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ABSTRACT 

The paper attempts to solve a problem which was called a “challenge for the 
future” in Linear Algebra Appl. We define and investigate a new quantity for real 
matrices, the sign-real spectral radius, and derive various characterizations, bounds, 
and properties of it. In certain aspects our quantity shows similar behavior to the 
Perron root of a nonnegative matrix. It is shown that our quantity also has intimate 
connections to the componentwise distance to the nearest singular matrix. Relations to 
the Perron root of the (entrywise) absolute value of the matrix and to the p-number 
are given as well. 0 1997 Elsevier Science Inc. 

1. NOTATION AND INTRODUCTION 

We use standard notation from matrix theory; cf. [16, 181. In particular, 
Qk,, denotes the set of k-tuples of strictly increasing integers out of { 1, . . . , n}. 
For A E M,([W) and /_L E ok,,, A[ ~1 E M,(R) denotes the principal subma- 
trix of A consisting of rows i E p and columns j E Z_L. The adjoint is denoted 
by adj A. 

For Z.L E Qk,, we denote the number of elements of Z_L by 1 pi. For vectors 
and matn’ces we use comparison and absolute value always entywise. In the 
following, Z denotes the identity matrix of proper dimension. 

A signature matrix S is a diagonal matrix with diagonal entries + 1 or 
- 1; in notation, 1 SI = I. The set of signature matrices with n rows and 
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columns is denoted by 9”. If the dimension is evident from the context, we 
simply write L? 

Componentwise distances, perturbation bounds, and error bounds have 
received quite some attention in recent years (see, for example, [6], [15], and 
the many references cited there). The componentwise distance c+(A, E) of 
A E M,(R) to the nearest singular matrix weighted by some 0 < E E M,(R) 
is defined by (cf. [23, 9, 25, 241) 

u ( A, E) := min{ (Y E [Withere is a singular A’ with] A’ - Al < a 1 El} . 

(1.1) 

If no such (Y exists, we define a( A, E) := ~0. Remember that comparison 
and absolute value for vectors and matrices is always used entrywise. An 
explicit formula for this number uses the real spectral radius [23, Chapter 51 

p,,(A) := m={IAllA a real eigenvalue of A}, (1.2) 

where pO( A) := 0 if A has no real eigenvalues. Rohn [23, Theorem 5.11 has 
shown 

1 
(T(A,E) = 

max 
s,, S*EP 

po(S,A-‘S,E) ’ (1.3) 

The computation of (T( A, E) is NP-hard [22], which is reflected in the 
exponential number of signature matrices in (1.3). 

In [9], J. Demmel and N. J. Higham conjecture an upper bound for 
U( A, E). In the course of extending and proving this conjecture [25, Proposi- 
tion 7.3; 24, Proposition 2.61, the sign-real spectral radius p,f( A) occurs. 

DEFINITION 1.1. For A E M,(R) the sign-real spectral radius is defined 
bY 

With (1.3) we have 

P,% A) := F~$P,( SA). (1.4 

u( A, E) = (s ~~~Po(S,A-‘S,~))~~ 
1. 2 

= ~FP;( A ( 
-‘SE))-’ <p,f( A-‘E -’ ) ’ 
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which means any lower bound on the sign-real spectral radius implies an 
upper bound on the componentwise distance to the nearest singular matrix. 
This was the original motivation for defining and investigating the sign-real 
spectral radius & A). 

It turns out that the sign-real spectral radius is interesting in itself and, in 
certain aspects, shows similar behavior to the Perron root of a nonnegative 
matrix: for example, the inheritance property on going to principal submatri- 
ces (Corollary 2.4), the identical characterization of p,“< A) = 0 and p(I Al) = 
0 (Theorem 2.71, and especially the max-min characterizations (Theorem 3.1 
and following). The relation between pi(A) and p(lAl) is characterized in 
Theorem 5.7, and the sign-real spectral radius is proved to be continuous 
(Corollary 2.5). M oreover, pi< A) is proved to be always a simple eigenvalue 
of some SA unless A is permutationally similar to a strictly upper triangular 
matrix, in which case pi< A) = 0 and all SA h ave an n-fold eigenvalue zero 
(Theorem 3.9). The case that pi(A) 1s a multiple eigenvalue of some SA is 
characterized in Theorem 3.8. 

Furthermore, bounds are derived, such as the determinant bound given 
in Theorem 4.2. This bound is sharp, and it holds similarly for nonnegative 
matrices (Corollary 4.3). The well-known lower and upper bounds by Collatz 
for the Perron root of nonnegative matrices are generalized (Lemma 3.3). 
This gives a simple sufficient condition for the fact that some orthant does 
not contain an eigenvector of a real matrix (Corollary 3.4). We will prove 

(1.5) 

(Theorem 2.81, displaying the intimate connection between a( A, E) and 
pi(A). We also prove that computation of pi in NP-hard (Corollary 2.91, and 
state a relation to the so-called p-problem’ (see [B], [5], and the references 
cited there). A special p-problem with only diagonal and no block perturba- 
tions is 

0 ifdet(Z -A6) # 0 

/4A) := 
forall 161 <D 

( ,;FD {ll~llzldet( Z - AC) = O})-’ otherwise, 

where A, D E M,(R) and 0 < D diagonal. 

‘The author would like to thank Paul van Dooren for pointing out the ~-problem to him. 
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Although p,“< A2) need not be equal to p,“( A)‘, Theorem 2.16 shows with 
lim k-ml P:(A~)I”~ = p(A) another normlike behavior of the sign-real spec- 
tral radius. Finally, in Section 5 we give bounds for the sign-real spectral 
radius by means of the geometric mean of cycles. These lead to almost sharp 
bounds for the componentwise distance to the nearest singular matrix [24]. 

2. BASIC PROPERTIES OF &(A) 

We start with some basic properties of the sign-real spectral radius p,“< A) 
as defined in (1.4). 

LEMMA 2.1. Let A, B E M,,(R), ‘g t sz na ure matrices S,, S, E Y, a per- 
mutation matrix P, and a regular diagonal matrix D be given. Then 

p;( A) = p,“( S,AS,) = p;( A“) = p;( P’AP) = p;( D-‘AD), 

&DA) = &AD), 

P:( aA) = ((~1 p;( A) for CY E [w. 

Zf there exists a matrix C E M,(R), rank C = 1 with Cij := sign( Aij) for 
Aij # 0 and Cij E { - 1, + 1) for Ajj = 0, then pi(A) = p(l Al). 

For the Kronecker product @, we have p,“< A>pi( B) < p,“( A 8 B). 
For lower or upper triangular A, 

pi(A) = ma?tlA..l. II 

Zf the permutational similarity transformation putting IAl into its irre- 
ducible normal form is applied to A, and Aci, i, are the diagonal blocks, then 
pi(A) = mai p,“< A,i, i,>. 

Proof. For S E 9 we have S -’ = S; thus A has the same eigenvalues 
as SAS; hence p,“< A) = pl( AS,) = p,f(S, AS,). The eigenvalues of S, AS, 
and S, ATS, are the same; therefore p,“< A) = pi( A?‘). The eigenvalues of 
S . PTAP and PSPT . A are the same, and PSP“ is a signature matrix. The set 
of eigenvalues of SA and D-‘S,4D = S . D-‘AD are identical, as are those 
of S. DA and D-‘SDAD = S. AD. By definition, C = xyT for x, y E 
[w”, 1x1 = I yl = (1). Hence, S, := diag(x) E -ig S, := diag( y) ~9, and 
S, AS, = (Al yield pi< A) = pi(S, AS,) = p(l Al). The eigenvalues of (S, A) 
@I (S, B) = (S, @ S,) . (A @ B) are the products of the eigenvalues of S, A 
and S, B. The other statements are obvious. ??
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For orthogonal Q E M,(IW), in general pi(A) Z pl(QrAQ), and also, in 
general, p,“< AB) # &CBA). For 0 denoting the Hadamard product, the 
quantities p,“< A2), p,“< A 0 A) may be less than, equal to, or larger than 
p,“( A)2. However, Theorem 2.15 implies, p,“< ArA) > p,“< A)‘. 

LEMMA 2.2. For every orthant there exists some signature matrix S such 
that SA has an eigenvector in that orthant corresponding to a real nonnega- 
tive eigenvalue, i.e., 

VT ~9 3s ~9 30 # x E Iw” : 

x > 0 and SA . TX = h . Tx for some 0 < A E KY. 

For regular A one has p,f( A) > 0. 

Proof. Let T ~9 be given. If there exists 0 # x E [w”, x > 0, with 
ATx = 0, the proof is finished. Suppose ATx # 0 for all nonzero x > 0. 
Define E := (x E R” 1 x > 0 and llxlli = l}, which is a nonempty, compact, 
and convex set. Then f(x) := IATxl/llATxlll is well defined on E, f is 
continuous, and f maps E into itself. Due to Brouwer’s fKed-point theorem, 
there is some x E E with f(x) = x, and for suitable S E 9 we have 

SA.TX = T-IATxI = IIATxII~.Tx. 

For regular A we have ATx # 0 for all T E 9 and therefore II ATxlll > 0 for 
all x E E. ??

