) <llAll,,
85(A)= 0 <A

permutationally similar to a strictly upper triangular matrix,

Q'-07 = 5(Q) -1

In general, 8(A?) # 8(A)?, 8(A~ A) # 8(A)?, and 8(QTAQ) # 8(A) for
Q" = Q7', but, of course, 8( A) has the inheritance property. A geometrical
interpretation of |det AlY™ is the length of an edge of a cube of the same
volume as the parallelepiped spanned by the rows of A.

5. LOWER AND UPPER BOUNDS USING CYCLIC PRODUCTS

Aset w =(w,,..., o) of |w| =k > 1 mutually distinct integers out of
{1,..., n} is called a cycle and defines the cyclic product

jw!

ITA, = .l_[lA"’i“’«'H’ where @, = ;.
im

Note that, in contrast with [10] or [12], by our definition each diagonal
element A, is a cyclic product (of length one). Next, we derive bounds for
py(A) using the geometric mean of the absolute value of cyclic products.

LEMMA 5.1. For A € M, (R) and a cycle o with |w| < 2 we have

ITTA."" < ps(A). (5.1)

Proof. For |w| = 1 this follows by Corollary 2.4. For |w| = 2 it suffices
to show pS(A) > VIAi;A;l. i # j, and by the inheritance of ps it suffices to
show

pS(A) > Vibel  for A=(“ Z).

c

According to Lemma 2.1 we know pJ(A) = p3(S, AS,) for §;, S, €, and
therefore we may assume a, b, ¢ > 0, and either d = 0 or d < 0. In either
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case, the eigenvalues Ha+d+ \/(a — d)2 + 4bc] are real, and at least
one of them is larger in absolute value than Vbe . [ |

We tried to prove (5.1) for |w| > 2, because this would imply

p(1a 1E) " <o (A E) <np(la 'IE) "

with sharp lower and upper bounds (cf. [25]). An attempt to prove (5.1) for
|w| > 2 could proceed as follows.

If A consists of a zero row, then deleting this row and the corresponding
column does not change pJ(A). Assume A has no zero row, so that
max; |A, | > 0 for all 1 < i < n. Then suitable renumbering and an induction
argument together with Corollary 2.4 assures that we may assume w.lo.g.
Al = max,IAi].|, where i’ =i+ 1for 1 <i<n and i’ =1 for i = n.
Furthermore, define b == (IT,| A,;.)'/ ". Then a similarity transformation with
the diagonal matrix D with

v—1

b
A,

S
I
[em

(728

yields (D7'AD),;| = b for 1 < i < n. That means, with a proper scaling, we
can restrict our attention to matrices of the form

A=P+ A* with A%, =0 and
P the permutation matrix with P, = 1. (5.2)

P is a cyclic shift. Obviously, p§(P) = 1 (which is also a consequence of
Corollary 4.3). In the following, we will prove p3(P + €A*) > 1 for small
€e> 0.

We use a formula for the determinant of the sum of two matrices. First,
we need the following definition. For A € M (R) and a, 8 € Q,,, AlalB]
€ M,(R) denotes the matrix with rows i € a and columns j € B, whereas
A(a| B) € M, (R) is obtained by deleting rows i € a and columns j € 8.
Similar to the kth compound matrix C,(A) € M, \(R) of A € M _(R), the

af entry of which is defined to be det Al alB] f(;r a, B € Qy,, we define
the kth adjoint matrix adj,(A) € M (,,)(IR), the aB entry of which is defined
by g

adj(A) = (=) TP A( Bla).
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We define
Co(A) =1 and adj,(A):=1.

The kth adjoint seems to be not so common in the recent English-language
literature; we found it in [21]. However, Peschl uses the transpose of our
definition. One easily verifies

C,(A) =A, C,(A) = det A,
adjy(A) =det A,  adj(A) =adj(A) =A"'det A
provided A is regular,
Ci(AB) = C(A)C(B),
and
adj,( AB) = adj,( B) adj( A).

Furthermore, using our definition, Laplace’s expansion theorem reads (cf.
[21, Satz 42])

adjz(4) C(4) = (det A)I(z).

Using this yields the following expansion for the determinant of a sum of two
matrices. Hans Schneider pointed out to us that the result can be found in [2,
No. 5, p. 101], but without proof. Therefore, we state the short proof.