Lemma 2.2 shows in particular that there is always some S ~9 such that 
SA has a real eigenvalue, which means that pi(A) is always equal to a real 
eigenvalue of some SA. Shortly, we will characterize the set of matrices with 
p;(A) = 0. 

The following theorem establishes connections between the sign-real 
spectral radius and P-matrices. Moreover, it shows the inheritance property 
of p,S( A) on going to principal submatrices. In the proof and later on we use 
(cf., for example, [25, Lemma 4.11) 

A E M,(R), u,v E R” * det( A + uv”) = det A + cr(adj A)u, 

and for regular A, det( A + uv”) = (det A)(1 + vTA-‘u). (2.1) 
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THEOREM 2.3. Let A E M,(R) and 0 < b E R. Then the following are 
equivalent: 

(9 p,f(A) < b. 
(ii) F or a II g t si na ur-e matrices S there holds det(bl - SA) > 0. 

(iii) For all signature m.atrice.s S, the matrix bZ - SA is a P-matrix, i.e., 
forall CL E Qk,,, 1 <k < n, one has det{(bZ - SA)[ p]} > 0. 

(iv) For all diagonal matrices D with 1 DI < I, one has det(bZ - DA) > 0. 

Proof. (i) = (ii): Assume det(bZ - SA) < 0 for some signature matrix 
S. That means the characteristic polynomial P,,(x) of SA at b is less than or 
equal to zero. Now PsA(x) + + 00 for x + + 00 implies that Ps,( x) inter- 
sects with the real axis at some x > b, which means pi(A) > b. 

(ii) * (iii): Let p := (1, . . . , n - l), and an arbitrary signature matrix 
S EY be given. Define T := S[ ~1 E 9, and S’, S” ??3) to be the signa- 
ture matrices with Sii = Sri = T,, for 1 < i < n - 1 and with S:,,, = - 1, 
sz, = + 1. By assumption, 

det(bZ - S’A) > 0 and det(bZ - S” A) > 0. 

Furthermore, S” - S’ = 2e,,er, and (bZ - S’A) - (bZ - S’A) = 2e,,eTA. 
Together with (2.1), th e mearity of determinants for rank-l updates, this 1’ 
implies 

det( bZ - S”‘A) > 0 for S”’ := i( S’ + S”). 

But ST,, = 0, and the last row of bZ - S”’ A is be:. Hence, by definition of 
S’, S”, we have 0 < det(bZ - S”‘A) = b det{(bZ - SA)[ ~1). This is true for 
all S Eland /.L = cl,..., n - 1). Renumbering and an induction argument 
finishes this part of the proof. 

(iii) 3 (iv): follows by applying a similar argument to that in (ii) * (iii>. 
(iv) * (i): Choosing appropriate D proves that for all S ~9, every 

principal minor of bZ - SA is positive, which means bZ - SA is a P-matrix 
for all S ~9. Hence, for all 6 2 b and all S ~9, we have det(bZ - SA) > 0 
(cf. [13, Theorem 5.221). If A is an eigenvalue of SA for some S ~9, then 
det(hZ - SA) = 0 = det[(-h)Z - (-S)A], andtherefore lhl <b. ??

From the proof we see that Theorem 2.3 remains valid on replacing 
bI - SA by bZ - AS, and bZ - DA by bZ - AD. 

COROLLARY 2.4. The sign-real spectral radius has the inheritance prop- 
erty, that is, it cannot increase on going to a principal submatrix: 
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In particular, 

maxlA,,I G pi(A). 

The real spectral radius p0 of a matrix is, in general, not continuous in 
the components of A, because the maximal real eigenvalue may be multiple 
and may become complex for arbitrarily small perturbations. An example is 

A+)=(; -f) with E>O. 

Here pO( A( E)) = 0 for E > 0, whereas p,,( A(O)) = 1. 
Interestingly enough, the sign-real spectral radius is continuous in the 

components of A, although SA may have a real eigenvalue lhl = p:(A) of 
multiplicity greater than one. Nevertheless, ~0s depends continuously on the 
components of A. The reason for the continuity of &(A) will be explained 
again after Theorem 3.8. 

COROLLARY 2.5. The sign-real spectral radius p,“< A) depends continu- 
ously on the components of the matrix A. 

Proof. The quantity /3 := inf(0 < b E [w 1 det(bZ - SA) > 0 for all sig- 
nature matrices S ~9) is well defined, it depends continuously on the 
components of A, and Theorem 2.3 implies p,“< A) < p. On the other hand, 
the continuity of the determinant implies the existence of some S EL?’ with 
det( /!IZ - SA) = 0. Th’ 1s includes the case p = 0. Hence, p,“< A) 2 p, and 
therefore p,f( A) = 0, and the continuity of the determinant proves the 
corollary. W 

The characterization in Theorem 2.3 shows 

p,f( A) = min(0 < b E [WJdet(bZ - SA) > 0 for all S ~fl. 

Using a bisection scheme, this offers a possibility to calculate pi(A) to any 
desired accuracy without eigenvalue computation. The exponential behavior 
is reflected by the fact that computation of the sign-real spectral radius is 
NP-hard (see Corollary 2.9). Following are more properties of p,f( A) show- 
ing similarities to Perron-Frobenius theory. 
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LEMMA 2.6. For A E M,,(R), there exist signature matrices S,, S, and 
0 Z x E R” with x > 0 and 

S, AS,. x = p;( A) . I-. (2.2) 

For B(h) := adj(AZ - S,AS,) ollt’ has B( pi(A)) > 0. 

Proof. According to Lemma 2.2, &A) is an eigenvalue of SA for some 
signature matrix S. Hence SAX = Ax with 0 # x E IX”, ]A1 = p,“(A). Proper 
choice of S, and S, yields (2.2). 

Set B := B( pa(A)). Th en B adj B = (det B)Z = 0, and any column of 
adj B is a (possibly zero) multiple of the nonnegative eigenvector x. But 
Theorem 2.3(iii) with a limit argument implies det B[ ~1 2 0 for all p E ok,,, 
and therefore in particular diag adj B 2 0. Hence x > 0 yields adj B 2 0. ??

Note that in general we do not have adj B(A) > 0 for A > p,“(A) as for 
nonnegative matrices (cf. [3, Theorem 3. I]). Unlike Perron-Frobenius theory, 
the eigenvector x may consist of zero components, even if A has no zero 
entry. Consider 

with pi( A) = 5 and x = 

There is no S ~9 such that SA has an eigenvector corresponding to an 
eigenvalue +5 or -5 without zero component, and the eigenvalue +5 or 
-5 is always simple. However, z$( A) = p,“( A[ ~1) for /_L = (1,2). We will 
come to this again in Lemma 3.7. 

For b > p,“(A) and any S ~9, bZ - SA is a P-matrix. However, this 
does not necessarily imply positive stability. Consider 

(2.4) 
-0.01 0 1 

Then p,“< A) < 1.07, but A has eigenvalues 1.1077 f 0.187i with real part 
greater than p,“< A); thus pi(A) . I - A is not positive stable. 

Theorem 2.3 allows us to characterize the set of matrices with sign-real 
spectral radius zero. 
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THEOREM 2.7. Let A E M,(R) b e given. Then the following are equiva- 
lent : 

(i) pi(A) = 0. 
(ii) The matrix A is per-mutationally similar to a stn’ctly upper triangular 

matrix. 

Proof. By Corollary 2.4 and Lemma 2.2, p,f(A) = 0 is equivalent to 
p,“< A[ ~1) = 0 = det A[ ~1 for all 1 < k < n and all /L E Qktl. If A had two 
distinct nonzero full cycles, this would imply existence of a nonzero nonfull 
cycle (cf. [12, Lemma 2.11). Th us, an induction argument shows that A has at 
most one nonzero full cycle, and det A = 0 proves A to be acyclic. ??

Theorem 2.3 allows us to prove the relation (1.5) between the componen- 
twise distance to the nearest singular matrix as defined in (1.1) and the 
sign-real spectral radius. Together with Corollary 2.5 this gives a simple proof 
of the continuity of the componentwise distance to the nearest singular matrix 
(T(A, E) (see also [25, Lemma 6.131). 

THEOREM 2.8. tit A, E E M,W, A regular and E G= 0, be given. Then 

This includes u(A, E) = cc @ pcf( ~‘1 i) = O. 

Proof Applying a Schur-complement argument shows 

xl 
det 

-S,E 

-S&i Xl 
= det( x’Z - S,A-‘S,E). 

That means the eigenvalues of S, A- ’ S, E are exactly + J?; for A an 
eigenvalue of 

[s,:-l y). 
Using 9 = -9 and Rohn’s characterization (1.3) proves the theorem. ??

= maxs pi(ASB) = maxs pi(BSA), but, in gen- 
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As a corollary we note that computation of pi(A) for A E M,(Q) is 
NP-hard. For e E [w” denoting the vector of all ones and E = eeT, Poljak 
and Rohn showed in [22] that for rational A computation of a( A, E) is 
NP-hard. By (1.3) and Theorem 2.8, 

u( A, E)-’ = max 
s,, S,EY 

z+,(S,A~‘S,E) 

= max eTS,A-‘S,e = pl 
s,, s,CY 

which is a rational number for rational A and E = eeT. Since matrix 
inversion is polynomially bounded, we have the following corollary. 

COROLLARY 2.9. For A E M,(Q) computation of the sign-real spectral 
radius p,“(A) is NP-hard. More precisely, if f;lr A E M,(Q), E being the 
matrix of all ones, there exists a polynomial-time algorithm for calculating the 
rational number 

then P = NP. 

Moreover, Theorem 2.3 allows to state the connection with the p-num- 
ber. 

COROLLARY 2.10. Let A, D E M,,(R) with 0 < D diagonal. Then for 
pa(A) defined in (1.6) we have 

4 A) = 0 - p,s( AD) < 1, 

and 

P:( AD) * II DII-’ G /-dA) G P;(A) for pi( AD) > 1. 

Proof. By Theorem 2.3(iv) and the remark after Theorem 2.3, we have 

P:( AD) < 1 e VIAI < D : det( Z - AA) > 0, 
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which is equivalent to pn( A) = 0. For b := piCAD) > 1 we have 
pi(b-lAD) = 1, and we have det(Z - S. b-‘AD) = det(Z - A. b-‘Ds) = 
o for SOme s E 9. From p,“< AD) > 1 we get II Dll + 0, and by the definition 
(1.6), it follows Z+,(A) > Ilb-lDSIIp’ = pi(AD)- IIW’. Let /.+(A) = 
l\fill-’ for some diagonal 161 < D. Then det(Z - AC) f 0 = detl P:(A) * 
I - A . p,“(A) .6], and Theorem 2.3(k) implies pi< A) . I Diil > 1 for some i. 
Hence pn(A) = llDll~’ < p,S(A). ??

The inverse p-number minimizes llAl1 = oi(A) for IAl < D and Z - AA 
singular. This explains the factor lades-‘. In connection with the p-number 
the following observation may also be useful. 

LEMMA 2.11. For A, D E M,(R), A regular, 0 < D diagonal, one has 

g( A, D) = p;( A-%-‘. 

This includes 

u(A,D) =m e p;( A-%) = 0. 

In particular, 

p;(A) = u( A-‘, I)-'. 

Proof. Rohn’s formula (1.3) and Lemma 2.1 yield 

Another view of the componentwise distance to the nearest singular 
matrix_ is the following. For ,A, A E M,(R), A > 0, the set [A - A, A + A] 
:= {A E M,(R) 1 A - A < A < A + LJ} is called an interval matrix. An in- 
terval matrix is called regular if all A E [A - A, A + A] are regular. Then 
cr(A, E) = SUI){LY ) [A - CXE, A + aE] regular}. In [23, Theorem 5.11, Rohn 
gave fourteen equivalent formulations for [ A - A, A + A] being regular, 
among them [condition (C4)] in our notation 

[A - A, A + A] regular 

= Vs,,s,~~tlk:[A.(A-S,AS,)-‘lkk>~ (2.5) 
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(to simplify the formulation, here and in the following Theorem 2.12, inverse 
matrices are always assumed to exist when spoken of). If pi(A) < b, then we 
know by Theorem 2.3 that all bZ - DA are regular for 1 DI < I. Following we 
give a characterization of p:(A), which is similar to (2.5). 

THEOREM 2.12. For A E M,,([W), 0 < b E R we have 

d(A) < b G V’s ~9Vk:b. [(bl - SA)-I],, > f. (2.6) 

Pmof. We start with a general statement. Let S, T E 9 differ exactly in 
the kth component, that is, T = S - 2S,,e,el, and assume det(bZ - SAI > 
0. Then by (2.1), 

det(bZ - TA) = det(bZ - SA). [l + 2Sl;k.elA.(bZ - SA))’ *ek]. 

(2.7) 

Furthermore 

S,,*e:‘A*(bZ - SA)-’ *ek 

= S,, * ec * {S(SA - bZ) + bs} *(bZ - SA))’ .ek 

= S,,( -S,, + bS kk * [(bz - SA)-‘I,,) = be [(bZ - SA)-‘lkk - 1. 

Together with (2.71, this implies 

det(bZ - TA) = det(bZ - SA). (2b[(bZ - SA)-‘I,, - 1). 

Summarizing, for S, T E 9, T = S - 2S,,e,eL, and det( Z - SA) > 0, we 
h ave 

det( bZ - TA) > 0 = be [(bz - SA)-‘I,, > f. (2.8) 

Now assume p,f( A) < b. Tl len det(bZ - SA) > 0 for all S E 9’, and (2.8) 
proves “ * .” To prove “ = ,” we assume pi< A) > b. By Theorem 2.3, there 
is some S ’ E 9 with det(bZ - S’ A) < 0. Furthermore, 

c det( bZ - SA) = 2”b”, 
SE9 
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and h > 0 shows that there exists some S” ~9 with det(b1 - S” A) > 0. 
Hence, there are S, T EY with det(bZ - SA) > 0 and det(bZ - TA) < 0, 
such that S and T differ in exactly one component. Then (2.8) implies that 
the right-hand side of (2.6) . IS not valid, and this finishes the proof. ??

Another formulation of Theorem 2.12 is 

VP E Or, - 1, ri tlS EY:det(bZ - SA) < 2bdet{(bZ - SA)[ p]}. (2.9) 

Note that pi(A) < b implies 0 < det{(bZ - SA)[ )(L]} for all S E 9’ and all 
P E Qk,,, 1 < k < n. 

There is another characterization of the sign-real spectral radius without 
the use of signature matrices. The proof uses geometrical properties of the 
system of cones spanned by the columns of two matrices [26, 17].2 

THEOREM 2.13. For A E M,(R) and 0 < b E [w the following are 
equivalent: 

(i) (bZ - A)- ‘(bl + A) is n P-mztrix. 
(ii) pi(A) < b. 

REMARK. For simplicity of notation, inverse matrices are assumed to 
exist when spoken of. 

Proof. We have 

(bZ - A)-‘(bl + A) = -UplV with U := A - bz, V := A + bZ. 

Denote the columns of U, V by ui, u,. According to [26] (see also [ 17, 
Theorem 6.611, consider the system of cones E’(U, V) spanned by all n-tuples 
of column vectors cr, . . . , c, with ci E {ui, ui}. Then - UPIV is a P-matrix if 
and only if for any choice of ci E {u,, ui} the vectors c,, . . . , c, are linearly 
independent, and for 1 < j < n the hyperplane spanned by 0 and ci, i # j, 
separates uj from oj. This means 

(i> = det( A + bS’) det( A + bS”) < 0 

for all S ‘, S” E 9 differing in exactly one component. 

‘The author wishes to thank L. Elmer for pointing out to him the paper by Kuhn and 
L.&en. 
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The linearity of the determinant for rank-l updates, b > 0, and det S’ det S” 
= - 1 imply (similarly to the argument used in the proof of Theorem 2.3) 

(i) e det( bZ + SA) > 0 for all S E Y. 

Now Theorem 2.3 finishes the proof. ??

For nonnegative A, Theorem 2.13 implies that p(A) < b iff (bZ - 
A)‘(bZ + A) is a P-matrix. Note that A is (negative) stable if and only if 
(I - A)-‘(I + A) is convergent (see, for example, Theorem 7.21 in [13]). 

Theorem 2.13 also shows similarities to Theorem 2.12. For p,“< A) < b it 
implies for all S ~9 that (bZ - SA)-l(bZ - SA) = (bZ - SA)-‘(--bZ + 
SA + 2bZ) = 2b(bZ - SA)-’ - Z 1s a P-matrix. This implies in particular 
the right-hand side of (2.6). 

Theorems 2.3, 2.12, and 2.13 together with the continuity of ~0s (Corollary 
2.5) yield different characterizations of the sign-real spectral radius. 

COROLLARY 2.14. For A E M,,([W), 

pl( A) = inf{O < b E Rldet( bZ - SA) 

> 0 for all S E 9 ) 

= inf(O <b E Rlb[(bZ - SA)~‘],, 

>~foralll~k=~nandallS~9 > 

= inf(O < b E Rl(bZ - A)-‘(bl + A) is a P-matrix) 

= max(p,( DA)llZI < Z}. 

The first characterization uses determinants of certain n-by-n matrices for 
all signature matrices, the second the diagonal elements of the inverses of 
certain n-by-n matrices for all signature matrices, and the third the minors of 
one matrix. 

Next we give the sign-real spectral radius for symmetric matrices together 
with norm bounds, and give a maximum characterization. 

THEOREM 2.15. For A E M,,(R), 
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Furthermore, 

A = AT ==, p;(A) = llAllz, 

max pl(QA) = IIAllr. 
QT=Q-’ 

Proof. For p,“< A) an eigenvalue of SA we have 

p,f( A) = p,(SA) < p(SA) < lb411p < liSilp. IlAllp = II All,. 

This implies for A = AT 

llAllz = po( A) < P:(A) G IIAllz. 

Finally, for the singular-value decomposition A = U XV and Q := VU ?‘, we 
have (QA>~ = QA and therefore pl(QA) = llQAl12 = II AIL. ??