LEMMA 52. For A, B € M,(R) and 8, € € R,

det(8A + €B) = i trace{adj;( A) C(B)] - 8" *e*. (5.3)
k=0

REMARK. The apparent asymmetry in (5.3) is resolved by the trace
operation, because trace[adj,( A) C (B)] = traceladj, _(B) C,_,(A)]

Proof. For the characteristic polynomial P, of A we have
n

Py(A) = det(AI — A) = Y A" *(—1)" trace C,( A).
k=0
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Therefore,

det(A +1) = ) trace C,( A).
k=0

For regular A, using C,(A™') = C,(A) ", this implies

det( A + B) = det Adet(I + A™'B)

= (det A)kz trace[ck(AilB)]
=0

= (det A) ki:: trace[Ck(A_l)Ck(B)]
(det A) ﬁ: trace[det A~ adj,(A) Ck(B)]
k=0

It

i trace[adjk( A) Ci( B)],

k=0

For singular A, the same formula follows by a continuity argument.
Observing adj(8A) = 8" * adj,(A) and C,(eB) = €*C,(B) proves the

lemma. [ ]

This allows us to prove that P as defined in (5.2) is a strict local minimum
of py(P + €A*) for small € # 0 and Po A* =0,,,, o denoting the
Hadamard product.

TueoreM 5.3.  Let P € M (R) be the permutation matrix (cyclic shift)
with P, = 1 where

i+1 for 1<i<n,

! :2{1 for i=mn,

and let A* € M (R), not identical to the zero matrix, be such that A,;, =0
for 1 < i < n. Then for small enough 0 < € € R,

ps(P + €A*) > pS(P) = 1. (5.4)
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Proof. Using py(P) = 1 and Theorem 2.3, it suffices to show
det[I — S(P + eA*)] <0 (55)

for some |S| =1 and sufficiently small € > 0. Using det(—P) = —1 and
Lemma 5.2, it follows for det § = 1,

det(I — SP — €SA*) = det( —SP) det(I — P'S + eP”A*)

I

-~ ij: trace[adjk(l — PTS) Ck(PTA*)] -e*. (5.6)

Furthermore, adj,(I — PTS) = det(I — PTS) = 0 for det § = 1, that is, the
summand for k = 0 in (5.6) vanishes. Regarding C (PTA*) = P"A*, (5.5) is
satisfied for small enough € > 0, and therefore the theorem is proved, if we
can show

trace[adj(I — P'S) PTA*] > 0 (5.7)

for some signature matrix § with det S = 1. We have rankadj(I — P'S) = 1,
and defining " := {|S| = I|det(S) = 1} we have

{adj(I - PTS)|S 65’*} = {x~xT||x,-| =lforl<i<nand x, = 1}.

(5.8)
For p € Q;,, 1 <k < n, define
X, ={xeR"|lxl=(1)and x, = 1forve ©}.
An induction argument shows for every B € M, (R),
Y x"Bx = 2"—“”( Y B,+ ) B,.J.). (5.9)

x€X, vE p i,jen
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By (5.8) we have {adj(I — P'S)|S €. %"} = {xxT|x € Xm}, and (5.9) im-
plies for u = {1}

Y trace[adj( 1 - P7S) PTA*] Y. trace(xx” - PTA¥)
seFt x € Xy

Y 2T - PTA* -x = 2" ! trace( P"A*).
x€X(y

From the definition of P and A* we know (PTA*),, = 0 for 1 < i < n, and
therefore trace( PTA*) = 0. Hence, either (5.7) is satisfied and the theorem is
proved, or trace(adj(I — P'S) PTA*) = 0 for all § €.5".

By (5.8) this leaves us with proving our result for the case x” - PTA* - x = 0
for all x € X,,,. In this case, x” - PA* -x = O forall x X, with 1 € u. For
w € {1, i}, (5.9) and (P7A%),; = 0 imply

(P"A*) ), + (P"A*),, =0 for 2 <i<n.

For p = {1,2, i}, again using (5.9), we obtain

(P"A*)y, + (PTA*);, =0 for 3<i<n.
Following these lines, we arrive at
PTA* = —(PTA%). (5.10)

That means the theorem is proved if for P, A* with (5.10), A* not identically
zero, there exists some S €. such that (5.5) is satisfied for small enough
€ > 0. The zeros of the characteristic polynomial of a skew-symmetric matrix

have real part zero. Therefore, the characteristic polynomial Ppr,.(x) =
Yi_ocpx" F of PTA* has the form

Cops1 = —trace Cyp,( PTA*) = 0 and ¢y = trace Cyp( PTA*) > 0.