The bound (2.10) can be arbitrarily weak, as is seen by 

with p,“( A) = 0 and IIAIIP = 1. 

However, in this case also pi(lAl) = 0. In Section 5 we will see that in any 
case p,“< A) and p(I Al) must not be too far apart. 

Note that neither pi(A) < p(A) nor pi< A) < r(A) (the numerical 
radius) need to be true in general. For example, for 

one has p,“< A) = 2, whereas p(A) = 0, r(A) = 1. However, p,“(A) < 
2r(A) is always true, because 11 AlIz < 2r( A). 

Theorem 2.15 implies &A)” < &ATA), whereas p,f(A)’ can be less 
than, equal to or greater than &A’). N evertheless, the following theorem 
holds, which has a well-known counterpart for norms. We state the result and 
defer the proof to Section 5. 

THEOREM 2.16. lim k j ,l p:< A!?]” k = p( A). 
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3. MAX-MIN AND FURTHER CHARACTERIZATIONS OF &A) 

We start with the following max-min characterization of p:(A), which is 
almost identical to the well known formula by Collatz for nonnegative 
matrices (cf. [7] or [16, Corollary 8.3.31). 

THEOREM 3.1. Let A E M,,(R). Then 

pi( A) = ma.x min 
xtlW” x.#O 
*# 0 

Proof. Define 

(3-l) 

By Lemma 2.6, there is 
0 # z E [w”, and hence 

(3.2) 

a signature matrix S with SAz = pi(A)z for some 
p&A) = cp,(?) < sup* E IwV8 cp,(x). Let 0 + x E 1w” __ _ 

be given, and f or the purpose ot establishing a contradiction suppose b := 
cp,(x) > pi(A). Then IAX > hlxl, and with suitable S,, S, ~9 we have 
S,AS,*y 2b.y for y := S,X = 1x1. Hence for all k, [(bl - S,AS,)ylkyk 
< 0, and the well-known characterization by Fiedler and Ptak 114, Theorem 
1.11 implies that bZ - S, AS, is not a P-matrix. But this contradicts Theorem 
2.3, because b > pi< A). Hence, pl( A) = cp,(:) = max, E Iw.8 cp,(x). The 
theorem is proved. ??

The function (PA(X) in (3.2) is basically the Collatz-Wielandt function (cf: 
[20, Chapter 1.31). Th eorem 3.1 gives a convenient tool to obtain lower 
bounds for the sign-real spectral radius. As for (reducible) nonnegative 
matrices, the corresponding min-max equality does not hold. In fact, it 
cannot, because &A) = p(A) for nonnegative A. But even &(A) < 
max *, f a/( Ax),/x~~ is not true, as every singular matrix which is not permuta- 
tionally similar to a strictly upper triangular matrix shows (cf. Theorem 2.7). 

If we just exchange max and min in (3.1), we arrive at 
minXEn” max,,+, I( Ax),/x,~ =: M. Without proof we mention that M is 
equal to the minimum absolute value of the real eigenvalues of (SA)[ ~1, 
where the minimum runs over all S ~9 and all /_L E Qkrr, 1 < k =G n. In 
particular, M = 0 iff some A[ ~1 is singular. 

For nonnegative matrices, Perron-Frobenius theory offers a min-max 
characterization for irreducible matrices complementing the max-min charac- 
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terization. Our next aim is to derive a similar characterization for the sign-real 
spectral radius, which is complementary to Theorem 3.1. For this purpose we 
need two preparatory lemmas, the second one being of interest by itself. 

LEMMA 3.2. 
(ASx)i 

maxs E Y inf, , 0 maxi - I I < p;(A). 
‘i 

Proof. Let fixed but arbitrary S ~9 be given. We show that for F > 0 
there exists some x > 0 with maxl(ASx)/xiI < p,f( A) + O(E), which proves 
the lemma. By Lemma 2.2, there exists 0 < z(‘) E R”, Z(I) # 0 with 1 A.%(i)1 
= A,#) with 0 < A, E R. We have A, < p,f( A). If z(l) > 0, the proof is 
finished. Denote the index set of nonzero components of z(i) by al, i.e., 
i E CY 
\ d 

ti .zi’) # 0. Applying the same argument to (AS)1 ~1, p := 11,. . . , n) 
and filling the eigenvector with zeros yields existence of some 0 =G .z(‘) 

E R”, z@) # 0 with I( ASz@))[ p]l = h, z@)[ p], 0 < A, E R. By Corollary 
2.4, A, < p;(A). D enoting the index set of nonzero components of z(‘) by 
(us and continuing with this process we obtain a splitting (1,. . . , n) = al 
U ... u a, with the following properties. 

Zi”’ # 0 a i E cfk for 1 <k urn, 
k-l 

I( ASz ‘k’>[~lI =Ak~‘k’[pl for p::={l,...,n}\ U CY”, l<k<m, 
v=l 

( AS+")[ ok] = 0 for u<k, 

I( ASz ‘“‘) [ ok] 1 = A, Zck)[ (Yk]. 

Define 

m 

x := c EYZ(Y) for & > 0. 
v=l 

Then x > 0, and for 1 < k < m, 

(3.3) 

I(ASx)b,]I =I~l(AS-(‘l))[C+-vI < A,dk’[(Yk]*Ek + O(sk+‘). 
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For i E cxk we have xi = ;3jkkk, and hence for all i E ok, 

( ASx)i I II hkz$kkk + O( El;+‘) ~ = 
(kjEk = A, + O(E) <p;(A) + O(E). 

xi zi 

Applying this for 1 < k < m and using hk < pi(A) shows maxiKASx>,/xil 
G pi(A) + O(E) for th e x defined in (3.31, and proves the lemma. ??

The next lemma gives lower and upper bounds for a real eigenvalue of 
A E M,(R), A not sibm-restricted, provided the sign pattern of the corre- 
sponding left eigenvector is known. 

LEMMA 3.3. Let A E M,,(R) b e zven with real eigenvalue A E R and g’ 
lefi eigenvector 0 # z E R”, i.e. A7‘z = AZ. Then for any vector x E R”, 
xi#Oandzixi>Oforl<i<n,wehave 

yin- < A < m,ax*. Ch)i 

I 'i I xi 

proof. Set ,_q := (Ar),/ri; then 

F( A - /.~i)~i~i = $ [( ATz)ixi - ( AX)iZi] = xrATz - 2%~ = 0. 

By assumption, not all xiq can be zero. Hence xizi z 0 shows that not all 
pi can be strictly less than or stictly greater than A. ??

The proof is almost the same as the one by Collatz for his Satz in Section 
2 of [7]. We mention that Lemma 3.3 can be used to prove that a specific 
orthant (X E [w” 1 Sx > O), S E 9 does not contain an eigenvector (to a real 
eigenvalue). 

COROLLARY 3.4. Let A E M,(R), S ~9, and x, y E R” be given with 
Sr > 0, Sy > 0, and 

min_ > maoi (A%), 

E 'i i Yi 

Then there is no eigenvector of A in the orthant {x E R” 1 Sx > O}. 
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In particular, if AT has two eigenvectors with no zero components 
corresponding to distinct eigenvalues in the same orthant, then this orthant 
contains no eigenvector of A. 

We will apply Lemma 3.3 to the eigenvalue A = p,“< A) of S, AS,, where 
S,, S, E 9 are chosen according to Lemma 2.6. If h is a simple eigenvalue of 
S, AS,, then according to Lemma 2.6 S, AS, has a left and right eigenvector 
corresponding to h where none of the corresponding components are of 
opposite sign. 

We are now ready to prove the following theorem, a duality theorem very 
much in the spirit of the corresponding assertion in Perron-Frobenius theory. 

THEOREM 3.5. For A E M,(R), 

(ASx)i 
max max min ~ I I ( ASx)i 
SE9X>O x,+0 xi 

= pi( A) = max inf max ~ 
sC!?x>o i I I *i 

. (3.4) 
x+0 

Proof. The left equality follows by Theorem 3.1. Using Lemma 3.2, it 
remains to show max inf max > p,“< A). Using Lemma 2.6, let S, ArS, . z = 
p,“( AT>. z = p,“< A). z with z > 0, z # 0. Then for all x > 0, Lemma 3.3 
implies 

(‘2 ASlx)i 
max a P:(A). 

t xi 

Hence 

max inf max 
ScYx>O i 

, inf max(S2ASlx)i 
, 

x>o i 
2 d(A). 

'i 

The matrix 

and x = (1, OjT show that in the right-hand side of (3.4) the inf,, 0 max, 
cannot be replaced by a mm, z 0 max * + a. 
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The sign-real spectral radius and the componentwise distance to the 
nearest singular matrix are in a sense inversely proportional (see Theorem 2.8 
and Lemma 2.11). The validity of an upper bound b for cr( A, E) is verified 
if a matrix A is known with 1 A - Al < bE and det A det A < 0. Similarly, 
any nonzero vector x together with Theorem 3.1 provides an easy-to-calcu- 
late lower bound for p,“< A). C onversely, it is comparatively difficult to prove 
b to be a lower-_ bound _of a( A, E), b ecause this includes the proof of 
regularity of all A with 1 A - Al < bE. Similarly, according to Theorem 3.5, 
we have, for some vector x’, to calculate the ratio I( ASx),/xil for all S E 9 to 
obtain a valid upper bound for p,“< A). 

We note the similarity to the corresponding result for nonnegative matri- 
ces. For any A E M,([W), A > 0, we have 

Ck)i 
max min - = 

Ck>i 
x,0 r,+O xi 

p(A) = inf max-. 
x>o i (3.5) 

xzo xi 

As in Perron-Frobenius theory, replacing inf by min in (3.51, we find that 

min ma J_?.b 
x-a0 x,+0 xi 
T # 0 

is, in general, even not an upper bound for p(A). 
The following bounds for pi(A) under operations with diagonal matrices 

are straightforward implications of Theorem 3.1 and p,“( AD) = pi< DA) (cf. 
Lemma 2.1). 

LEMMA 3.6. Let A E M,,(R) and D be n diagonal matrix. Then 

pi(A) - mi$D,il < pi( A + D) G P:(A) + m~~lD~i/ 

and 

p,f( A) ,,:i,,l D,,I =G pi( AD) =G P,S( A) midDitI. 

Some properties of the spectral radius of nonnegative irreducible matrices 
do not (immediately) carry over to the sign-real spectral radius, even when A 
has no zero component. For example, if A = pi< A) is an eigenvalue of some 
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SA, then 

it may hold that A < p( SA), (3.6o) 

it may hold that A = pi( A[ ~1) for some p E Qk,,, k < n, (3.6P) 

A may be a multiple eigenvalue of SA. (3.6~) 

The matrix in (2.4) is an example for (3.6cr). However, Theorem 5.7 will 
show that the ratio p( SA)/p$ A) is bounded for every S ~9, namely, 
p(SA)/pi( A) 6 p(I Al)/& A) < (3 + 2&)n. If (3.6/3) or (3.6~) holds true, 
the matrix A has special properties. If (3.6P) is true, then by Corollary 2.4 
one has p,“( A[ ~‘1) = p,“(A) for every index set Z.L’ 2 Z.L. 

If an eigenvector x of some SA, corresponding to the eigenvalue &A), 
has zero components, then & A[ ~1) = &“(A), where Z..L is the index set of 
nonzero entries in X. The converse is not true: If p,“< A[ ~1) = pi< A), there 
need not exist an eigenvector corresponding to z$( A) of some SA with a zero 
entry. An example is 

for which pi(A) = p,“< A[ ~1) = 135 for Z.L = (1,2>, but P:(A) is a simple 
eigenvalue of SA for all S E Y, and no eigenvector corresponding to pi< A) 
has a zero component. However, every left eigenvector of SA to a real 
eigenvalue A with IhI = pi(A) has a zero component. 

Following we will see that this is true in general. The conditions for 
(3.6p) and (3.6 > y can be characterized as follows. 

LEMMA 3.7. For A E M,(R) the following are equivalent: 

(i) There exists /_L E Qn _ ,, n with p,“< A[ /.L]) = pi< A). 
(ii) There exists some S E 9 such that SA has a lef or a right eigenvector 

to the eigenvalue A = p,“< A) with a zero component. 

Proof. (i) * (ii): There is S E 9 with det{( pi(A) * Z - SA)[ ~1) = 0. 
The linearity of the determinant (2.1) subject to rank-l perturbations, the 
inheritance of p,f, and Theorem 2.3 imply det{ p,“< A). Z - SA) = 0. Now, 
every matrix C E M,(R) such that C and C[ Z.L], Z.L E Q,, _ ,, nr have an 
eigenvalue A in common has a left or right eigenvector corresponding to A 
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with a zero component. This is seen as follows. For B := adj(hZ - C) we 
have B,, = 0 for k E {l,..., n} with k E /.L. If B = 0, then all (n - 1) X 
(n - 1) minors of AZ - C are zero, and the kernel of AZ - C is at least of 
dimension 2. If B f 0, there is a nonzero row or column of B that is a left or 
right eigenvector of C, respectively, and it has a zero component, because 
B,, = 0 and B is of rank 1. 

(ii) = (i) follows by Theorem 3.1, Corollary 2.4, and &A) = picAr). ??

THEOREM 3.8. For A E M,,(R) the following are equivalent: 

(i) For some S E 9, p,“(A) is an eigenvalue of SA of multiplicity greater 
or equal to m. 

(ii) For all t_~ E Qkn, 0 G k G m - 1 it is pi( A( p)) = p,“(A), where 
A( t.~) := A[ ~‘1 with p’ := 11, . . . , n} \ /_L. 

Proof. Let S ~9, set B := pa(A) * Z - SA, and denote the characteris- 
tic polynomial of B by C:=, pi xi. Then 1 p, 1 = IX, p,=i det B( /_L)\; see for 
example [27, (6.2.9)]. By Theorem 2.3(iii), det B( /_L> > 0 for all CL. Therefore, 
we have the following equivalences: (i) H [B has an eigenvalue 0 of 
multiplicity greater or equal to m] e [p, = 0 for 0 < i < m - l] a 
[det B( /_L) = 0 for all 0 < 1 /_L < m - I]. By the inheritance property of the 
sign-real spectral radius (Corollary 2.4) this is equivalent to (ii). ??

In classical Perron-Frobenius theory the spectral radius is a simple 
eigenvalue for irreducible matrices. We may ask whether something similar is 
true for the sign-real spectral radius. The answer will yield another way to 
explain its continuity. It may happen that A := p,“(A) is a multiple eigenvalue 
of some SA, and &-perturbations move A into the complex plane. However, 
the following theorem proves that pi(A) is always a simple eigenvalue of 
some SA, unless A is permutationally similar to a strictly upper triangular 
matrix, in which case all SA have the n-fold eigenvalue zero. 

THEOREM 3.9. For A E M,,(R), n > 2, exactly one of the two following 
statements is true. 

(i> P;(A) is a simple eigenvalue of SA for some S E9’. 
(ii) A is permutationally similar to a strictly upper triangular matrix (and 

therefore p,“(A) = 0). 

Proof. Let A be an eigenvalue of SA with 1 Al = pi(A). If A is simple, 
we use SA or - SA and we are finished. Suppose the multiplicity of A is 
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greater than one. By the proof of Theorem 3.8 we know de&AZ - SA) = 0 
= det(( AZ - SA)[ ~1) for all /_L E Q,, _ ,, ,L. Define diagonal S’, S” with Sii = 
S:, = Syi for 1 < i < n - 1, and SL,, := 0, Si, := -S “,,. Then for Z.L := 
11,. . . , n - l] we have det(AZ - S’A) = Adet{(hZ - SA)[ p]} = 0, and the 
linearity of determinants subject to rank-l perturbations (2.1) implies det(hZ 
- S” A) = 0. The signature matrix S” differs from S in exactly one compo- 
nent, and A is an eigenvalue of SA and of S” A. Repeating this argument, we 
either arrive at some S ~9 with a simple eigenvalue A, or else det(AZ - 
SA) = 0 for all S E 9’. In the latter case, (2.1) implies det{(AZ - SA)[ Z-L]] = 0 
for all Z_L E ok,,, 1 < k < n, and therefore A = 0. For pi(A) = 1 Al, Theorem 
2.7 finishes the proof. W 

Set r := pi-< A). Note that it may happen that det(rZ - S, A) = det(rZ - 
S, A) = 0, but r is simple eigenvalue of S, A and S, A, and pi(A[ ~1) < 
pi(A) for all I_L E Q,[ _ ,, ,l. An example is 

,12 54 

for which pi< A) = 10, and S, = I, S, = diad - 1, 1, - 1, 1). 
Corollary 2.4 tells us that pl( A) cannot increase on going to a principal 

submatrix. The corresponding property for individual elements of nonnega- 
tive matrices does not carry over. That means there are matrices A E M,(R) 
such that increasing the absolute value and preserving the sign of an 
individual element Ai. may decrease the signature spectral radius. This is 
because in Perron-Fro L . emus theory the “direction” is evident from the fact 
that A is nonnegative; for the sign-real spectral radius there is no such 
generic “direction.” 

However, we have the following property of &A), which shows its 
behavior in certain “directions.” 

THEOREM 3.10. Let A E M,(R) and J G (1,. . . , n] X (1,. . . , n) be an 
arbitrary set of index pairs. Then there exists a matrix C E M,(R) with the 
following properties. 

(i) lC,,] = 1 for (i,j) E J, and cij = 0 for (i,j) GC /. 
(ii) For every matrix B E M,(R) with sign(Bjj) = Cij for 1 < i, j < n, 

P:(A) G P;( A + B). 

In words: For eve y set ] of index pairs there exists a “direction” X in which 
the sign-real spectral radius cannot decrease below p,“( A). 
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Proof. According to Lemma 2.6, there exist signature matrices S, T with 

SAT-x = p,f( A) .x for some 0 # x E [w” with x z 0. 

Define Xij := SiiT.j for (i, j) E J, and cjj := 0 otherwise. Any B E M,([W) 
with sign(Bjj) = gli satisfies SBT > 0, and hence 

S( A + B)Tx = p;(A) .x + SZ3T.x > p,f( A) *x >, 0. 