(5.11)

It is easy to see that

> adj (I - P'S) = 2"711(:) for 1<k<n.
seFt
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Hence, (5.6) implies

Y det(I — SP — e- SA*¥)
sest

- Z Z trace[adjk(l - PTS) Ck(PTA*)] . ek
k=0 se&*

-2y [trace Ck(PTA*)] - €k,
k=2

because the terms for k = 0 and k = 1 vanish. Therefore, (5.11) yields
successively for k = 2,..., n that either there exists a nonzero, and hence
also a positive and a negative, coefficient of €*. or the coefficients of €* in
(5.6) are zero for all signature matrices S with det S = 1. The first case
implies (5.5) for small enough € > 0 and proves the theorem; the latter case
is not possible for all k < n, because of (5.10) and because, by assumption,
A* is not identical to the zero matrix. Therefore not all coefficients of €* can
be zero. The theorem is proved. [ |

Theorem 5.3 shows that p5(P) = 1 is a strict local minimum of p3(P)
with respect to perturbations A* with P o A* = 0. The discussion at the
beginning of this section showed that (5.1) is a valid lower bound for all  if
and only if pj(P) is a global minimum in the prescribed sense. However,
that is not true. Consider

1 (3 0 8 03 1 -08
A*= ——18 3 0) and A=P+A*=]|-08 -03 1
101y g 3 1 -0.8 —03
(5.12)

Then p3(A) = p3(P + A*) < 0.95. The graph of p3(P + tA*) for —0.5 <
t < 1.5 is shown in Figure 1. It also displays the strict local minimum at
t = 0. Nevertheless, the lower bound (5.1) becomes valid for |w| > 2 when
multiplied by a constant factor less than one.

DEFINITION 5.4. For A € M (R) define {(A) to be the maximum
geometric mean of the cyclic products of | Al, that is,

£(4) = max| T4,

where the maximum is taken over all cycles w.
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[=]
<)

é‘

0 0.5 1 1.5

Fic. 1. p§(P + tA*) for —0.5 <t < 1.5.

Remember that the cyclic products of | Al include the diagonal elements
| Al The following Theorem shows that indeed {(A) and p3(A) cannot be
very far apart. The proof of the lower bound of the following theorem 5.5 is
lengthy. It uses p;(S, AS,) = p5(A) essentially and constructs a suitable
vector x for the use of Theorem 3.1. The theorem allows us to prove an
almost sharp upper bound for the componentwise distance to the nearest
singular matrix, thus extending and improving a conjecture by J. Demmel and
N. J. Higham [9]. The theorem is included in [24].

THEOREM 5.5. For A € M, (R),

(3 +2V2) 'Z(A) < pS(A) <nl(A). (5.13)

The right inequality is sharp, and the left inequality is sharp up to a constant
factor.

Proof. The lower bound in (5.13) has been proven in [24, Lemma 2.1].
The upper bound follows from (see [11, Theorem 7.2 and Remark 7.3])

{(A) = inf{lIDflADIH D nonsingular djagonal}, (5.14)
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I Al} maxIAijl, and pJ(A) < p(|AD) < n max| A | For A = (1), the right
inequality in (5.13) becomes an equality; for A =1 the left inequality is sharp
up to a constant factor. [ |

We mention that the factor (3 + 2vV2)"! in Theorem 5.5 can be im-
proved depending on n (see (24, Theorem 2.4]). For nonnegative A, the
result corresponding to Theorem 5.5 reads

L(A) < p(A) = po(A) = pS(A) <nl(A)  for A>0. (5.15)
In that case both inequalities are sharp, as is seen by A = I and A = (D).
Next we show that the sign-real spectral radius of A and the Perron root

of | Al cannot be too far apart. The corresponding bounds are also sharp up to
a constant factor, which will result from the following lemma.

LEMMA 5.6. For A € M, (R), n > 2, with

1 for i <j, 0 +1
A; =10 for i=j, ie, A= ,
-1 for i>j, -1 0

one has py(A) = 1.