Using Theorem 3.1 and Lemma 2.1, this yields pi(A f B) = &S(A + 
BIT z #(A). ??

Regarding the perturbation of an individual component, this means that 
towards + m or --oo, the sign-real spectral radius can never fall below the 
current value. Using (2.D this observation can be generalized to the follow- 
ing corollary. 

COROLLARY 3.11. For A E M,,(R) and u, G E [w” the following is true: 
There exists s E { - 1, + l} such that jbr all 0 < (Y E R, 

p,“( A + scmdj 2 p;(A). 

Proof. For r := pi(A) and det(rZ - SA) = 0, (2.1) implies det[ rZ - 
S(A + cuwoT)] = -ouradj(rZ - SA)S u, which is nonpositive for all (Y > 0 
or for all CY < 0. The assertion follows. ??

Theorem 3.10 and Corollary 3.11 offer possibilities to find, for a given 
matrix A, another matrix A with p,“(A) < pi(A). The following theorem 
shows that with a certain Gauss transformation we may construct a matrix A 
with p,“< A) < p,“< A). 

THEOREM 3.12. Let A E M,(R) and 1 < k < n, p := {I,. . . , nI \ {k). 
For cp E R with cpA,, > 0 and IqI p,“(A) < 1, defi:ne B := (Z f cp. 
Aekel)A. Then 

Proof. For p,“< A) = 0, by Th eorem 2.7 the matrix A, and by definition 
also B are permutationally similar to a strictly upper diagonal matrix. There- 
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fore, we may assume r := p,“(A) > 0, and by Corollary 2.4 we may assume 
cp # 0. We will show detirl - SB[ ~1) 2-0 for all S E Yn_ r, from which the 
assertion foilows by Theorem 2.3. Let S E Pn_ i be given, define diagonal 
S’ E M,(R) by 

'ii for i <k, 
Si := 0 for i =k, 

‘i- I,i-l for i>k, 

and set D := S’ + rep * ek ec. Then D,, = rq, 1 DI < I, and D is regular. In 
the following we use e;DD = r”p” * el, (2.1), and (adj C)C = (det C)Z, and 
we set d := det(rZ - DA). Then 

rdet(rZ - SB[ ~1) 

= det(rZ - S’B) 

= det[rZ - (D-rep. ekeL)(Z + p*Aeke[)A] 

= det[rZ - DA + cpe(rZ - DA)ekeiA + rcp”.Akk.ekeEA] 

= det(rZ - DA) + elAadj(rZ - DA) * [cp.(rZ - DA)e, + rcp”*Akkek] 

= rl + q*e:Aadj(rZ -DA) .(rZ - DA)e, 

+ r-‘Akk . e;D . DA . adj( rZ - DA) . ek 

= d + cpd.A,, + r-‘Akk - erD[( DA - rZ) adj( rZ - DA) 

+radj(rI - DA)]e, 

=d+cpd*Akk-rT’d.AkkDkk+ALADkkdet{(rZ-DA)[p]} 

= d + rcp.Akk det{(rZ - DA)[ p]} > 0. 

The last term is nonnegative because by Theorem 2.3 and 1 DI < Z we have 
d >, 0 and det{(rZ - DA)[ ~1) > 0, and by assumption PA,, 2 0. ??

For Akk = 0, the sign of cp is not fixed. From the last line of the proof it 
follows that for A,, = 0 we have pi(Z?[ ~1) = pi(A) for B := [I + s . 
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&A)-’ *Aeket]A and s = + I or s = - 1. For any A and any cp with 
cpA,, > 0, &I?[ pl) > cp-’ implies p,“(A) > cp-‘. 

4. LOWER AND UPPER BOUNDS USING DETERMINANTS 

The absolute value of the determinant of a matrix is, in general, neither a 
lower nor an upper bound for the sign-real spectral radius. However, using 
the determinants of all principal submatrices, we can derive a lower and an 
upper bound on &A). In a way this generalizes Corollary 2.4. The new 
bounds are shown to be sharp. Corresponding bounds for the Perron root of 
a nonnegative matrix, which are sharp as well, follow as a corollary. 

DEFINITION 4.1. Define 

6(A) := maxldet A[ pII”“‘, 
p 

(4.1) 

where the maximum is taken over all /.L E Qktl, 1 < k < n. 

THEOREM 4.2. For A E M,,(R) we have 

a( A) G P;( A) < S(A) . (2”” - 1))‘. (4.2) 

The inequalities are sharp in the sense that for each n E N, left equality and 
right equality can be achieved One has 

(2 l/n _ $1 < 1.443n. (4.3) 

Proof Denote 9’+ := (S E 9’1 det S = + 1) and Y := 9’\9’+. The 
characteristic polynomial PA of A satisfies (cf. [18, 2.151) 

P,(X) =det(xZ-A) = 2x”-“(-l)LtraceC,(A). (4.4) 
k=O 
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For 1 < k < n - 1 there holds 

c traceCk(SA) = c c det(SA)[p] 
SES”’ s&Y+ lyl=k 

and therefore 

C det(xZ - SA) = 2”P1[x” + (-1)“det A], 
S&Y+ 

(4.5) 

and similarly 

C det(xZ - SA) = 2”-1[x” - (-1)“det A]. 
SEP- 

(4.6) 

For x := ldet AI”“, the value of at least one of the two sums (4.5) 
and (4.6) is zero. Hence there exists a signature matrix S E 9 with det( xl - 
SA) < 0. Using det(xZ - SA) + + 03 for x + + 03 implies the existence of a 
real eigenvalue A of SA with pi(A) 2 h > ldet Air’“. The inheritance 
property (Corollary 2.4) implies the left inequality in (4.2). 

Another way of writing (4.4) for S ~9 is 

det( rZ - SA) = xn + c ( - 1)“’ det{ (SA)[ p]) *x”-‘~l, (4.7) 
IPI> 1 

where the sum is taken over all ZL E Qk,,, l<k,<n.Setting a:=S(A>= 
6( SA) implies 

&Xln-k 

= (1x1 + a)” - IKIn. 
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For 1x1 > (~(2 “‘I - 11-l it follows that 

(Ix1 + a)” - IxIn < (III + (21’” - l)l,l)” - IX\” = IXln. 

Together with (4.7) th’ h IS s ows that the value of the characteristic polynomial 
of SA is nonzero for all real x with 1x1 > a(2”” - 1)-r. This proves (4.2). 

The left inequality in (4.2) is an equality for the identity matrix. Consider 
the circulant A E M,,(R) with 

A= 

1 n a2 . . . . . . 

n”- 1 1 u a2 . . . 

a n - 2 (, n 1 1 a . . 

1 . . 

Define D := diag(a”- ‘, . . . , a2, a, 1). Then 

D-‘AD = 

\ 

and a := 2’/“. (4-S) 

(1 1 1 .*.\ 
2 1 1 .** 
2 2 1 ... ’ 
. . . . . . . . . . . 

a matrix with l’s on and above the diagonal and 2’s below. Subtracting the 
second row from the first row of D-‘AD and using an induction argument, it 
follows that all principal minors of D -lAD and hence of A are of absolute 
value 1. Therefore 6( D-‘AD) = 6(A) = 1. All row sums of the positive 
matrix A are equal, and therefore they are equal to its Perron root, which is 

t, - 1 

p(A) = p;( A) = c ak = z = (2+ - 1)-l. 
k = 0 

Hence the right inequality of (4.2) is sharp. Finally, 

21/n _ 1 = &/n)‘n2 - 1 > 1 In2 

n 

implies (4.3). The theorem is proved. 
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We mention that for polynomials an inequality in the spirit of (4.2) has 
been given by Birkhoff [4]; see also Marden [19]. 

COROLLARY 4.3. For nonnegative A E M,(R) we have 

a( A) < p(A) < 6(A) . (21’n - 1)-f 

The inequalities are sharp in the sense that for each n E N, left and right 
equality can be achieved. 

COROLLARY 4.4. For orthogonal Q E M,(R) we have 

d(Q) = 1. 

Proof. Theorem 4.2 implies P:(Q) 2 1, and Theorem 2.15 yields 
p;(Q) < IlQh = 1. ??

Orthogonal matrices map the unit ball into itself. With Q also SQ is 
orthogonal, and Corollary 4.4 states that there exists a signature matrix S and 
real x E R” with l]x$ = 1 and SQx = X. 

COROLLARY 4.5. For A E M,(R) with singular values (To > .** > 
a_,,( A), 

(4.9) 

Proof. Follows by Theorem 2.15, Theorem 4.2, and ]det Al = ll a,( A). 
??

The geometric mean on the left of (4.9) cannot be replaced by an 
arithmetic mean, as any nonzero strictly upper triangular matrix shows. 

Definition 4.1 of 6(A) together with Theorem 4.2 yields a number of 
interesting properties of the &number. For example, for signature matrices 



30 S. M. RUMP 

S,, S, E 9, regular diagonal matrix D, and permutation matrix P, 

6(A) = 6( AT) = 6( S,AS,) = 6( D-IAD) = 6( PTAP), 
S( AD).= S( DA), a( A) < I]A]],, 
6(A) = 0 -A 

permutationally similar to a strictly upper triangular matrix, 

Q’ = Q-’ * S(Q) = 1. 

In general, S(A2) it 6(A)2, 6(Ao A) # 6(A)2, and 6(QTAQ> # 6(A) for 
Q’ = Q- ‘, but, of course, 6(A) has the inheritance property. A geometrical 
interpretation of ]det AI”” . 1s the length of an edge of a cube of the same 
volume as the parallelepiped spanned by the rows of A. 

5. LOWER AND UPPER BOUNDS USINC CYCLIC PRODUCTS 

A set o = (wi,..., w,) of 101 := k > 1 mutually distinct integers out of 
(1,. . . , n) is called a cycle and defines the cyclic product 

I-IA, := iiYiAY,W,+~~ where 
i=l 

WjwI+l := w1* 

Note that, in contrast with [lo] or [12], by our definition each diagonal 
element Aii is a cyclic product (of length one). Next, we derive bounds for 
pi(A) using the geometric mean of the absolute value of cyclic products. 

LEMMA 5.1. For A E M,([W) and a cycle w with I WI G 2 we have 

1 nAwl+ < p;(A). (5.1) 

Proof. For I WI = 1 this follows by Corollary 2.4. For I WI = 2 it suffices 
to show p,“< A) > ,/m, i # j, and by the inheritance of pi it suffices to 
show 

According to Lemma 2.1 we know p,“< A) = pa(S, AS,) for S,, S, E 9, and 
therefore we may assume a, b, c > 0, and either d > 0 or d < 0. In either 
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case, the eigenvalues +[a + d * d( a - d)’ + 4bc ] are real, and at least 
one of them is larger in absolute value than 6. ??

We tried to prove (5.1) for 1 WI > 2, because this would imply 

p(,~-‘,E)-l 6 r( A, E) Q V’(lA-llE)pl 

with sharp lower and upper bounds (cf. [25]). An attempt to prove (5.1) for 
(WI > 2 could proceed as follows. 

If A consists of a zero row, then deleting this row and the corresponding 
column does not change p,f(A). Assume A has no zero row, so that 
maxjl AilI > 0 for all 1 < i < n. Then suitable renumbering and an induction 
argument together with Corollary 2.4 assures that we may assume w.1.o.g. 
lAii,l = maxjlAijl, where i’ :=i+l for l<i<n and it:=1 for i=n. 
Furthermore, define b := <nil Aii,l)““. Then a similarity transformation with 
the diagonal matrix D with 

v-l b 

D,, := n - 
i= 1 Aii, 

yields l( DplAD)ij.( = b for 1 < i < n. That means, with a proper scaling, we 
can restrict our attention to matrices of the form 

A=P+A* with AT,, = 0 and 

P the permutation matrix with Piif = 1. (5.2) 

P is a cyclic shift. Obviously, pi(P) = 1 (which is also a consequence of 
Corollary 4.3). In the following, we will prove p$P + CA*) > 1 for small 
E > 0. 

We use a formula for the determinant of the sum of two matrices. First, 
we need the following definition. For A E M,(R) and (Y, /3 E Ok,,, A[ cr p] 
E M,([W) denotes the matrix with rows i E CY and columns j E p, whereas 

A(al P) E M,_,(@ is o bt ained by deleting rows i E (Y and columns j E p. 
Similar to the k th compound matrix C,(A) E M (,r)(W) of A E M,(R), the 

o/3 entry of which is defined to be det A[ a ) /3 ] for (Y, p E Qk,,, we define 
the kth adjoint matrix adjk( A) E M (IQ the CYP entry of which is defined 

bY 
(9 

adjk( A) := ( -l)‘“‘+‘:B’A( @la). 
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We define 

C,(A) := 1 and adj,)( A) := 1. 

The kth adjoint seems to be not so common in the recent English-language 
literature; we found it in [21]. However, Peschl uses the transpose of our 
definition. One easily verifies 

C,(A) = A, C,( A) = det A 

adj,( A) = det A, adj( A) := adj,( A) = 

provided A is regular, 

A-’ det A 

and 

Furthermore, using 
[21, Satz 421) 

Using this yields the following expansion for the determinant of a sum of two 
matrices. Hans Schneider pointed out to us that the result can be found in [2, 
No. 5, p. 1011, b u without proof. Therefore, we state the short proof. t 

C,(AB) = C,(A)C,(B), 

adjk( AB) = adjk( B) adjk( A). 

our definition, Laplace’s expansion theorem reads (cf. 

adjk( A) C,(A) = (det A)‘(.;). 

LEMMA 5.2. For A, B E M,(R) and 8, E E R, 

det( 6A + EB) = k t race[adjk( A) C,(B)] . snekek. 
k = 0 

(5.3) 

REMARK. The apparent asymmetry in (5.3) is resolved by the trace 
operation, because trace[adjk( A) Ck( B)] = trace[adj, _ k( B) C, _ k( A)]. 

Proof. For the characteristic polynomial PA of A we have 

P,(A) =det(hZ-A) = k h”-k(-l)ktraceCk(A). 
k=O 
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Therefore, 

det( A + Z) = i trace C,( A). 
k=O 

For regular A, using C,(A-‘1 = c,(A)-‘, this implies 

det( A + B) = det Adet( Z + A-‘B) 

= (det A) 2 trace[Ck( A-‘B)] 
k = 0 

= (det A) 2 trace[ C,( A-‘)C,( B)] 
k = 0 

= (det A) C trace[det A-’ adjk( A) C,(B)] 
k=O 

= k trace[adjk( A) Ck( B)], 
k=O 

For singular A, the same formula follows by a continuity argument. 
Observing adj,(SA) = S”-k adj,(A) and Ck(eB) = ??kCk(B) proves the 
lemma. ??

This allows us to prove that Z’ as defined in (5.2) is a strict local minimum 
of pi< P + EA*) for small E # 0 and P 0 A* = OnX,,, 0 denoting the 
Hadamard product. 

THEOREM 5.3. Let P E M,(R) be the permutation matrix (cyclic shij?) 
with Pii, = 1 where 

i 

i+l for l,<i<n, 
z .) := 

1 f or i=n, 

and let A* E M,,(R), not identical to the zero matrix, be such that Ajif = 0 
jk- 1 < i < n. Then for small enough 0 < E E R, 

,o,“( P + EA*) > p;(P) = 1. (5.4) 
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Proof. Using pi(P) = 1 and Theorem 2.3, it suffices to show 

det[ Z - S( P + ??A*)] < 0 (5.5) 

for some ISI = Z and sufficiently small E > 0. Using det( -P> = - 1 and 
Lemma 5.2, it follows for det S = 1, 

det( Z - SP - eSA*) = det( -SP) det( Z - PTS + ??PrA*) 

=- t trace[adjk( I - PTS) C,( PTA*)] * ??k. (5.6) 
k=O 

Furthermore, adj,(Z - PrS) = det(Z - PrS) = 0 for det S = 1, that is, the 
summand for k = 0 in (5.6) vanishes. Regarding C,(PrA*) = PTA*, (5.5) is 
satisfied for small enough E > 0, and therefore the theorem is proved, if we 
can show 

trace[adj( Z - PTS) PTA*] > 0 (5.7) 

for some signature matrix S with det S = 1. We have rankadj(Z - PTS) = 1, 
and defining 9+ := (I S 1 = I jdet( S) = 1) we have 

(adj( Z - PTS)(S EF} = {x*xTllxi( = 1 for 1 < i < n and x1 = 1). 

(5.6) 

For /J E Qk,,, 1 < k < n, define 

X, := {x E [w”\jxj = (1) and x, = 1 for v E CL}. 

An induction argument shows for every B E M,(R), 

c Bij . 
XEX, 

(5.9) 
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By (5.8) we have {adj(Z - PrS) 1 S E L@) = {xx’ I x E Xcl$, and (5.9) im- 
plies for p = 11) 

C trace[adj( Z - PrS) PT~*] = C trace( xrr. PTA*) 
SC? Xc+] 

= C XT. PTA* ox = 2”-‘ trace( PTA*). 
Rex 

From the definition of P and A* we know (PTA*),, = 0 for 1 =G i < n, and 
therefore trace(PrA*) = 0. Hence, either (5.7) is satisfied and the theorem is 
proved, or trace(adj(Z - PrS) PTA*) = 0 for all S EY+. 

By (5.8) this leaves us with proving our result for the case xr . PTA* . x = 0 
for all x E X{i). In this case, xr * PTA* . x = 0 for all x E X, with 1 E /.L. For 
I_L E (1, i}, (5.9) and (PTA*),, = 0 imply 

( PTA*)li + ( PTA*)il = 0 for 2<ign. 

For Z_L = { 1,2, i}, again using (5.9), we obtain 

(PTA*)2i + (PrA*)j2 = 0 for 3<i<n. 

Following these lines, we arrive at 

PTA* = -(PTA*)*. (5.10) 

That means the theorem is proved if for P, A* with (5.10), A* not identically 
zero, there exists some S EL@ such that (5.5) is satisfied for small enough 
E > 0. The zeros of the characteristic polynomial of a skew-symmetric matrix 
have real part zero. Therefore, the characteristic polynomial PprA*(x) = 
c;=, Ck X”-k of PTA* has the form 

CZk+l = -trace Clk+ i( PTA*) = 0 and cpk = trace Cak( PTA*) 2 0. 