Proof. By Theorem 2.3, py( A) = 1 is equivalent to det(I — SA) > 0 for
all § €% and det(I — SA) = 0 for some S €.%. We prove this by induction.
The statement is true for n = 2. For n > 2, let S €% be given. If

S;; = —land S,, = +1, then the first and last rows of I — SA are identical
and det(I — SA) = 0. Adding the first to the last column of I — SA vyields 0
in components 2 to n — 1. For §;;, = +1 and S,, = —1 we obtain a zero

column, and for S;, = S,, = +1, the induction hypothesis shows det(I —
SA) > 0. For §}; = S,, = — 1, adding the last to the first column of I — SA
and the induction hypothesis finish the proof. [ ]

THEOREM 5.7. For A € M (R),
p3(A) < p(lA) <n-(3+2/2)ps(A). (5.16)

The left inequality is sharp; the right inequality is sharp up to the constant
factor 3 + 2V2.
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Proof. Theorem 5.5 and (5.15) yield

ps(A) < p(1Al) <nZ(A) <n-(3+2/2)p5(A).

The left inequality in (5.16) is sharp for any nonnegative matrix; the right
inequality is sharp up to the constant factor 3 + 2v2 for the matrix defined
in Lemma 5.6. n

Finally, we can prove Theorem 2.16.

Proof of Theorem 2.16
Theorem 2.15 implies pg(Ak) < || A*ly, and for ¢ == 3 + 2V2,

pS(A%) >~ p(1A1F) = n Y h(A) .

Hence, lim; _, |l AF||YF = p(A) proves the theorem. [ ]

6. FURTHER REMARKS AND OPEN PROBLEMS

By Theorem 5.5, the ratio pj(A)/{(A) is bounded below by (3 +
2v2)"!, and the matrix in (5.12) shows that the ratio can be less than one.
What is the minimum ratio (depending on n)? What are properties of a
matrix achieving this minimum ratio?

For example, is it true that there is always a matrix A achieving the
minimum ratio such that | A| is a circulant [like the matrix (5.12)]?

The matrix (5.12) showed that (5.1) need not to be true for |w| > 2.
However, there is evidence that the estimation (5.1) is true for matrices with
zero diagonal. This is equivalent to the following conjecture, easy to formu-
late in simple terms.

CoNJECTURE 6.1. For A € M_(R) of the form

0o 1
0 1 *
A = (6.1)
* 1
1 0

there exists a nonzero vector x € R" with | Ax| > |x|.
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To see that the conjecture is equivalent to
po(A) = L(A) for A with zero diagonal, (6.2)

we use the sequence of arguments preceding (5.2), and Theorem 3.1 proves
the equivalence. ’

It is not difficult to prove the conjecture for n = 3, and therefore (5.1) for
matrices with zero diagonal and |w| = 3. The conjecture has a number of
implications. If Conjecture 6.1 is true, then Theorem 5.5 improves to

pa(A) = 5L(A) forany A € M,(R). (6.3)

This is seen as follows. If |A,;| < $(A) for all 1 < i < n, define A° to be
the matrix A with zero diagonal instead. Then {(A®) = {(A), and Lemma
3.6 and (6.2) imply

po(A) = p5(A°%) — 5L(A) > £(A%) — 3L(A) = 3{(A).

If |A,l > 3¢(A) for some 1 <i < n, define A' to be the matrix A with
A}, = sign(A;) {(A). Then pj(A") > {(A) by Corollary 2.4, and Lemma
3.6 implies

pi(A) = pi(A") — [L(A) — 1A} =14l > 3L(A).
Conjecture 6.1 also implies
p(lAD) < (n —1)pi(A) for A € M, (R) with zero diagonal. (6.4)

To see this, we may assume by (5.14) that for £ > 0, max|A,;| < {(A) + &.
The zero diagonal and (6.2) imply p(|AD) < (n — D[{( AS +el<n—
1)p3(A) + O(e). The bound (6.4) is sharp as by Lemma 5.6.

For an arbitrary matrix A, define A° to be that matrix with zero diagonal.
Then p(lAD < p(JA°D + max| A, | < (n — Dpi(A) + p3(A). Therefore, if

Conjecture 6.1 is true,
p(lA) <npi(A) forany A € M, (R). (6.5)
Finally, we mention that if Conjecture 6.1 is true, the results in [24] imply

2n — 1

QU(A,E) < m

—_p(IA’IIE) (6.6)

In [25] a general n X n example has been given with (A, E)p(| A YE) = n.
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