(5.11) 

It is easy to see that 

c adjk( Z - PTS) = 2”p1Z(z) for 1 < k < n. 
s&Y+ 
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Hence, (5.6) implies 

c det(Z - SP - ??.SA*) 
SCY+ 

= - 2 c trace[adjk( Z - P“S) C,( Z’rA*)] * ??k 
k=O s&F+ 

= -2”-’ 2 [traceCk( PrA*)] * ck, 
k=2 

because the terms for k = 0 and k = 1 vanish. Therefore, (5.11) yields 
successively for k = 2,. . . , n that either there exists a nonzero, and hence 
also a positive and a negative, coefficient of E k, or the coefficients of E k in 
(5.6) are zero for all signature matrices S with det S = 1. The first case 
implies (5.5) for small enough E > 0 and proves the theorem; the latter case 
is not possible for all k < n, because of (5.10) and because, by assum 

? 
tion, 

A* is not identical to the zero matrix. Therefore not all coefficients of E can 
be zero. The theorem is proved. ??

Theorem 5.3 shows that pa(P) = 1 is a strict local minimum of pi(P) 
with respect to perturbations A* with P 0 A* = 0. The discussion at the 
beginning of this section showed that (5.1) is a valid lower bound for all w if 1 
and only if p,S(P> IS a global minimum in the prescribed sense. However, 
that is not true. Consider 

-0.3 1 
and A = P + A* = -0.8 

1 

(5.12) 

Then p,“(A) = pi< P + A*) < 0.95. The graph of pi(P + tA*) for - 0.5 < 
t < 1.5 is shown in Figure 1. It also displays the strict local minimum at 
t = 0. Nevertheless, the lower bound (5.1) becomes valid for 1 w I > 2 when 
multiplied by a constant factor less than one. 

DEFINITION 5.4. For A E M,(R) define l(A) to be the maximum 
geometric mean of the cyclic products of 1 Al, that is, 

l(A) := maxi nAw~‘/l”‘, 
w 

where the maximum is taken over all cycles o. 
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-0.5 
-1 

0 0.5 1 1.5 

FIG. 1. &P + tA*) for -0.5 < t < 1.5. 

Remember that the cyclic products of 1 Al include the diagonal elements 
1 Aiil. The following Theorem shows that indeed [(A) and pi(A) cannot be 
very far apart. The proof of the lower bound of the following theorem 5.5 is 
lengthy. It uses pi(S, AS,) = pi(A) essentially and constructs a suitable 
vector x for the use of Theorem 3.1. The theorem allows us to prove an 
almost sharp upper bound for the componentwise distance to the nearest 
singular matrix, thus extending and improving a conjecture by J. Demmel and 
N. J. Higham [9]. The theorem is included in [24]. 

THEOREM 5.5. For A E M,(R), 

(3 + 2ti)-il( A) < p;(A) < n[( A). (5.13) 

The right inequality is sharp, and the lef inequality is sharp up to a constant 
factor. 

Proof. The lower bound in (5.13) has been proven in [24, Lemma 2.11. 
The upper bound follows from (see [ll, Theorem 7.2 and Remark 7.31) 

c(A) = inf{llDP’ADIII D nonsingular diagonal}, (5.14) 
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IIAll ma.xlAijl, and &(A) < p(IAl) 
inequality in (5.13) b 

< n maxlA,jl. For A = (11, the right 
ecomes an equality; for A = I the left inequality is sharp 

up to a constant factor. ??

We mention that the factor (3 + 2&>-l in Theorem 5.5 can be im- 
proved depending on n (see [24, Theorem 2.41). For nonnegative A, the 
result corresponding to Theorem 5.5 reads 

l(A) G P(A) = R,(A) = P:(A) G nL(A) for A > 0. (5.15) 

In that case both inequalities are sharp, as is seen by A = Z and A = (1). 
Next we show that the sign-real spectral radius of A and the Perron root 

of 1 Al cannot be too far apart. The corresponding bounds are also sharp up to 
a constant factor, which Will result from the following lemma. 

LEMMA 5.6. For A E M,,(R), n & 2, with 

Aij = 

i 

1 jb- i <j, +1 
0 jb i = j, i.e., A = 
-1 jbr i >j, * 0 

one has &(A) = 1. 

Proc~f. By Theorem 2.3, pi< A) = 1 is equivalent to det( Z - SA) 2 0 for 
all S E 9 and det( I - SA) = 0 for some S E 9. We prove this by induction. 
The statement is true for n = 2. For IZ > 2, let S ~9 be given. If 
S,, = - 1 and S,, = + 1, then the first and last rows of Z - SA are identical 
and det(Z - SA) = 0. Adding the first to the last column of I - SA yields 0 
in components 2 to n - 1. For S,, = + 1 and S,, = - 1 we obtain a zero 
column, and for S,, = S,, = + 1, the induction hypothesis shows det(Z - 
SA) > 0. For S,, = S,,,, = - 1, adding the last to the first column of Z - SA 
and the induction hypothesis finish the proof. ??

THEOREM 5.7. For A E M,(R), 

&A) < p(IAI) < n*(3 +2/9&A). (5.16) 

The left inequality is sharp; the right inequality is sharp up to the constant 
factor 3 + 245. 
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Proof. Theorem 5.5 and (5.15) yield 

pl( A) G p( ]A]) < G(A) G n * (3 + 2fi)pi( A). 

The left inequality in (5.16) is sharp f or any nonne 
ss 

ative matrix; the right 
inequality is sharp up to the constant factor 3 + 2 2 for the matrix defined 
in Lemma 5.6. ??

Finally, we can prove Theorem 2.16. 

Proof of Theorem 2.16 

Theorem 2.15 implies &Ak> < IIAkllz, ad for P := 3 + 2fi, 

p,f( Ak) a n-‘cp-fo(lAt) > n-b-‘p( A)f 

Hence, limk +J] Ak]]h’k = p(A) proves the theorem. ??

6. FURTHER REMARKS AND OPEN PROBLEMS 

By Theorem 5.5, the ratio p,“< A)/(( A) is bounded below by (3 + 
24%‘, and the matrix in (5.12) shows that the ratio can be less than one. 
What is the minimum ratio (depending on n)? What are properties of a 
matrix achieving this minimum ratio? 

For example, is it true that there is always a matrix A achieving the 
minimum ratio such that ] A] is a circulant [like the matrix (5.12)]? 

The matrix (5.12) showed that (5.1) need not to be true for I WI > 2. 
However, there is evidence that the estimation (5.1) is true for matrices with 
zero diagonal. This is equivalent to the following conjecture, easy to formu- 
late in simple terms. 

CONJECTURE 6.1. For A E M,(R) of the form 

lo 1 \ 

0 1 * 

A= 

* 1 
\l O/ 

(6.1) 

there exists a nonzero vector x E [w” with I Ax I 2 I x I. 
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To see that the conjecture is equivalent to 

P:(A) a l( A) for A with zero diagonal, (6.2) 

we use the sequence of arguments preceding (5.2), and Theorem 3.1 proves 
the equivalence. 

It is not difficult to prove the conjecture for n = 3, and therefore (5.1) for 
matrices with zero diagonal and Iw\ = 3. The conjecture has a number of 
implications. If Conjecture 6.1 is true, then Theorem 5.5 improves to 

P:(A) a $W) for any A E M,(R). (6.3) 

This is seen as follows. If 1 Aiil < +6(A) for all 1 < i < n, define A0 to be 
the matrix A with zero diagonal instead. Then [(A’) = [( A), and Lemma 
3.6 and (6.2) imply 

p;(A) > ,o;( A’) - ;[( A) > l( A’) - +l( A) = ;5( A). 

If lAiil > if(A) for some 1 < i < n, define A’ to be the matrix A with 
Aii := sign( A,,) t(A). Th en p,“( A’) > [(A) by Corollary 2.4, and Lemma 
3.6 implies 

P:( A) a P,% A’) - [l(A) - IAiiI] > IAiiI > 

Conjecture 6.1 also implies 

p(IAl) =G (n - l)p:( A) for A E M,(R) with zero diagonal. (6.4) 

To see this, we may assume by (5.14) that for E > 0, maxIAi.l < [(A) + E. 
The zero diagonal and (6.2) imply ~(1 Al) < (n - l)[ [( Aj + E] Q (n - 
l>p,s(A) + O(E). Th e b ound (6.4) is sharp as by Lemma 5.6. 

For an arbitrary matrix A, define A0 to be that matrix with zero diagonal. 
Then ~(1Al) < p(lA’)) + maxi Ai,1 < (n - 1)&A) + &A). Therefore, if 
Conjecture 6.1 is true, 

P(IAI) G np,f( A) for any A E M,( [w) . (6.5) 

Finally, we mention that if Conjecture 6.1 is true, the results in [24] imply 

1 2n - 1 

p(lA-‘E) 
< a(A,E) f 

p(lA-‘IE) ’ 
(6.6) 

In [25] a general n X n example has been given with a( A, E)p(l A-‘1 E) = n. 
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